/* * 86Box A hypervisor and IBM PC system emulator that specializes in * running old operating systems and software designed for IBM * PC systems and compatibles from 1981 through fairly recent * system designs based on the PCI bus. * * This file is part of the 86Box distribution. * * Implementation of the Intel DMA controllers. * * * * Authors: Sarah Walker, * Miran Grca, * Fred N. van Kempen, * * Copyright 2008-2020 Sarah Walker. * Copyright 2016-2020 Miran Grca. * Copyright 2017-2020 Fred N. van Kempen. */ #include #include #include #include #include <86box/86box.h> #include "cpu.h" #include "x86.h" #include <86box/machine.h> #include <86box/mca.h> #include <86box/mem.h> #include <86box/io.h> #include <86box/pic.h> #include <86box/dma.h> dma_t dma[8]; uint8_t dma_e; static uint8_t dmaregs[3][16]; static int dma_wp[2]; static uint8_t dma_m; static uint8_t dma_stat; static uint8_t dma_stat_rq; static uint8_t dma_stat_rq_pc; static uint8_t dma_command[2]; static uint8_t dma_req_is_soft; static uint8_t dma_advanced; static uint8_t dma_buffer[65536]; static uint16_t dma_sg_base; static uint16_t dma16_buffer[65536]; static uint32_t dma_mask; static struct { int xfr_command, xfr_channel; int byte_ptr; int is_ps2; } dma_ps2; #define DMA_PS2_IOA (1 << 0) #define DMA_PS2_XFER_MEM_TO_IO (1 << 2) #define DMA_PS2_XFER_IO_TO_MEM (3 << 2) #define DMA_PS2_XFER_MASK (3 << 2) #define DMA_PS2_DEC2 (1 << 4) #define DMA_PS2_SIZE16 (1 << 6) #ifdef ENABLE_DMA_LOG int dma_do_log = ENABLE_DMA_LOG; static void dma_log(const char *fmt, ...) { va_list ap; if (dma_do_log) { va_start(ap, fmt); pclog_ex(fmt, ap); va_end(ap); } } #else #define dma_log(fmt, ...) #endif static void dma_ps2_run(int channel); int dma_get_drq(int channel) { return !!(dma_stat_rq_pc & (1 << channel)); } void dma_set_drq(int channel, int set) { dma_stat_rq_pc &= ~(1 << channel); if (set) dma_stat_rq_pc |= (1 << channel); } static int dma_transfer_size(dma_t *dev) { return dev->transfer_mode & 0xff; } static void dma_sg_next_addr(dma_t *dev) { int ts = dma_transfer_size(dev); dma_bm_read(dev->ptr_cur, (uint8_t *)&(dev->addr), 4, ts); dma_bm_read(dev->ptr_cur + 4, (uint8_t *)&(dev->count), 4, ts); dma_log("DMA S/G DWORDs: %08X %08X\n", dev->addr, dev->count); dev->eot = dev->count >> 31; dev->count &= 0xfffe; dev->cb = (uint16_t) dev->count; dev->cc = (int) dev->count; if (!dev->count) dev->count = 65536; if (ts == 2) dev->addr &= 0xfffffffe; dev->ab = dev->addr & dma_mask; dev->ac = dev->addr & dma_mask; dev->page = dev->page_l = (dev->ac >> 16) & 0xff; dev->page_h = (dev->ac >> 24) & 0xff; dev->ptr_cur += 8; } static void dma_block_transfer(int channel) { int i, bit16; bit16 = (channel >= 4); if (dma_advanced) bit16 = !!(dma_transfer_size(&(dma[channel])) == 2); dma_req_is_soft = 1; for (i = 0; i <= dma[channel].cb; i++) { if ((dma[channel].mode & 0x8c) == 0x84) { if (bit16) dma_channel_write(channel, dma16_buffer[i]); else dma_channel_write(channel, dma_buffer[i]); } else if ((dma[channel].mode & 0x8c) == 0x88) { if (bit16) dma16_buffer[i] = dma_channel_read(channel); else dma_buffer[i] = dma_channel_read(channel); } } dma_req_is_soft = 0; } static void dma_sg_write(uint16_t port, uint8_t val, void *priv) { dma_t *dev = (dma_t *) priv; dma_log("DMA S/G BYTE write: %04X %02X\n", port, val); port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x00: dma_log("DMA S/G Cmd : val = %02X, old = %02X\n", val, dev->sg_command); if ((val & 1) && !(dev->sg_command & 1)) { /*Start*/ #ifdef ENABLE_DMA_LOG dma_log("DMA S/G start\n"); #endif dev->ptr_cur = dev->ptr; dma_sg_next_addr(dev); dev->sg_status = (dev->sg_status & 0xf7) | 0x01; } if (!(val & 1) && (dev->sg_command & 1)) { /*Stop*/ #ifdef ENABLE_DMA_LOG dma_log("DMA S/G stop\n"); #endif dev->sg_status &= ~0x81; } dev->sg_command = val; break; case 0x20: dev->ptr = (dev->ptr & 0xffffff00) | (val & 0xfc); dev->ptr %= (mem_size * 1024); dev->ptr0 = val; break; case 0x21: dev->ptr = (dev->ptr & 0xffff00fc) | (val << 8); dev->ptr %= (mem_size * 1024); break; case 0x22: dev->ptr = (dev->ptr & 0xff00fffc) | (val << 16); dev->ptr %= (mem_size * 1024); break; case 0x23: dev->ptr = (dev->ptr & 0x00fffffc) | (val << 24); dev->ptr %= (mem_size * 1024); break; } } static void dma_sg_writew(uint16_t port, uint16_t val, void *priv) { dma_t *dev = (dma_t *) priv; dma_log("DMA S/G WORD write: %04X %04X\n", port, val); port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x00: dma_sg_write(port, val & 0xff, priv); break; case 0x20: dev->ptr = (dev->ptr & 0xffff0000) | (val & 0xfffc); dev->ptr %= (mem_size * 1024); dev->ptr0 = val & 0xff; break; case 0x22: dev->ptr = (dev->ptr & 0x0000fffc) | (val << 16); dev->ptr %= (mem_size * 1024); break; } } static void dma_sg_writel(uint16_t port, uint32_t val, void *priv) { dma_t *dev = (dma_t *) priv; dma_log("DMA S/G DWORD write: %04X %08X\n", port, val); port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x00: dma_sg_write(port, val & 0xff, priv); break; case 0x20: dev->ptr = (val & 0xfffffffc); dev->ptr %= (mem_size * 1024); dev->ptr0 = val & 0xff; break; } } static uint8_t dma_sg_read(uint16_t port, void *priv) { dma_t *dev = (dma_t *) priv; uint8_t ret = 0xff; port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x08: ret = (dev->sg_status & 0x01); if (dev->eot) ret |= 0x80; if ((dev->sg_command & 0xc0) == 0x40) ret |= 0x20; if (dev->ab != 0x00000000) ret |= 0x08; if (dev->ac != 0x00000000) ret |= 0x04; break; case 0x20: ret = dev->ptr0; break; case 0x21: ret = dev->ptr >> 8; break; case 0x22: ret = dev->ptr >> 16; break; case 0x23: ret = dev->ptr >> 24; break; } dma_log("DMA S/G BYTE read : %04X %02X\n", port, ret); return ret; } static uint16_t dma_sg_readw(uint16_t port, void *priv) { dma_t *dev = (dma_t *) priv; uint16_t ret = 0xffff; port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x08: ret = (uint16_t) dma_sg_read(port, priv); break; case 0x20: ret = dev->ptr0 | (dev->ptr & 0xff00); break; case 0x22: ret = dev->ptr >> 16; break; } dma_log("DMA S/G WORD read : %04X %04X\n", port, ret); return ret; } static uint32_t dma_sg_readl(uint16_t port, void *priv) { dma_t *dev = (dma_t *) priv; uint32_t ret = 0xffffffff; port &= 0xff; if (port < 0x20) port &= 0xf8; else port &= 0xe3; switch (port) { case 0x08: ret = (uint32_t) dma_sg_read(port, priv); break; case 0x20: ret = dev->ptr0 | (dev->ptr & 0xffffff00); break; } dma_log("DMA S/G DWORD read : %04X %08X\n", port, ret); return ret; } static void dma_ext_mode_write(uint16_t addr, uint8_t val, void *priv) { int channel = (val & 0x03); if (addr == 0x4d6) channel |= 4; dma[channel].ext_mode = val & 0x7c; switch ((val > 2) & 0x03) { case 0x00: dma[channel].transfer_mode = 0x0101; break; case 0x01: dma[channel].transfer_mode = 0x0202; break; case 0x02: /* 0x02 is reserved. */ /* Logic says this should be an undocumented mode that counts by words, but is 8-bit I/O, thus only transferring every second byte. */ dma[channel].transfer_mode = 0x0201; break; case 0x03: dma[channel].transfer_mode = 0x0102; break; } } static uint8_t dma_sg_int_status_read(uint16_t addr, void *priv) { int i; uint8_t ret = 0x00; for (i = 0; i < 8; i++) { if (i != 4) ret = (!!(dma[i].sg_status & 8)) << i; } return ret; } static uint8_t dma_read(uint16_t addr, void *priv) { int channel = (addr >> 1) & 3; uint8_t temp; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp[0] ^= 1; if (dma_wp[0]) return(dma[channel].ac & 0xff); return((dma[channel].ac >> 8) & 0xff); case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp[0] ^= 1; if (dma_wp[0]) temp = dma[channel].cc & 0xff; else temp = dma[channel].cc >> 8; return(temp); case 8: /*Status register*/ temp = dma_stat_rq_pc & 0xf; temp <<= 4; temp |= dma_stat & 0xf; dma_stat &= ~0xf; return(temp); case 0xd: /*Temporary register*/ return(0); } return(dmaregs[0][addr & 0xf]); } static void dma_write(uint16_t addr, uint8_t val, void *priv) { int channel = (addr >> 1) & 3; dmaregs[0][addr & 0xf] = val; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp[0] ^= 1; if (dma_wp[0]) dma[channel].ab = (dma[channel].ab & 0xffffff00 & dma_mask) | val; else dma[channel].ab = (dma[channel].ab & 0xffff00ff & dma_mask) | (val << 8); dma[channel].ac = dma[channel].ab; return; case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp[0] ^= 1; if (dma_wp[0]) dma[channel].cb = (dma[channel].cb & 0xff00) | val; else dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8); dma[channel].cc = dma[channel].cb; return; case 8: /*Control register*/ dma_command[0] = val; if (val & 0x01) fatal("Memory-to-memory enable\n"); return; case 9: /*Request register */ channel = (val & 3); if (val & 4) { dma_stat_rq_pc |= (1 << channel); dma_block_transfer(channel); } else dma_stat_rq_pc &= ~(1 << channel); break; case 0xa: /*Mask*/ channel = (val & 3); if (val & 4) dma_m |= (1 << channel); else dma_m &= ~(1 << channel); return; case 0xb: /*Mode*/ channel = (val & 3); dma[channel].mode = val; if (dma_ps2.is_ps2) { dma[channel].ps2_mode &= ~0x1c; if (val & 0x20) dma[channel].ps2_mode |= 0x10; if ((val & 0xc) == 8) dma[channel].ps2_mode |= 4; else if ((val & 0xc) == 4) dma[channel].ps2_mode |= 0xc; } return; case 0xc: /*Clear FF*/ dma_wp[0] = 0; return; case 0xd: /*Master clear*/ dma_wp[0] = 0; dma_m |= 0xf; dma_stat_rq_pc &= ~0x0f; return; case 0xe: /*Clear mask*/ dma_m &= 0xf0; return; case 0xf: /*Mask write*/ dma_m = (dma_m & 0xf0) | (val & 0xf); return; } } static uint8_t dma_ps2_read(uint16_t addr, void *priv) { dma_t *dma_c = &dma[dma_ps2.xfr_channel]; uint8_t temp = 0xff; switch (addr) { case 0x1a: switch (dma_ps2.xfr_command) { case 2: /*Address*/ case 3: switch (dma_ps2.byte_ptr) { case 0: temp = dma_c->ac & 0xff; dma_ps2.byte_ptr = 1; break; case 1: temp = (dma_c->ac >> 8) & 0xff; dma_ps2.byte_ptr = 2; break; case 2: temp = (dma_c->ac >> 16) & 0xff; dma_ps2.byte_ptr = 0; break; } break; case 4: /*Count*/ case 5: if (dma_ps2.byte_ptr) temp = dma_c->cc >> 8; else temp = dma_c->cc & 0xff; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 6: /*Read DMA status*/ if (dma_ps2.byte_ptr) { temp = ((dma_stat_rq & 0xf0) >> 4) | (dma_stat & 0xf0); dma_stat &= ~0xf0; dma_stat_rq &= ~0xf0; } else { temp = (dma_stat_rq & 0xf) | ((dma_stat & 0xf) << 4); dma_stat &= ~0xf; dma_stat_rq &= ~0xf; } dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 7: /*Mode*/ temp = dma_c->ps2_mode; break; case 8: /*Arbitration Level*/ temp = dma_c->arb_level; break; default: fatal("Bad XFR Read command %i channel %i\n", dma_ps2.xfr_command, dma_ps2.xfr_channel); } break; } return(temp); } static void dma_ps2_write(uint16_t addr, uint8_t val, void *priv) { dma_t *dma_c = &dma[dma_ps2.xfr_channel]; uint8_t mode; switch (addr) { case 0x18: dma_ps2.xfr_channel = val & 0x7; dma_ps2.xfr_command = val >> 4; dma_ps2.byte_ptr = 0; switch (dma_ps2.xfr_command) { case 9: /*Set DMA mask*/ dma_m |= (1 << dma_ps2.xfr_channel); break; case 0xa: /*Reset DMA mask*/ dma_m &= ~(1 << dma_ps2.xfr_channel); break; case 0xb: if (!(dma_m & (1 << dma_ps2.xfr_channel))) dma_ps2_run(dma_ps2.xfr_channel); break; } break; case 0x1a: switch (dma_ps2.xfr_command) { case 0: /*I/O address*/ if (dma_ps2.byte_ptr) dma_c->io_addr = (dma_c->io_addr & 0x00ff) | (val << 8); else dma_c->io_addr = (dma_c->io_addr & 0xff00) | val; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; break; case 2: /*Address*/ switch (dma_ps2.byte_ptr) { case 0: dma_c->ac = (dma_c->ac & 0xffff00) | val; dma_ps2.byte_ptr = 1; break; case 1: dma_c->ac = (dma_c->ac & 0xff00ff) | (val << 8); dma_ps2.byte_ptr = 2; break; case 2: dma_c->ac = (dma_c->ac & 0x00ffff) | (val << 16); dma_ps2.byte_ptr = 0; break; } dma_c->ab = dma_c->ac; break; case 4: /*Count*/ if (dma_ps2.byte_ptr) dma_c->cc = (dma_c->cc & 0xff) | (val << 8); else dma_c->cc = (dma_c->cc & 0xff00) | val; dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1; dma_c->cb = dma_c->cc; break; case 7: /*Mode register*/ mode = 0; if (val & DMA_PS2_DEC2) mode |= 0x20; if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_MEM_TO_IO) mode |= 8; else if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_IO_TO_MEM) mode |= 4; dma_c->mode = (dma_c->mode & ~0x2c) | mode; dma_c->ps2_mode = val; dma_c->size = val & DMA_PS2_SIZE16; break; case 8: /*Arbitration Level*/ dma_c->arb_level = val; break; default: fatal("Bad XFR command %i channel %i val %02x\n", dma_ps2.xfr_command, dma_ps2.xfr_channel, val); } break; } } static uint8_t dma16_read(uint16_t addr, void *priv) { int channel = ((addr >> 2) & 3) + 4; uint8_t temp; addr >>= 1; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp[1] ^= 1; if (dma_ps2.is_ps2) { if (dma_wp[1]) return(dma[channel].ac); return((dma[channel].ac >> 8) & 0xff); } if (dma_wp[1]) return((dma[channel].ac >> 1) & 0xff); return((dma[channel].ac >> 9) & 0xff); case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp[1] ^= 1; if (dma_wp[1]) temp = dma[channel].cc & 0xff; else temp = dma[channel].cc >> 8; return(temp); case 8: /*Status register*/ temp = (dma_stat_rq_pc & 0xf0); temp |= dma_stat >> 4; dma_stat &= ~0xf0; return(temp); } return(dmaregs[1][addr & 0xf]); } static void dma16_write(uint16_t addr, uint8_t val, void *priv) { int channel = ((addr >> 2) & 3) + 4; addr >>= 1; dmaregs[1][addr & 0xf] = val; switch (addr & 0xf) { case 0: case 2: case 4: case 6: /*Address registers*/ dma_wp[1] ^= 1; if (dma_ps2.is_ps2) { if (dma_wp[1]) dma[channel].ab = (dma[channel].ab & 0xffffff00 & dma_mask) | val; else dma[channel].ab = (dma[channel].ab & 0xffff00ff & dma_mask) | (val << 8); } else { if (dma_wp[1]) dma[channel].ab = (dma[channel].ab & 0xfffffe00 & dma_mask) | (val << 1); else dma[channel].ab = (dma[channel].ab & 0xfffe01ff & dma_mask) | (val << 9); } dma[channel].ac = dma[channel].ab; return; case 1: case 3: case 5: case 7: /*Count registers*/ dma_wp[1] ^= 1; if (dma_wp[1]) dma[channel].cb = (dma[channel].cb & 0xff00) | val; else dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8); dma[channel].cc = dma[channel].cb; return; case 8: /*Control register*/ return; case 9: /*Request register */ channel = (val & 3) + 4; if (val & 4) { dma_stat_rq_pc |= (1 << channel); dma_block_transfer(channel); } else dma_stat_rq_pc &= ~(1 << channel); break; case 0xa: /*Mask*/ channel = (val & 3); if (val & 4) dma_m |= (0x10 << channel); else dma_m &= ~(0x10 << channel); return; case 0xb: /*Mode*/ channel = (val & 3) + 4; dma[channel].mode = val; if (dma_ps2.is_ps2) { dma[channel].ps2_mode &= ~0x1c; if (val & 0x20) dma[channel].ps2_mode |= 0x10; if ((val & 0xc) == 8) dma[channel].ps2_mode |= 4; else if ((val & 0xc) == 4) dma[channel].ps2_mode |= 0xc; } return; case 0xc: /*Clear FF*/ dma_wp[1] = 0; return; case 0xd: /*Master clear*/ dma_wp[1] = 0; dma_m |= 0xf0; dma_stat_rq_pc &= ~0xf0; return; case 0xe: /*Clear mask*/ dma_m &= 0x0f; return; case 0xf: /*Mask write*/ dma_m = (dma_m & 0x0f) | ((val & 0xf) << 4); return; } } #define CHANNELS { 8, 2, 3, 1, 8, 8, 8, 0 } static void dma_page_write(uint16_t addr, uint8_t val, void *priv) { uint8_t convert[8] = CHANNELS; addr &= 0x0f; dmaregs[2][addr] = val; if (addr >= 8) addr = convert[addr & 0x07] | 4; else addr = convert[addr & 0x07]; if (addr < 8) { dma[addr].page_l = val; if (addr > 4) { dma[addr].page = val & 0xfe; dma[addr].ab = (dma[addr].ab & 0xff01ffff & dma_mask) | (dma[addr].page << 16); dma[addr].ac = (dma[addr].ac & 0xff01ffff & dma_mask) | (dma[addr].page << 16); } else { dma[addr].page = (AT) ? val : val & 0xf; dma[addr].ab = (dma[addr].ab & 0xff00ffff & dma_mask) | (dma[addr].page << 16); dma[addr].ac = (dma[addr].ac & 0xff00ffff & dma_mask) | (dma[addr].page << 16); } } } static uint8_t dma_page_read(uint16_t addr, void *priv) { uint8_t convert[8] = CHANNELS; uint8_t ret = 0xff; addr &= 0x0f; ret = dmaregs[2][addr]; if (addr >= 8) addr = convert[addr & 0x07] | 4; else addr = convert[addr & 0x07]; if (addr < 8) ret = dma[addr].page_l; return ret; } static void dma_high_page_write(uint16_t addr, uint8_t val, void *priv) { uint8_t convert[8] = CHANNELS; addr &= 0x0f; if (addr >= 8) addr = convert[addr & 0x07] | 4; else addr = convert[addr & 0x07]; if (addr < 8) { dma[addr].page_h = val; dma[addr].ab = ((dma[addr].ab & 0xffffff) | (dma[addr].page << 24)) & dma_mask; dma[addr].ac = ((dma[addr].ac & 0xffffff) | (dma[addr].page << 24)) & dma_mask; } } static uint8_t dma_high_page_read(uint16_t addr, void *priv) { uint8_t convert[8] = CHANNELS; uint8_t ret = 0xff; addr &= 0x0f; if (addr >= 8) addr = convert[addr & 0x07] | 4; else addr = convert[addr & 0x07]; if (addr < 8) ret = dma[addr].page_h; return ret; } void dma_set_params(uint8_t advanced, uint32_t mask) { dma_advanced = advanced; dma_mask = mask; } void dma_set_mask(uint32_t mask) { int i; dma_mask = mask; for (i = 0; i < 8; i++) { dma[i].ab &= mask; dma[i].ac &= mask; } } void dma_reset(void) { int c; dma_wp[0] = dma_wp[1] = 0; dma_m = 0; dma_e = 0xff; for (c = 0; c < 16; c++) dmaregs[0][c] = dmaregs[1][c] = 0; for (c = 0; c < 8; c++) { memset(&(dma[c]), 0x00, sizeof(dma_t)); dma[c].size = (c & 4) ? 1 : 0; dma[c].transfer_mode = (c & 4) ? 0x0202 : 0x0101; } dma_stat = 0x00; dma_stat_rq = 0x00; dma_stat_rq_pc = 0x00; dma_req_is_soft = 0; dma_advanced = 0; memset(dma_buffer, 0x00, sizeof(dma_buffer)); memset(dma16_buffer, 0x00, sizeof(dma16_buffer)); dma_remove_sg(); dma_sg_base = 0x0400; dma_mask = 0x00ffffff; } void dma_remove_sg(void) { int i; io_removehandler(dma_sg_base + 0x0a, 0x01, dma_sg_int_status_read, NULL, NULL, NULL, NULL, NULL, NULL); for (i = 0; i < 8; i++) { io_removehandler(dma_sg_base + 0x10 + i, 0x01, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); io_removehandler(dma_sg_base + 0x18 + i, 0x01, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); io_removehandler(dma_sg_base + 0x20 + i, 0x04, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); } } void dma_set_sg_base(uint8_t sg_base) { int i; dma_sg_base = sg_base << 8; io_sethandler(dma_sg_base + 0x0a, 0x01, dma_sg_int_status_read, NULL, NULL, NULL, NULL, NULL, NULL); for (i = 0; i < 8; i++) { io_sethandler(dma_sg_base + 0x10 + i, 0x01, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); io_sethandler(dma_sg_base + 0x18 + i, 0x01, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); io_sethandler(dma_sg_base + 0x20 + i, 0x04, dma_sg_read, dma_sg_readw, dma_sg_readl, dma_sg_write, dma_sg_writew, dma_sg_writel, &dma[i]); } } void dma_ext_mode_init(void) { io_sethandler(0x040b, 0x01, NULL,NULL,NULL, dma_ext_mode_write,NULL,NULL, NULL); io_sethandler(0x04d6, 0x01, NULL,NULL,NULL, dma_ext_mode_write,NULL,NULL, NULL); } void dma_high_page_init(void) { io_sethandler(0x0480, 8, dma_high_page_read,NULL,NULL, dma_high_page_write,NULL,NULL, NULL); } void dma_init(void) { dma_reset(); io_sethandler(0x0000, 16, dma_read,NULL,NULL, dma_write,NULL,NULL, NULL); io_sethandler(0x0080, 8, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); dma_ps2.is_ps2 = 0; } void dma16_init(void) { dma_reset(); io_sethandler(0x00C0, 32, dma16_read,NULL,NULL, dma16_write,NULL,NULL, NULL); io_sethandler(0x0088, 8, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_set(void) { io_sethandler(0x0090, 2, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x0093, 13, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_set_piix(void) { io_sethandler(0x0090, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x0094, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x0098, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_sethandler(0x009C, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_remove(void) { io_removehandler(0x0090, 2, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x0093, 13, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void dma_alias_remove_piix(void) { io_removehandler(0x0090, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x0094, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x0098, 1, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); io_removehandler(0x009C, 3, dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL); } void ps2_dma_init(void) { dma_reset(); io_sethandler(0x0018, 1, dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL); io_sethandler(0x001a, 1, dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL); dma_ps2.is_ps2 = 1; } extern void dma_bm_read(uint32_t PhysAddress, uint8_t *DataRead, uint32_t TotalSize, int TransferSize); extern void dma_bm_write(uint32_t PhysAddress, const uint8_t *DataWrite, uint32_t TotalSize, int TransferSize); static int dma_sg(uint8_t *data, int transfer_length, int out, void *priv) { dma_t *dev = (dma_t *) priv; #ifdef ENABLE_DMA_LOG char *sop; #endif int force_end = 0, buffer_pos = 0; #ifdef ENABLE_DMA_LOG sop = out ? "Read" : "Writ"; #endif if (!(dev->sg_status & 1)) return 2; /*S/G disabled*/ dma_log("DMA S/G %s: %i bytes\n", out ? "write" : "read", transfer_length); while (1) { if (dev->count <= transfer_length) { dma_log("%sing %i bytes to %08X\n", sop, dev->count, dev->addr); if (out) dma_bm_read(dev->addr, (uint8_t *)(data + buffer_pos), dev->count, 4); else dma_bm_write(dev->addr, (uint8_t *)(data + buffer_pos), dev->count, 4); transfer_length -= dev->count; buffer_pos += dev->count; } else { dma_log("%sing %i bytes to %08X\n", sop, transfer_length, dev->addr); if (out) dma_bm_read(dev->addr, (uint8_t *)(data + buffer_pos), transfer_length, 4); else dma_bm_write(dev->addr, (uint8_t *)(data + buffer_pos), transfer_length, 4); /* Increase addr and decrease count so that resumed transfers do not mess up. */ dev->addr += transfer_length; dev->count -= transfer_length; transfer_length = 0; force_end = 1; } if (force_end) { dma_log("Total transfer length smaller than sum of all blocks, partial block\n"); return 1; /* This block has exhausted the data to transfer and it was smaller than the count, break. */ } else { if (!transfer_length && !dev->eot) { dma_log("Total transfer length smaller than sum of all blocks, full block\n"); return 1; /* We have exhausted the data to transfer but there's more blocks left, break. */ } else if (transfer_length && dev->eot) { dma_log("Total transfer length greater than sum of all blocks\n"); return 4; /* There is data left to transfer but we have reached EOT - return with error. */ } else if (dev->eot) { dma_log("Regular EOT\n"); return 5; /* We have regularly reached EOT - clear status and break. */ } else { /* We have more to transfer and there are blocks left, get next block. */ dma_sg_next_addr(dev); } } } return 1; } uint8_t _dma_read(uint32_t addr, dma_t *dma_c) { uint8_t temp; if (dma_advanced) { if (dma_c->sg_status & 1) dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg(&temp, 1, 1, dma_c) << 4); else dma_bm_read(addr, &temp, 1, dma_transfer_size(dma_c)); } else temp = mem_readb_phys(addr); return(temp); } static uint16_t _dma_readw(uint32_t addr, dma_t *dma_c) { uint16_t temp; if (dma_advanced) { if (dma_c->sg_status & 1) dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg((uint8_t *) &temp, 2, 1, dma_c) << 4); else dma_bm_read(addr, (uint8_t *) &temp, 2, dma_transfer_size(dma_c)); } else temp = _dma_read(addr, dma_c) | (_dma_read(addr + 1, dma_c) << 8); return(temp); } static void _dma_write(uint32_t addr, uint8_t val, dma_t *dma_c) { if (dma_advanced) { if (dma_c->sg_status & 1) dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg(&val, 1, 0, dma_c) << 4); else dma_bm_write(addr, &val, 1, dma_transfer_size(dma_c)); } else { mem_writeb_phys(addr, val); mem_invalidate_range(addr, addr); } } static void _dma_writew(uint32_t addr, uint16_t val, dma_t *dma_c) { if (dma_advanced) { if (dma_c->sg_status & 1) dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg((uint8_t *) &val, 2, 0, dma_c) << 4); else dma_bm_write(addr, (uint8_t *) &val, 2, dma_transfer_size(dma_c)); } else { _dma_write(addr, val & 0xff, dma_c); _dma_write(addr + 1, val >> 8, dma_c); } } static void dma_retreat(dma_t *dma_c) { int as = dma_c->transfer_mode >> 8; if (dma->sg_status & 1) { dma_c->ac = (dma_c->ac - as) & dma_mask; dma_c->page = dma_c->page_l = (dma_c->ac >> 16) & 0xff; dma_c->page_h = (dma_c->ac >> 24) & 0xff; } else if (as == 2) dma_c->ac = ((dma_c->ac & 0xfffe0000) & dma_mask) | ((dma_c->ac - as) & 0xffff); else dma_c->ac = ((dma_c->ac & 0xffff0000) & dma_mask) | ((dma_c->ac - as) & 0xffff); } void dma_advance(dma_t *dma_c) { int as = dma_c->transfer_mode >> 8; if (dma->sg_status & 1) { dma_c->ac = (dma_c->ac + as) & dma_mask; dma_c->page = dma_c->page_l = (dma_c->ac >> 16) & 0xff; dma_c->page_h = (dma_c->ac >> 24) & 0xff; } else if (as == 2) dma_c->ac = ((dma_c->ac & 0xfffe0000) & dma_mask) | ((dma_c->ac + as) & 0xffff); else dma_c->ac = ((dma_c->ac & 0xffff0000) & dma_mask) | ((dma_c->ac + as) & 0xffff); } int dma_channel_read(int channel) { dma_t *dma_c = &dma[channel]; uint16_t temp; int tc = 0; if (channel < 4) { if (dma_command[0] & 0x04) return(DMA_NODATA); } else { if (dma_command[1] & 0x04) return(DMA_NODATA); } if (!(dma_e & (1 << channel))) return(DMA_NODATA); if ((dma_m & (1 << channel)) && !dma_req_is_soft) return(DMA_NODATA); if ((dma_c->mode & 0xC) != 8) return(DMA_NODATA); if (!AT && !channel) refreshread(); if (! dma_c->size) { temp = _dma_read(dma_c->ac, dma_c); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac--; else if (dma_advanced) dma_retreat(dma_c); else dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac - 1) & 0xffff); } else { if (dma_ps2.is_ps2) dma_c->ac++; else if (dma_advanced) dma_advance(dma_c); else dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac + 1) & 0xffff); } } else { temp = _dma_readw(dma_c->ac, dma_c); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac -= 2; else if (dma_advanced) dma_retreat(dma_c); else dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff); } else { if (dma_ps2.is_ps2) dma_c->ac += 2; else if (dma_advanced) dma_advance(dma_c); else dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac + 2) & 0x1ffff); } } dma_stat_rq |= (1 << channel); dma_c->cc--; if (dma_c->cc < 0) { if (dma_advanced && (dma_c->sg_status & 1) && !(dma_c->sg_status & 6)) dma_sg_next_addr(dma_c); else { tc = 1; if (dma_c->mode & 0x10) { /*Auto-init*/ dma_c->cc = dma_c->cb; dma_c->ac = dma_c->ab; } else dma_m |= (1 << channel); dma_stat |= (1 << channel); } } if (tc) { if (dma_advanced && (dma_c->sg_status & 1) && ((dma_c->sg_command & 0xc0) == 0x40)) { picint(1 << 13); dma_c->sg_status |= 8; } return(temp | DMA_OVER); } return(temp); } int dma_channel_write(int channel, uint16_t val) { dma_t *dma_c = &dma[channel]; if (channel < 4) { if (dma_command[0] & 0x04) return(DMA_NODATA); } else { if (dma_command[1] & 0x04) return(DMA_NODATA); } if (!(dma_e & (1 << channel))) return(DMA_NODATA); if ((dma_m & (1 << channel)) && !dma_req_is_soft) return(DMA_NODATA); if ((dma_c->mode & 0xC) != 4) return(DMA_NODATA); if (! dma_c->size) { _dma_write(dma_c->ac, val & 0xff, dma_c); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac--; else if (dma_advanced) dma_retreat(dma_c); else dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac - 1) & 0xffff); } else { if (dma_ps2.is_ps2) dma_c->ac++; else if (dma_advanced) dma_advance(dma_c); else dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac + 1) & 0xffff); } } else { _dma_writew(dma_c->ac, val, dma_c); if (dma_c->mode & 0x20) { if (dma_ps2.is_ps2) dma_c->ac -= 2; else if (dma_advanced) dma_retreat(dma_c); else dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff); dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff); } else { if (dma_ps2.is_ps2) dma_c->ac += 2; else if (dma_advanced) dma_advance(dma_c); else dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac + 2) & 0x1ffff); } } dma_stat_rq |= (1 << channel); dma_c->cc--; if (dma_c->cc < 0) { if (dma_advanced && (dma_c->sg_status & 1) && !(dma_c->sg_status & 6)) dma_sg_next_addr(dma_c); else { if (dma_c->mode & 0x10) { /*Auto-init*/ dma_c->cc = dma_c->cb; dma_c->ac = dma_c->ab; } else dma_m |= (1 << channel); dma_stat |= (1 << channel); } } if (dma_m & (1 << channel)) { if (dma_advanced && (dma_c->sg_status & 1) && ((dma_c->sg_command & 0xc0) == 0x40)) { picint(1 << 13); dma_c->sg_status |= 8; } return(DMA_OVER); } return(0); } static void dma_ps2_run(int channel) { dma_t *dma_c = &dma[channel]; switch (dma_c->ps2_mode & DMA_PS2_XFER_MASK) { case DMA_PS2_XFER_MEM_TO_IO: do { if (! dma_c->size) { uint8_t temp = _dma_read(dma_c->ac, dma_c); outb(dma_c->io_addr, temp); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { uint16_t temp = _dma_readw(dma_c->ac, dma_c); outw(dma_c->io_addr, temp); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma_c->cc--; } while (dma_c->cc > 0); dma_stat |= (1 << channel); break; case DMA_PS2_XFER_IO_TO_MEM: do { if (! dma_c->size) { uint8_t temp = inb(dma_c->io_addr); _dma_write(dma_c->ac, temp, dma_c); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { uint16_t temp = inw(dma_c->io_addr); _dma_writew(dma_c->ac, temp, dma_c); if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma_c->cc--; } while (dma_c->cc > 0); ps2_cache_clean(); dma_stat |= (1 << channel); break; default: /*Memory verify*/ do { if (! dma_c->size) { if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac--; else dma_c->ac++; } else { if (dma_c->ps2_mode & DMA_PS2_DEC2) dma_c->ac -= 2; else dma_c->ac += 2; } dma_stat_rq |= (1 << channel); dma->cc--; } while (dma->cc > 0); dma_stat |= (1 << channel); break; } } int dma_mode(int channel) { return(dma[channel].mode); } /* DMA Bus Master Page Read/Write */ void dma_bm_read(uint32_t PhysAddress, uint8_t *DataRead, uint32_t TotalSize, int TransferSize) { uint32_t i = 0, n, n2; uint8_t bytes[4] = { 0, 0, 0, 0 }; n = TotalSize & ~(TransferSize - 1); n2 = TotalSize - n; /* Do the divisible block, if there is one. */ if (n) { for (i = 0; i < n; i += TransferSize) mem_read_phys((void *) &(DataRead[i]), PhysAddress + i, TransferSize); } /* Do the non-divisible block, if there is one. */ if (n2) { mem_read_phys((void *) bytes, PhysAddress + n, TransferSize); memcpy((void *) &(DataRead[n]), bytes, n2); } } void dma_bm_write(uint32_t PhysAddress, const uint8_t *DataWrite, uint32_t TotalSize, int TransferSize) { uint32_t i = 0, n, n2; uint8_t bytes[4] = { 0, 0, 0, 0 }; n = TotalSize & ~(TransferSize - 1); n2 = TotalSize - n; /* Do the divisible block, if there is one. */ if (n) { for (i = 0; i < n; i += TransferSize) mem_write_phys((void *) &(DataWrite[i]), PhysAddress + i, TransferSize); } /* Do the non-divisible block, if there is one. */ if (n2) { mem_read_phys((void *) bytes, PhysAddress + n, TransferSize); memcpy(bytes, (void *) &(DataWrite[n]), n2); mem_write_phys((void *) bytes, PhysAddress + n, TransferSize); } }