And in disk/hdd.c

This commit is contained in:
OBattler
2022-07-19 23:52:18 +02:00
parent fb78071ce9
commit 97e33097b2

View File

@@ -31,10 +31,13 @@
#include <86box/video.h>
#include "cpu.h"
#define HDD_OVERHEAD_TIME 50.0
hard_disk_t hdd[HDD_NUM];
int
hdd_init(void)
{
@@ -156,6 +159,7 @@ hdd_is_valid(int c)
return(1);
}
double
hdd_seek_get_time(hard_disk_t *hdd, uint32_t dst_addr, uint8_t operation, uint8_t continuous, double max_seek_time)
{
@@ -169,11 +173,9 @@ hdd_seek_get_time(hard_disk_t *hdd, uint32_t dst_addr, uint8_t operation, uint8_
break;
}
#ifndef OLD_CODE
double continuous_times[2][2] = { { hdd->head_switch_usec, hdd->cyl_switch_usec },
{ zone->sector_time_usec, zone->sector_time_usec } };
double times[2] = { HDD_OVERHEAD_TIME, hdd->avg_rotation_lat_usec };
#endif
uint32_t new_track = zone->start_track + ((dst_addr - zone->start_sector) / zone->sectors_per_track);
uint32_t new_cylinder = new_track / hdd->phy_heads;
@@ -183,43 +185,14 @@ hdd_seek_get_time(hard_disk_t *hdd, uint32_t dst_addr, uint8_t operation, uint8_
continuous = continuous && sequential;
double seek_time = 0.0;
if (continuous) {
#ifdef OLD_CODE
if (new_track == hdd->cur_track) {
// Same track
seek_time = zone->sector_time_usec;
} else if (!cylinder_diff) {
// Same cylinder, sequential track
seek_time = hdd->head_switch_usec;
} else {
// Sequential cylinder
seek_time = hdd->cyl_switch_usec;
}
#else
if (continuous)
seek_time = continuous_times[new_track == hdd->cur_track][!!cylinder_diff];
#endif
} else {
if (!cylinder_diff) {
#ifdef OLD_CODE
if (operation != HDD_OP_SEEK) {
seek_time = hdd->avg_rotation_lat_usec;
} else {
//seek_time = hdd->cyl_switch_usec;
seek_time = HDD_OVERHEAD_TIME;
}
#else
else {
if (!cylinder_diff)
seek_time = times[operation != HDD_OP_SEEK];
#endif
} else {
#ifdef OLD_CODE
seek_time = hdd->cyl_switch_usec + (hdd->full_stroke_usec * (double)cylinder_diff / (double)hdd->phy_cyl);
if (operation != HDD_OP_SEEK) {
seek_time += hdd->avg_rotation_lat_usec;
}
#else
else {
seek_time = hdd->cyl_switch_usec + (hdd->full_stroke_usec * (double)cylinder_diff / (double)hdd->phy_cyl) +
((operation != HDD_OP_SEEK) * hdd->avg_rotation_lat_usec);
#endif
}
}
@@ -232,21 +205,27 @@ hdd_seek_get_time(hard_disk_t *hdd, uint32_t dst_addr, uint8_t operation, uint8_
return seek_time;
}
static void
hdd_readahead_update(hard_disk_t *hdd)
{
uint64_t elapsed_cycles;
double elapsed_us, seek_time;
uint32_t max_read_ahead, i;
uint32_t space_needed;
hdd_cache_t *cache = &hdd->cache;
if (cache->ra_ongoing) {
hdd_cache_seg_t *segment = &cache->segments[cache->ra_segment];
uint64_t elapsed_cycles = tsc - cache->ra_start_time;
double elapsed_us = (double)elapsed_cycles / cpuclock * 1000000.0;
// Do not overwrite data not yet read by host
uint32_t max_read_ahead = (segment->host_addr + cache->segment_size) - segment->ra_addr;
elapsed_cycles = tsc - cache->ra_start_time;
elapsed_us = (double)elapsed_cycles / cpuclock * 1000000.0;
/* Do not overwrite data not yet read by host */
max_read_ahead = (segment->host_addr + cache->segment_size) - segment->ra_addr;
double seek_time = 0.0;
seek_time = 0.0;
for (uint32_t i = 0; i < max_read_ahead; i++) {
for (i = 0; i < max_read_ahead; i++) {
seek_time += hdd_seek_get_time(hdd, segment->ra_addr, HDD_OP_READ, 1, elapsed_us - seek_time);
if (seek_time > elapsed_us)
break;
@@ -255,16 +234,18 @@ hdd_readahead_update(hard_disk_t *hdd)
}
if (segment->ra_addr > segment->lba_addr + cache->segment_size) {
uint32_t space_needed = segment->ra_addr - (segment->lba_addr + cache->segment_size);
space_needed = segment->ra_addr - (segment->lba_addr + cache->segment_size);
segment->lba_addr += space_needed;
}
}
}
static double
hdd_writecache_flush(hard_disk_t *hdd)
{
double seek_time = 0.0;
while (hdd->cache.write_pending) {
seek_time += hdd_seek_get_time(hdd, hdd->cache.write_addr, HDD_OP_WRITE, 1, 0);
hdd->cache.write_addr++;
@@ -274,13 +255,17 @@ hdd_writecache_flush(hard_disk_t *hdd)
return seek_time;
}
static void
hdd_writecache_update(hard_disk_t *hdd)
{
uint64_t elapsed_cycles;
double elapsed_us, seek_time;
if (hdd->cache.write_pending) {
uint64_t elapsed_cycles = tsc - hdd->cache.write_start_time;
double elapsed_us = (double)elapsed_cycles / cpuclock * 1000000.0;
double seek_time = 0.0;
elapsed_cycles = tsc - hdd->cache.write_start_time;
elapsed_us = (double)elapsed_cycles / cpuclock * 1000000.0;
seek_time = 0.0;
while (hdd->cache.write_pending) {
seek_time += hdd_seek_get_time(hdd, hdd->cache.write_addr, HDD_OP_WRITE, 1, elapsed_us - seek_time);
@@ -293,9 +278,13 @@ hdd_writecache_update(hard_disk_t *hdd)
}
}
double
hdd_timing_write(hard_disk_t *hdd, uint32_t addr, uint32_t len)
{
double seek_time = 0.0;
uint32_t flush_needed;
if (!hdd->speed_preset)
return HDD_OVERHEAD_TIME;
@@ -304,22 +293,20 @@ hdd_timing_write(hard_disk_t *hdd, uint32_t addr, uint32_t len)
hdd->cache.ra_ongoing = 0;
double seek_time = 0.0;
if (hdd->cache.write_pending && (addr != (hdd->cache.write_addr + hdd->cache.write_pending))) {
// New request is not sequential to existing cache, need to flush it
/* New request is not sequential to existing cache, need to flush it */
seek_time += hdd_writecache_flush(hdd);
}
if (!hdd->cache.write_pending) {
// Cache is empty
/* Cache is empty */
hdd->cache.write_addr = addr;
}
hdd->cache.write_pending += len;
if (hdd->cache.write_pending > hdd->cache.write_size) {
// If request is bigger than free cache, flush some data first
uint32_t flush_needed = hdd->cache.write_pending - hdd->cache.write_size;
/* If request is bigger than free cache, flush some data first */
flush_needed = hdd->cache.write_pending - hdd->cache.write_size;
for (uint32_t i = 0; i < flush_needed; i++) {
seek_time += hdd_seek_get_time(hdd, hdd->cache.write_addr, HDD_OP_WRITE, 1, 0);
hdd->cache.write_addr++;
@@ -331,16 +318,18 @@ hdd_timing_write(hard_disk_t *hdd, uint32_t addr, uint32_t len)
return seek_time;
}
double
hdd_timing_read(hard_disk_t *hdd, uint32_t addr, uint32_t len)
{
double seek_time = 0.0;
if (!hdd->speed_preset)
return HDD_OVERHEAD_TIME;
hdd_readahead_update(hdd);
hdd_writecache_update(hdd);
double seek_time = 0.0;
seek_time += hdd_writecache_flush(hdd);
hdd_cache_t *cache = &hdd->cache;
@@ -354,7 +343,7 @@ hdd_timing_read(hard_disk_t *hdd, uint32_t addr, uint32_t len)
}
if (segment->lba_addr <= addr && (segment->lba_addr + cache->segment_size) >= addr) {
// Cache HIT
/* Cache HIT */
segment->host_addr = addr;
active_seg = segment;
if (addr + len > segment->ra_addr) {
@@ -365,19 +354,18 @@ hdd_timing_read(hard_disk_t *hdd, uint32_t addr, uint32_t len)
}
}
if (addr + len > segment->lba_addr + cache->segment_size) {
// Need to erase some previously cached data
/* Need to erase some previously cached data */
uint32_t space_needed = (addr + len) - (segment->lba_addr + cache->segment_size);
segment->lba_addr += space_needed;
}
goto update_lru;
} else {
if (segment->lru > active_seg->lru) {
if (segment->lru > active_seg->lru)
active_seg = segment;
}
}
}
// Cache MISS
/* Cache MISS */
active_seg->lba_addr = addr;
active_seg->valid = 1;
active_seg->host_addr = addr;
@@ -389,9 +377,8 @@ hdd_timing_read(hard_disk_t *hdd, uint32_t addr, uint32_t len)
}
update_lru:
for (uint32_t i = 0; i < cache->num_segments; i++) {
for (uint32_t i = 0; i < cache->num_segments; i++)
cache->segments[i].lru++;
}
active_seg->lru = 0;
@@ -402,15 +389,18 @@ update_lru:
return seek_time;
}
static void
hdd_cache_init(hard_disk_t *hdd)
{
hdd_cache_t *cache = &hdd->cache;
uint32_t i;
cache->ra_segment = 0;
cache->ra_ongoing = 0;
cache->ra_start_time = 0;
for (uint32_t i = 0; i < cache->num_segments; i++) {
for (i = 0; i < cache->num_segments; i++) {
cache->segments[i].valid = 0;
cache->segments[i].lru = 0;
cache->segments[i].id = i;
@@ -419,25 +409,28 @@ hdd_cache_init(hard_disk_t *hdd)
}
}
static void
hdd_zones_init(hard_disk_t *hdd)
{
uint32_t lba = 0;
uint32_t track = 0;
uint32_t lba = 0, track = 0;
uint32_t i, tracks;
double revolution_usec = 60.0 / (double)hdd->rpm * 1000000.0;
for (uint32_t i = 0; i < hdd->num_zones; i++) {
hdd_zone_t *zone = &hdd->zones[i];
hdd_zone_t *zone;
for (i = 0; i < hdd->num_zones; i++) {
zone = &hdd->zones[i];
zone->start_sector = lba;
zone->start_track = track;
zone->sector_time_usec = revolution_usec / (double)zone->sectors_per_track;
uint32_t tracks = zone->cylinders * hdd->phy_heads;
tracks = zone->cylinders * hdd->phy_heads;
lba += tracks * zone->sectors_per_track;
zone->end_sector = lba - 1;
track += tracks - 1;
}
}
static hdd_preset_t hdd_speed_presets[] = {
{ .name = "RAM Disk (max. speed)", .internal_name = "ramdisk", .rcache_num_seg = 16, .rcache_seg_size = 128, .max_multiple = 32 },
@@ -463,30 +456,33 @@ static hdd_preset_t hdd_speed_presets[] = {
.full_stroke_ms = 15, .track_seek_ms = 2, .rcache_num_seg = 16, .rcache_seg_size = 128, .max_multiple = 32 },
};
int
hdd_preset_get_num()
{
return sizeof(hdd_speed_presets) / sizeof(hdd_preset_t);
}
char *
hdd_preset_getname(int preset)
{
return (char *)hdd_speed_presets[preset].name;
}
char *
hdd_preset_get_internal_name(int preset)
{
return (char *)hdd_speed_presets[preset].internal_name;
}
int
hdd_preset_get_from_internal_name(char *s)
{
int c = 0;
for (int i = 0; i < (sizeof(hdd_speed_presets) / sizeof(hdd_preset_t)); i++) {
if (!strcmp((char *)hdd_speed_presets[c].internal_name, s))
return c;
@@ -496,10 +492,15 @@ hdd_preset_get_from_internal_name(char *s)
return 0;
}
void
hdd_preset_apply(int hdd_id)
{
hard_disk_t *hd = &hdd[hdd_id];
double revolution_usec, zone_percent;
uint32_t disk_sectors, sectors_per_surface, cylinders, cylinders_per_zone;
uint32_t total_sectors = 0, i;
uint32_t spt, zone_sectors;
if (hd->speed_preset >= hdd_preset_get_num())
hd->speed_preset = 0;
@@ -516,7 +517,7 @@ hdd_preset_apply(int hdd_id)
hd->phy_heads = preset->heads;
hd->rpm = preset->rpm;
double revolution_usec = 60.0 / (double)hd->rpm * 1000000.0;
revolution_usec = 60.0 / (double)hd->rpm * 1000000.0;
hd->avg_rotation_lat_usec = revolution_usec / 2;
hd->full_stroke_usec = preset->full_stroke_ms * 1000;
hd->head_switch_usec = preset->track_seek_ms * 1000;
@@ -526,26 +527,23 @@ hdd_preset_apply(int hdd_id)
hd->num_zones = preset->zones;
uint32_t disk_sectors = hd->tracks * hd->hpc * hd->spt;
uint32_t sectors_per_surface = (uint32_t)ceil((double)disk_sectors / (double)hd->phy_heads);
uint32_t cylinders = (uint32_t)ceil((double)sectors_per_surface / (double)preset->avg_spt);
disk_sectors = hd->tracks * hd->hpc * hd->spt;
sectors_per_surface = (uint32_t)ceil((double)disk_sectors / (double)hd->phy_heads);
cylinders = (uint32_t)ceil((double)sectors_per_surface / (double)preset->avg_spt);
hd->phy_cyl = cylinders;
uint32_t cylinders_per_zone = cylinders / preset->zones;
cylinders_per_zone = cylinders / preset->zones;
uint32_t total_sectors = 0;
for (uint32_t i = 0; i < preset->zones; i++) {
uint32_t spt;
double zone_percent = i * 100 / (double)preset->zones;
for (i = 0; i < preset->zones; i++) {
zone_percent = i * 100 / (double)preset->zones;
if (i < preset->zones - 1) {
// Function for realistic zone sector density
/* Function for realistic zone sector density */
double spt_percent = -0.00341684 * pow(zone_percent, 2) - 0.175811 * zone_percent + 118.48;
spt = (uint32_t)ceil((double)preset->avg_spt * spt_percent / 100);
} else {
} else
spt = (uint32_t)ceil((double)(disk_sectors - total_sectors) / (double)(cylinders_per_zone*preset->heads));
}
uint32_t zone_sectors = spt * cylinders_per_zone * preset->heads;
zone_sectors = spt * cylinders_per_zone * preset->heads;
total_sectors += zone_sectors;
hd->zones[i].cylinders = cylinders_per_zone;