Files
86Box-fork/src/dma.c

390 lines
13 KiB
C

#include "ibm.h"
#include "dma.h"
#include "fdc.h"
#include "io.h"
#include "mem.h"
#include "video.h"
static uint8_t dmaregs[16];
static int dmaon[4];
static uint8_t dma16regs[16];
static int dma16on[4];
static uint8_t dmapages[16];
void dma_reset()
{
int c;
dma.wp = 0;
for (c = 0; c < 16; c++)
dmaregs[c] = 0;
for (c = 0; c < 4; c++)
{
dma.mode[c] = 0;
dma.ac[c] = 0;
dma.cc[c] = 0;
dma.ab[c] = 0;
dma.cb[c] = 0;
}
dma.m = 0;
dma16.wp = 0;
for (c = 0; c < 16; c++)
dma16regs[c] = 0;
for (c = 0; c < 4; c++)
{
dma16.mode[c] = 0;
dma16.ac[c] = 0;
dma16.cc[c] = 0;
dma16.ab[c] = 0;
dma16.cb[c] = 0;
}
dma16.m = 0;
}
uint8_t dma_read(uint16_t addr, void *priv)
{
uint8_t temp;
// printf("Read DMA %04X %04X:%04X %i %02X\n",addr,CS,pc, pic_intpending, pic.pend);
switch (addr & 0xf)
{
case 0: case 2: case 4: case 6: /*Address registers*/
dma.wp ^= 1;
if (dma.wp)
return dma.ac[(addr >> 1) & 3] & 0xff;
return dma.ac[(addr >> 1) & 3] >> 8;
case 1: case 3: case 5: case 7: /*Count registers*/
dma.wp ^= 1;
if (dma.wp) temp = dma.cc[(addr >> 1) & 3] & 0xff;
else temp = dma.cc[(addr >> 1) & 3] >> 8;
return temp;
case 8: /*Status register*/
temp = dma.stat;
dma.stat = 0;
return temp;
case 0xd:
return 0;
}
// printf("Bad DMA read %04X %04X:%04X\n",addr,CS,pc);
return dmaregs[addr & 0xf];
}
void dma_write(uint16_t addr, uint8_t val, void *priv)
{
// printf("Write DMA %04X %02X %04X:%04X\n",addr,val,CS,pc);
dmaregs[addr & 0xf] = val;
switch (addr & 0xf)
{
case 0: case 2: case 4: case 6: /*Address registers*/
dma.wp ^= 1;
if (dma.wp) dma.ab[(addr >> 1) & 3] = (dma.ab[(addr >> 1) & 3] & 0xff00) | val;
else dma.ab[(addr >> 1) & 3] = (dma.ab[(addr >> 1) & 3] & 0x00ff) | (val << 8);
dma.ac[(addr >> 1) & 3] = dma.ab[(addr >> 1) & 3];
dmaon[(addr >> 1) & 3] = 1;
return;
case 1: case 3: case 5: case 7: /*Count registers*/
dma.wp ^= 1;
if (dma.wp) dma.cb[(addr >> 1) & 3] = (dma.cb[(addr >> 1) & 3] & 0xff00) | val;
else dma.cb[(addr >> 1) & 3] = (dma.cb[(addr >> 1) & 3] & 0x00ff) | (val << 8);
dma.cc[(addr >> 1) & 3] = dma.cb[(addr >> 1) & 3];
dmaon[(addr >> 1) & 3] = 1;
return;
case 8: /*Control register*/
dma.command = val;
return;
case 0xa: /*Mask*/
if (val & 4) dma.m |= (1 << (val & 3));
else dma.m &= ~(1 << (val & 3));
return;
case 0xb: /*Mode*/
dma.mode[val & 3] = val;
return;
case 0xc: /*Clear FF*/
dma.wp = 0;
return;
case 0xd: /*Master clear*/
dma.wp = 0;
dma.m = 0xf;
return;
case 0xf: /*Mask write*/
dma.m = val & 0xf;
return;
}
}
uint8_t dma16_read(uint16_t addr, void *priv)
{
uint8_t temp;
// printf("Read DMA %04X %04X:%04X\n",addr,cs>>4,pc);
addr >>= 1;
switch (addr & 0xf)
{
case 0: case 2: case 4: case 6: /*Address registers*/
dma16.wp ^= 1;
if (dma16.wp)
return dma16.ac[(addr >> 1) & 3] & 0xff;
return dma16.ac[(addr >> 1) & 3] >> 8;
case 1: case 3: case 5: case 7: /*Count registers*/
dma16.wp ^= 1;
if (dma16.wp) temp = dma16.cc[(addr >> 1) & 3] & 0xff;
else temp = dma16.cc[(addr >> 1) & 3] >> 8;
return temp;
case 8: /*Status register*/
temp = dma16.stat;
dma16.stat = 0;
return temp;
}
return dma16regs[addr & 0xf];
}
void dma16_write(uint16_t addr, uint8_t val, void *priv)
{
// printf("Write dma16 %04X %02X %04X:%04X\n",addr,val,CS,pc);
addr >>= 1;
dma16regs[addr & 0xf] = val;
switch (addr & 0xf)
{
case 0: case 2: case 4: case 6: /*Address registers*/
dma16.wp ^= 1;
if (dma16.wp) dma16.ab[(addr >> 1) & 3] = (dma16.ab[(addr >> 1) & 3] & 0xff00) | val;
else dma16.ab[(addr >> 1) & 3] = (dma16.ab[(addr >> 1) & 3] & 0x00ff) | (val << 8);
dma16.ac[(addr >> 1) & 3] = dma16.ab[(addr >> 1) & 3];
dma16on[(addr >> 1) & 3] = 1;
return;
case 1: case 3: case 5: case 7: /*Count registers*/
dma16.wp ^= 1;
if (dma16.wp) dma16.cb[(addr >> 1) & 3] = (dma16.cb[(addr >> 1) & 3] & 0xff00) | val;
else dma16.cb[(addr >> 1) & 3] = (dma16.cb[(addr >> 1) & 3] & 0x00ff) | (val << 8);
dma16.cc[(addr >> 1) & 3] = dma16.cb[(addr >> 1) & 3];
dma16on[(addr >> 1) & 3] = 1;
return;
case 8: /*Control register*/
return;
case 0xa: /*Mask*/
if (val & 4) dma16.m |= (1 << (val & 3));
else dma16.m &= ~(1 << (val & 3));
return;
case 0xb: /*Mode*/
dma16.mode[val & 3] = val;
return;
case 0xc: /*Clear FF*/
dma16.wp = 0;
return;
case 0xd: /*Master clear*/
dma16.wp = 0;
dma16.m = 0xf;
return;
case 0xf: /*Mask write*/
dma16.m = val&0xf;
return;
}
}
void dma_page_write(uint16_t addr, uint8_t val, void *priv)
{
dmapages[addr & 0xf] = val;
switch (addr & 0xf)
{
case 1:
dma.page[2] = (AT) ? val : val & 0xf;
break;
case 2:
dma.page[3] = (AT) ? val : val & 0xf;
break;
case 3:
dma.page[1] = (AT) ? val : val & 0xf;
break;
case 0xb:
dma16.page[1] = val;
break;
}
}
uint8_t dma_page_read(uint16_t addr, void *priv)
{
return dmapages[addr & 0xf];
}
void dma_init()
{
io_sethandler(0x0000, 0x0010, dma_read, NULL, NULL, dma_write, NULL, NULL, NULL);
io_sethandler(0x0080, 0x0008, dma_page_read, NULL, NULL, dma_page_write, NULL, NULL, NULL);
}
void dma16_init()
{
io_sethandler(0x00C0, 0x0020, dma16_read, NULL, NULL, dma16_write, NULL, NULL, NULL);
io_sethandler(0x0088, 0x0008, dma_page_read, NULL, NULL, dma_page_write, NULL, NULL, NULL);
}
uint8_t _dma_read(uint32_t addr)
{
return mem_readb_phys(addr);
}
void _dma_write(uint32_t addr, uint8_t val)
{
mem_writeb_phys(addr, val);
mem_invalidate_range(addr, addr);
}
int dma_channel_read(int channel)
{
uint16_t temp;
int tc = 0;
if (dma.command & 0x04)
return DMA_NODATA;
if (!AT)
refreshread();
if (channel < 4)
{
if (dma.m & (1 << channel))
return DMA_NODATA;
if ((dma.mode[channel] & 0xC) != 8)
return DMA_NODATA;
temp = _dma_read(dma.ac[channel] + (dma.page[channel] << 16)); //ram[(dma.ac[2]+(dma.page[2]<<16))&rammask];
if (dma.mode[channel] & 0x20) dma.ac[channel]--;
else dma.ac[channel]++;
dma.cc[channel]--;
if (dma.cc[channel] < 0)
{
tc = 1;
if (dma.mode[channel] & 0x10) /*Auto-init*/
{
dma.cc[channel] = dma.cb[channel];
dma.ac[channel] = dma.ab[channel];
}
else
dma.m |= (1 << channel);
dma.stat |= (1 << channel);
}
if (tc)
return temp | DMA_OVER;
return temp;
}
else
{
channel &= 3;
if (dma16.m & (1 << channel))
return DMA_NODATA;
if ((dma16.mode[channel] & 0xC) != 8)
return DMA_NODATA;
temp = _dma_read((dma16.ac[channel] << 1) + ((dma16.page[channel] & ~1) << 16)) |
(_dma_read((dma16.ac[channel] << 1) + ((dma16.page[channel] & ~1) << 16) + 1) << 8);
if (dma16.mode[channel] & 0x20) dma16.ac[channel]--;
else dma16.ac[channel]++;
dma16.cc[channel]--;
if (dma16.cc[channel] < 0)
{
tc = 1;
if (dma16.mode[channel] & 0x10) /*Auto-init*/
{
dma16.cc[channel] = dma16.cb[channel];
dma16.ac[channel] = dma16.ab[channel];
}
else
dma16.m |= (1 << channel);
dma16.stat |= (1 << channel);
}
if (tc)
return temp | DMA_OVER;
return temp;
}
}
int dma_channel_write(int channel, uint16_t val)
{
if (dma.command & 0x04)
return DMA_NODATA;
if (!AT)
refreshread();
if (channel < 4)
{
if (dma.m & (1 << channel))
return DMA_NODATA;
if ((dma.mode[channel] & 0xC) != 4)
return DMA_NODATA;
_dma_write(dma.ac[channel] + (dma.page[channel] << 16), val);
if (dma.mode[channel]&0x20) dma.ac[channel]--;
else dma.ac[channel]++;
dma.cc[channel]--;
if (dma.cc[channel] < 0)
{
if (dma.mode[channel] & 0x10) /*Auto-init*/
{
dma.cc[channel] = dma.cb[channel];
dma.ac[channel] = dma.ab[channel];
}
else
dma.m |= (1 << channel);
dma.stat |= (1 << channel);
}
if (dma.m & (1 << channel))
return DMA_OVER;
}
else
{
channel &= 3;
if (dma16.m & (1 << channel))
return DMA_NODATA;
if ((dma16.mode[channel] & 0xC) != 4)
return DMA_NODATA;
_dma_write((dma16.ac[channel] << 1) + ((dma16.page[channel] & ~1) << 16), val);
_dma_write((dma16.ac[channel] << 1) + ((dma16.page[channel] & ~1) << 16) + 1, val >> 8);
if (dma16.mode[channel]&0x20) dma16.ac[channel]--;
else dma16.ac[channel]++;
dma16.cc[channel]--;
if (dma16.cc[channel] < 0)
{
if (dma16.mode[channel] & 0x10) /*Auto-init*/
{
dma16.cc[channel] = dma16.cb[channel] + 1;
dma16.ac[channel] = dma16.ab[channel];
}
dma16.m |= (1 << channel);
dma16.stat |= (1 << channel);
}
if (dma.m & (1 << channel))
return DMA_OVER;
}
return 0;
}