Rewritten the read and write functions in mem.c again and fixed type casting, fixes quite a few bugs introduced in build 2842.

This commit is contained in:
OBattler
2021-04-03 04:42:12 +02:00
parent 3bf216d645
commit e49296805d

View File

@@ -793,6 +793,7 @@ writemembl(uint32_t addr, uint8_t val)
{ {
uint64_t addr64 = (uint64_t) addr; uint64_t addr64 = (uint64_t) addr;
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
if (page_lookup[addr>>12] && page_lookup[addr>>12]->write_b) { if (page_lookup[addr>>12] && page_lookup[addr>>12]->write_b) {
@@ -842,6 +843,7 @@ void
writemembl_no_mmut(uint32_t addr, uint64_t addr64, uint8_t val) writemembl_no_mmut(uint32_t addr, uint64_t addr64, uint8_t val)
{ {
mem_mapping_t *map; mem_mapping_t *map;
mem_logical_addr = addr; mem_logical_addr = addr;
if (page_lookup[addr >> 12] && page_lookup[addr >> 12]->write_b) { if (page_lookup[addr >> 12] && page_lookup[addr >> 12]->write_b) {
@@ -869,8 +871,6 @@ readmemwl(uint32_t addr)
uint64_t addr64[2]; uint64_t addr64[2];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i;
uint16_t ret = 0x0000;
uint32_t prev_page = 0xffffffff;
addr64[0] = (uint64_t) addr; addr64[0] = (uint64_t) addr;
addr64[1] = (uint64_t) (addr + 1); addr64[1] = (uint64_t) (addr + 1);
@@ -883,25 +883,15 @@ readmemwl(uint32_t addr)
if ((addr & 0xfff) > 0xffe) { if ((addr & 0xfff) > 0xffe) {
if (cr0 >> 31) { if (cr0 >> 31) {
for (i = 0; i < 2; i++) { for (i = 0; i < 2; i++) {
/* If we are on the same page, there is no need to translate again, as we can just addr64[i] = mmutranslate_read(addr + i);
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_read(addr + i);
prev_page = ((addr + i) & ~0xfff);
if (addr64[i] > 0xffffffffULL) if (addr64[i] > 0xffffffffULL)
return 0xffff; return 0xffff;
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */
for (i = 0; i < 2; i++)
ret |= (readmembl_no_mmut(addr + i, addr64[i]) << (i << 3));
return ret; return readmembl_no_mmut(addr, addr64[0]) |
(((uint16_t) readmembl_no_mmut(addr + 1, addr64[1])) << 8);
} else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) } else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV)
return *(uint16_t *)(readlookup2[addr >> 12] + addr); return *(uint16_t *)(readlookup2[addr >> 12] + addr);
} }
@@ -935,7 +925,6 @@ writememwl(uint32_t addr, uint16_t val)
uint64_t addr64[2]; uint64_t addr64[2];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i;
uint32_t prev_page = 0xffffffff;
addr64[0] = (uint64_t) addr; addr64[0] = (uint64_t) addr;
addr64[1] = (uint64_t) (addr + 1); addr64[1] = (uint64_t) (addr + 1);
@@ -951,26 +940,18 @@ writememwl(uint32_t addr, uint16_t val)
/* Do not translate a page that has a valid lookup, as that is by definition valid /* Do not translate a page that has a valid lookup, as that is by definition valid
and the whole purpose of the lookup is to avoid repeat identical translations. */ and the whole purpose of the lookup is to avoid repeat identical translations. */
if (!page_lookup[(addr + i) >> 12] || !page_lookup[(addr + i) >> 12]->write_b) { if (!page_lookup[(addr + i) >> 12] || !page_lookup[(addr + i) >> 12]->write_b) {
/* If we are on the same page, there is no need to translate again, as we can just addr64[i] = mmutranslate_write(addr + i);
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_write(addr + i);
prev_page = ((addr + i) & ~0xfff);
if (addr64[i] > 0xffffffffULL) if (addr64[i] > 0xffffffffULL)
return; return;
} else }
prev_page = 0xffffffff;
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass /* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */ their result as a parameter to be used if needed. */
for (i = 0; i < 2; i++) writemembl_no_mmut(addr, addr64[0], val);
writemembl_no_mmut(addr + i, addr64[i], val >> (i << 3)); writemembl_no_mmut(addr + 1, addr64[1], val >> 8);
return; return;
} else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) { } else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) {
*(uint16_t *)(writelookup2[addr >> 12] + addr) = val; *(uint16_t *)(writelookup2[addr >> 12] + addr) = val;
@@ -1013,7 +994,6 @@ readmemwl_no_mmut(uint32_t addr, uint64_t *addr64)
{ {
mem_mapping_t *map; mem_mapping_t *map;
int i; int i;
uint16_t ret = 0x0000;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -1021,14 +1001,15 @@ readmemwl_no_mmut(uint32_t addr, uint64_t *addr64)
if (!cpu_cyrix_alignment || (addr & 7) == 7) if (!cpu_cyrix_alignment || (addr & 7) == 7)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffe) { if ((addr & 0xfff) > 0xffe) {
for (i = 0; i < 2; i++) { if (cr0 >> 31) {
if ((cr0 >> 31) && (addr64[i] > 0xffffffffULL)) for (i = 0; i < 2; i++) {
return 0xffff; if (addr64[i] > 0xffffffffULL)
return 0xffff;
ret |= (readmembl_no_mmut(addr + i, addr64[i]) << (i << 3)); }
} }
return ret; return readmembl_no_mmut(addr, addr64[0]) |
(((uint16_t) readmembl_no_mmut(addr + 1, addr64[1])) << 8);
} else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) } else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV)
return *(uint16_t *)(readlookup2[addr >> 12] + addr); return *(uint16_t *)(readlookup2[addr >> 12] + addr);
} }
@@ -1068,13 +1049,15 @@ writememwl_no_mmut(uint32_t addr, uint64_t *addr64, uint16_t val)
if (!cpu_cyrix_alignment || (addr & 7) == 7) if (!cpu_cyrix_alignment || (addr & 7) == 7)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffe) { if ((addr & 0xfff) > 0xffe) {
for (i = 0; i < 2; i++) { if (cr0 >> 31) {
if ((cr0 >> 31) && (addr64[i] > 0xffffffffULL)) for (i = 0; i < 2; i++) {
return; if (addr64[i] > 0xffffffffULL)
return;
writemembl_no_mmut(addr + i, addr64[i], val >> (i << 3)); }
} }
writemembl_no_mmut(addr, addr64[0], val);
writemembl_no_mmut(addr + 1, addr64[1], val >> 8);
return; return;
} else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) { } else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) {
*(uint16_t *)(writelookup2[addr >> 12] + addr) = val; *(uint16_t *)(writelookup2[addr >> 12] + addr) = val;
@@ -1116,9 +1099,7 @@ readmemll(uint32_t addr)
{ {
uint64_t addr64[4]; uint64_t addr64[4];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i, wrap_i = 1;
uint32_t ret = 0x00000000;
uint32_t prev_page = 0xffffffff;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
addr64[i] = (uint64_t) (addr + i); addr64[i] = (uint64_t) (addr + i);
@@ -1130,26 +1111,31 @@ readmemll(uint32_t addr)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffc) { if ((addr & 0xfff) > 0xffc) {
if (cr0 >> 31) { if (cr0 >> 31) {
for (i = 0; i < 4; i++) { wrap_i = 4 - (addr & 0x3);
/* If we are on the same page, there is no need to translate again, as we can just
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_read(addr + i);
prev_page = ((addr + i) & ~0xfff); addr64[0] = mmutranslate_read(addr);
if (addr64[i] > 0xffffffffULL) if (addr64[0] > 0xffffffffULL)
return 0xffff; return 0xffffffff;
for (i = 1; i < wrap_i; i++)
addr64[i] = (addr64[0] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
addr64[wrap_i] = mmutranslate_read(addr + wrap_i);
if (addr64[wrap_i] > 0xffffffffULL)
return 0xffffffff;
if (wrap_i != 3) {
for (i = (wrap_i) + 1; i <= 3; i++)
addr64[i] = (addr64[wrap_i] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass /* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */ their result as a parameter to be used if needed. */
for (i = 0; i < 4; i += 2) return readmemwl_no_mmut(addr, addr64) |
ret |= (readmemwl_no_mmut(addr + i, &(addr64[i])) << (i << 3)); (((uint32_t) readmemwl_no_mmut(addr + 2, &(addr64[2]))) << 16);
return ret;
} else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) } else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV)
return *(uint32_t *)(readlookup2[addr >> 12] + addr); return *(uint32_t *)(readlookup2[addr >> 12] + addr);
} }
@@ -1187,8 +1173,7 @@ writememll(uint32_t addr, uint32_t val)
{ {
uint64_t addr64[4]; uint64_t addr64[4];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i, wrap_i = 1;
uint32_t prev_page = 0xffffffff;
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
addr64[i] = (uint64_t) (addr + i); addr64[i] = (uint64_t) (addr + i);
@@ -1200,30 +1185,37 @@ writememll(uint32_t addr, uint32_t val)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffc) { if ((addr & 0xfff) > 0xffc) {
if (cr0 >> 31) { if (cr0 >> 31) {
for (i = 0; i < 4; i++) { wrap_i = 4 - (addr & 0x3);
/* Do not translate a page that has a valid lookup, as that is by definition valid
and the whole purpose of the lookup is to avoid repeat identical translations. */
if (!page_lookup[(addr + i) >> 12] || !page_lookup[(addr + i) >> 12]->write_b) {
/* If we are on the same page, there is no need to translate again, as we can just
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_write(addr + i);
prev_page = ((addr + i) & ~0xfff); if (!page_lookup[(addr + 0) >> 12] || !page_lookup[(addr + 0) >> 12]->write_b)
addr64[0] = mmutranslate_write(addr);
else
addr64[0] = 0xffffffff;
if (addr64[i] > 0xffffffffULL) if (addr64[0] > 0xffffffffULL)
return; return;
} else
prev_page = 0xffffffff; for (i = 1; i < wrap_i; i++)
addr64[i] = (addr64[0] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
if (!page_lookup[(addr + wrap_i) >> 12] || !page_lookup[(addr + wrap_i) >> 12]->write_b)
addr64[wrap_i] = mmutranslate_write(addr + wrap_i);
else
addr64[wrap_i] = 0xffffffff;
if (addr64[wrap_i] > 0xffffffffULL)
return;
if (wrap_i != 3) {
for (i = (wrap_i) + 1; i <= 3; i++)
addr64[i] = (addr64[wrap_i] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass /* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */ their result as a parameter to be used if needed. */
for (i = 0; i < 4; i += 2) writememwl_no_mmut(addr, &(addr64[0]), val);
writememwl_no_mmut(addr + i, &(addr64[i]), val >> (i << 3)); writememwl_no_mmut(addr + 2, &(addr64[2]), val >> 16);
return; return;
} else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) { } else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) {
*(uint32_t *)(writelookup2[addr >> 12] + addr) = val; *(uint32_t *)(writelookup2[addr >> 12] + addr) = val;
@@ -1272,7 +1264,6 @@ readmemll_no_mmut(uint32_t addr, uint64_t *addr64)
{ {
mem_mapping_t *map; mem_mapping_t *map;
int i; int i;
uint32_t ret = 0x00000000;
mem_logical_addr = addr; mem_logical_addr = addr;
@@ -1280,14 +1271,15 @@ readmemll_no_mmut(uint32_t addr, uint64_t *addr64)
if (!cpu_cyrix_alignment || (addr & 7) > 4) if (!cpu_cyrix_alignment || (addr & 7) > 4)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffc) { if ((addr & 0xfff) > 0xffc) {
for (i = 0; i < 4; i += 2) { if (cr0 >> 31) {
if ((cr0 >> 31) && (addr64[i] > 0xffffffffULL)) for (i = 0; i < 4; i += 2) {
return 0xffffffff; if (addr64[i] > 0xffffffffULL)
return 0xffffffff;
ret |= (readmemwl_no_mmut(addr + i, &(addr64[i])) << (i << 3)); }
} }
return ret; return readmemwl_no_mmut(addr, addr64) |
(((uint32_t) readmemwl_no_mmut(addr + 2, &(addr64[2]))) << 16);
} else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) } else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV)
return *(uint32_t *)(readlookup2[addr >> 12] + addr); return *(uint32_t *)(readlookup2[addr >> 12] + addr);
} }
@@ -1332,13 +1324,15 @@ writememll_no_mmut(uint32_t addr, uint64_t *addr64, uint32_t val)
if (!cpu_cyrix_alignment || (addr & 7) > 4) if (!cpu_cyrix_alignment || (addr & 7) > 4)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xffc) { if ((addr & 0xfff) > 0xffc) {
for (i = 0; i < 4; i += 2) { if (cr0 >> 31) {
if ((cr0 >> 31) && (addr64[i] > 0xffffffffULL)) for (i = 0; i < 4; i += 2) {
return; if (addr64[i] > 0xffffffffULL)
return;
writememwl_no_mmut(addr + i, &(addr64[i]), val >> (i << 3)); }
} }
writememwl_no_mmut(addr, &(addr64[0]), val);
writememwl_no_mmut(addr + 2, &(addr64[2]), val >> 16);
return; return;
} else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) { } else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) {
*(uint32_t *)(writelookup2[addr >> 12] + addr) = val; *(uint32_t *)(writelookup2[addr >> 12] + addr) = val;
@@ -1385,9 +1379,7 @@ readmemql(uint32_t addr)
{ {
uint64_t addr64[8]; uint64_t addr64[8];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i, wrap_i = 1;
uint64_t ret = 0x0000000000000000ULL;
uint32_t prev_page = 0xffffffff;
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
addr64[i] = (uint64_t) (addr + i); addr64[i] = (uint64_t) (addr + i);
@@ -1398,26 +1390,30 @@ readmemql(uint32_t addr)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xff8) { if ((addr & 0xfff) > 0xff8) {
if (cr0 >> 31) { if (cr0 >> 31) {
for (i = 0; i < 8; i++) { wrap_i = 8 - (addr & 0x7);
/* If we are on the same page, there is no need to translate again, as we can just
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_read(addr + i);
prev_page = ((addr + i) & ~0xfff); addr64[0] = mmutranslate_read(addr);
if (addr64[i] > 0xffffffffULL) if (addr64[0] > 0xffffffffULL)
return 0xffff; return 0xffffffffffffffffULL;
for (i = 1; i < wrap_i; i++)
addr64[i] = (addr64[0] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
addr64[wrap_i] = mmutranslate_read(addr + wrap_i);
if (addr64[wrap_i] > 0xffffffffULL)
return 0xffffffffffffffffULL;
if (wrap_i != 7) {
for (i = (wrap_i) + 1; i <= 7; i++)
addr64[i] = (addr64[wrap_i] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass /* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */ their result as a parameter to be used if needed. */
for (i = 0; i < 8; i += 4) return readmemll_no_mmut(addr, addr64) |
ret |= (readmemll_no_mmut(addr + i, &(addr64[i])) << (i << 3)); (((uint64_t) readmemll_no_mmut(addr + 4, &(addr64[4]))) << 32);
return ret;
} else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) } else if (readlookup2[addr >> 12] != (uintptr_t) LOOKUP_INV)
return *(uint64_t *)(readlookup2[addr >> 12] + addr); return *(uint64_t *)(readlookup2[addr >> 12] + addr);
} }
@@ -1444,8 +1440,7 @@ writememql(uint32_t addr, uint64_t val)
{ {
uint64_t addr64[8]; uint64_t addr64[8];
mem_mapping_t *map; mem_mapping_t *map;
int i; int i, wrap_i;
uint32_t prev_page = 0xffffffff;
for (i = 0; i < 8; i++) for (i = 0; i < 8; i++)
addr64[i] = (uint64_t) (addr + i); addr64[i] = (uint64_t) (addr + i);
@@ -1456,30 +1451,37 @@ writememql(uint32_t addr, uint64_t val)
cycles -= timing_misaligned; cycles -= timing_misaligned;
if ((addr & 0xfff) > 0xff8) { if ((addr & 0xfff) > 0xff8) {
if (cr0 >> 31) { if (cr0 >> 31) {
for (i = 0; i < 8; i++) { wrap_i = 8 - (addr & 0x7);
/* Do not translate a page that has a valid lookup, as that is by definition valid
and the whole purpose of the lookup is to avoid repeat identical translations. */
if (!page_lookup[(addr + i) >> 12] || !page_lookup[(addr + i) >> 12]->write_b) {
/* If we are on the same page, there is no need to translate again, as we can just
reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page))
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
else
addr64[i] = mmutranslate_write(addr + i);
prev_page = ((addr + i) & ~0xfff); if (!page_lookup[(addr + 0) >> 12] || !page_lookup[(addr + 0) >> 12]->write_b)
addr64[0] = mmutranslate_write(addr);
else
addr64[0] = 0xffffffff;
if (addr64[i] > 0xffffffffULL) if (addr64[0] > 0xffffffffULL)
return; return;
} else
prev_page = 0xffffffff; for (i = 1; i < wrap_i; i++)
addr64[i] = (addr64[wrap_i] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
if (!page_lookup[(addr + wrap_i) >> 12] || !page_lookup[(addr + wrap_i) >> 12]->write_b)
addr64[wrap_i] = mmutranslate_write(addr + wrap_i);
else
addr64[wrap_i] = 0xffffffff;
if (addr64[wrap_i] > 0xffffffffULL)
return;
if (wrap_i != 7) {
for (i = (wrap_i) + 1; i <= 7; i++)
addr64[i] = (addr64[wrap_i] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff));
} }
} }
/* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass /* No need to waste precious CPU host cycles on mmutranslate's that were already done, just pass
their result as a parameter to be used if needed. */ their result as a parameter to be used if needed. */
for (i = 0; i < 8; i += 4) writememll_no_mmut(addr, &(addr64[0]), val);
writememll_no_mmut(addr + i, &(addr64[i]), val >> (i << 3)); writememll_no_mmut(addr + 4, &(addr64[4]), val >> 32);
return; return;
} else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) { } else if (writelookup2[addr >> 12] != (uintptr_t) LOOKUP_INV) {
*(uint64_t *)(writelookup2[addr >> 12] + addr) = val; *(uint64_t *)(writelookup2[addr >> 12] + addr) = val;
@@ -1533,36 +1535,29 @@ writememql(uint32_t addr, uint64_t val)
void void
do_mmutranslate(uint32_t addr, uint64_t *addr64, int num, int write) do_mmutranslate(uint32_t addr, uint64_t *addr64, int num, int write)
{ {
int i, cond = 1; int i, wrap_i;
uint32_t prev_page = 0xffffffff; int cond = 1;
for (i = 0; i < num; i++) { if (cr0 >> 31) {
addr64[i] = (uint64_t) (addr + i); wrap_i = (num - (addr & (num - 1))) & (num - 1);
if (cr0 >> 31) { for (i = 0; i < num; i++) {
/* Do not translate a page that has a valid lookup, as that is by definition valid if (write && ((i == 0) || (wrap_i && (i == wrap_i))))
and the whole purpose of the lookup is to avoid repeat identical translations. */ cond = (!page_lookup[addr >> 12] || !page_lookup[addr >> 12]->write_b);
if (write)
cond = (!page_lookup[(addr + i) >> 12] || !page_lookup[(addr + i) >> 12]->write_b);
if (cond) { if (cond) {
/* If we are on the same page, there is no need to translate again, as we can just /* If we are on the same page, there is no need to translate again, as we can just
reuse the previous result. */ reuse the previous result. */
if ((i > 0) && (((addr + i) & ~0xfff) == prev_page)) if (((i == 0) || (wrap_i && (i == wrap_i)))) {
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) ((addr + i) & 0xfff)); addr64[i] = mmutranslatereal(addr, write);
else
addr64[i] = mmutranslatereal(addr + i, write);
prev_page = ((addr + i) & ~0xfff); if (addr64[i] > 0xffffffffULL)
return;
} else
addr64[i] = (addr64[i - 1] & ~0xfffLL) | ((uint64_t) (addr & 0xfff));
}
if (addr64[i] == 0xffffffffffffffffULL) addr++;
return;
if (addr64[i] > 0xffffffffULL)
return;
if (cpu_state.abrt)
return;
} else
prev_page = 0xffffffff;
} }
} }
} }