Files
86Box-fork/src/nvr_at.c
OBattler 6e233f4ac8 SDL renderer improvements and fixes and added SDL OpenGL option;
Various performance improvements;
Fixed USB UHCI HCHalt;
Cirrus Logic CL-GD 5422/24 fixes and removed them from the Dev branch;
The Storage controllers sections of Settings now has its own corresponding section of the configuration file;
Fixed the AT clock divisors for some Pentium OverDrive CPU's;
Added the ACPI RTC status (no ACPI RTC alarm event yet).
2020-11-26 18:20:24 +01:00

1106 lines
30 KiB
C

/*
* VARCem Virtual ARchaeological Computer EMulator.
* An emulator of (mostly) x86-based PC systems and devices,
* using the ISA,EISA,VLB,MCA and PCI system buses, roughly
* spanning the era between 1981 and 1995.
*
* This file is part of the VARCem Project.
*
* Implement a more-or-less defacto-standard RTC/NVRAM.
*
* When IBM released the PC/AT machine, it came standard with a
* battery-backed RTC chip to keep the time of day, something
* that was optional on standard PC's with a myriad variants
* being put on the market, often on cheap multi-I/O cards.
*
* The PC/AT had an on-board DS12885-series chip ("the black
* block") which was an RTC/clock chip with onboard oscillator
* and a backup battery (hence the big size.) The chip also had
* a small amount of RAM bytes available to the user, which was
* used by IBM's ROM BIOS to store machine configuration data.
* Later versions and clones used the 12886 and/or 1288(C)7
* series, or the MC146818 series, all with an external battery.
* Many of those batteries would create corrosion issues later
* on in mainboard life...
*
* Since then, pretty much any PC has an implementation of that
* device, which became known as the "nvr" or "cmos".
*
* NOTES Info extracted from the data sheets:
*
* * The century register at location 32h is a BCD register
* designed to automatically load the BCD value 20 as the
* year register changes from 99 to 00. The MSB of this
* register is not affected when the load of 20 occurs,
* and remains at the value written by the user.
*
* * Rate Selector (RS3:RS0)
* These four rate-selection bits select one of the 13
* taps on the 15-stage divider or disable the divider
* output. The tap selected can be used to generate an
* output square wave (SQW pin) and/or a periodic interrupt.
*
* The user can do one of the following:
* - enable the interrupt with the PIE bit;
* - enable the SQW output pin with the SQWE bit;
* - enable both at the same time and the same rate; or
* - enable neither.
*
* Table 3 lists the periodic interrupt rates and the square
* wave frequencies that can be chosen with the RS bits.
* These four read/write bits are not affected by !RESET.
*
* * Oscillator (DV2:DV0)
* These three bits are used to turn the oscillator on or
* off and to reset the countdown chain. A pattern of 010
* is the only combination of bits that turn the oscillator
* on and allow the RTC to keep time. A pattern of 11x
* enables the oscillator but holds the countdown chain in
* reset. The next update occurs at 500ms after a pattern
* of 010 is written to DV0, DV1, and DV2.
*
* * Update-In-Progress (UIP)
* This bit is a status flag that can be monitored. When the
* UIP bit is a 1, the update transfer occurs soon. When
* UIP is a 0, the update transfer does not occur for at
* least 244us. The time, calendar, and alarm information
* in RAM is fully available for access when the UIP bit
* is 0. The UIP bit is read-only and is not affected by
* !RESET. Writing the SET bit in Register B to a 1
* inhibits any update transfer and clears the UIP status bit.
*
* * Daylight Saving Enable (DSE)
* This bit is a read/write bit that enables two daylight
* saving adjustments when DSE is set to 1. On the first
* Sunday in April (or the last Sunday in April in the
* MC146818A), the time increments from 1:59:59 AM to
* 3:00:00 AM. On the last Sunday in October when the time
* first reaches 1:59:59 AM, it changes to 1:00:00 AM.
*
* When DSE is enabled, the internal logic test for the
* first/last Sunday condition at midnight. If the DSE bit
* is not set when the test occurs, the daylight saving
* function does not operate correctly. These adjustments
* do not occur when the DSE bit is 0. This bit is not
* affected by internal functions or !RESET.
*
* * 24/12
* The 24/12 control bit establishes the format of the hours
* byte. A 1 indicates the 24-hour mode and a 0 indicates
* the 12-hour mode. This bit is read/write and is not
* affected by internal functions or !RESET.
*
* * Data Mode (DM)
* This bit indicates whether time and calendar information
* is in binary or BCD format. The DM bit is set by the
* program to the appropriate format and can be read as
* required. This bit is not modified by internal functions
* or !RESET. A 1 in DM signifies binary data, while a 0 in
* DM specifies BCD data.
*
* * Square-Wave Enable (SQWE)
* When this bit is set to 1, a square-wave signal at the
* frequency set by the rate-selection bits RS3-RS0 is driven
* out on the SQW pin. When the SQWE bit is set to 0, the
* SQW pin is held low. SQWE is a read/write bit and is
* cleared by !RESET. SQWE is low if disabled, and is high
* impedance when VCC is below VPF. SQWE is cleared to 0 on
* !RESET.
*
* * Update-Ended Interrupt Enable (UIE)
* This bit is a read/write bit that enables the update-end
* flag (UF) bit in Register C to assert !IRQ. The !RESET
* pin going low or the SET bit going high clears the UIE bit.
* The internal functions of the device do not affect the UIE
* bit, but is cleared to 0 on !RESET.
*
* * Alarm Interrupt Enable (AIE)
* This bit is a read/write bit that, when set to 1, permits
* the alarm flag (AF) bit in Register C to assert !IRQ. An
* alarm interrupt occurs for each second that the three time
* bytes equal the three alarm bytes, including a don't-care
* alarm code of binary 11XXXXXX. The AF bit does not
* initiate the !IRQ signal when the AIE bit is set to 0.
* The internal functions of the device do not affect the AIE
* bit, but is cleared to 0 on !RESET.
*
* * Periodic Interrupt Enable (PIE)
* The PIE bit is a read/write bit that allows the periodic
* interrupt flag (PF) bit in Register C to drive the !IRQ pin
* low. When the PIE bit is set to 1, periodic interrupts are
* generated by driving the !IRQ pin low at a rate specified
* by the RS3-RS0 bits of Register A. A 0 in the PIE bit
* blocks the !IRQ output from being driven by a periodic
* interrupt, but the PF bit is still set at the periodic
* rate. PIE is not modified b any internal device functions,
* but is cleared to 0 on !RESET.
*
* * SET
* When the SET bit is 0, the update transfer functions
* normally by advancing the counts once per second. When
* the SET bit is written to 1, any update transfer is
* inhibited, and the program can initialize the time and
* calendar bytes without an update occurring in the midst of
* initializing. Read cycles can be executed in a similar
* manner. SET is a read/write bit and is not affected by
* !RESET or internal functions of the device.
*
* * Update-Ended Interrupt Flag (UF)
* This bit is set after each update cycle. When the UIE
* bit is set to 1, the 1 in UF causes the IRQF bit to be
* a 1, which asserts the !IRQ pin. This bit can be
* cleared by reading Register C or with a !RESET.
*
* * Alarm Interrupt Flag (AF)
* A 1 in the AF bit indicates that the current time has
* matched the alarm time. If the AIE bit is also 1, the
* !IRQ pin goes low and a 1 appears in the IRQF bit. This
* bit can be cleared by reading Register C or with a
* !RESET.
*
* * Periodic Interrupt Flag (PF)
* This bit is read-only and is set to 1 when an edge is
* detected on the selected tap of the divider chain. The
* RS3 through RS0 bits establish the periodic rate. PF is
* set to 1 independent of the state of the PIE bit. When
* both PF and PIE are 1s, the !IRQ signal is active and
* sets the IRQF bit. This bit can be cleared by reading
* Register C or with a !RESET.
*
* * Interrupt Request Flag (IRQF)
* The interrupt request flag (IRQF) is set to a 1 when one
* or more of the following are true:
* - PF == PIE == 1
* - AF == AIE == 1
* - UF == UIE == 1
* Any time the IRQF bit is a 1, the !IRQ pin is driven low.
* All flag bits are cleared after Register C is read by the
* program or when the !RESET pin is low.
*
* * Valid RAM and Time (VRT)
* This bit indicates the condition of the battery connected
* to the VBAT pin. This bit is not writeable and should
* always be 1 when read. If a 0 is ever present, an
* exhausted internal lithium energy source is indicated and
* both the contents of the RTC data and RAM data are
* questionable. This bit is unaffected by !RESET.
*
* This file implements a generic version of the RTC/NVRAM chip,
* including the later update (DS12887A) which implemented a
* "century" register to be compatible with Y2K.
*
*
*
* Authors: Fred N. van Kempen, <decwiz@yahoo.com>
* Miran Grca, <mgrca8@gmail.com>
* Mahod,
* Sarah Walker, <tommowalker@tommowalker.co.uk>
*
* Copyright 2017-2020 Fred N. van Kempen.
* Copyright 2016-2020 Miran Grca.
* Copyright 2008-2020 Sarah Walker.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the:
*
* Free Software Foundation, Inc.
* 59 Temple Place - Suite 330
* Boston, MA 02111-1307
* USA.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <wchar.h>
#include <time.h>
#include <86box/86box.h>
#include "cpu.h"
#include <86box/machine.h>
#include <86box/io.h>
#include <86box/mem.h>
#include <86box/nmi.h>
#include <86box/pic.h>
#include <86box/timer.h>
#include <86box/pit.h>
#include <86box/rom.h>
#include <86box/device.h>
#include <86box/nvr.h>
/* RTC registers and bit definitions. */
#define RTC_SECONDS 0
#define RTC_ALSECONDS 1
# define AL_DONTCARE 0xc0 /* Alarm time is not set */
#define RTC_MINUTES 2
#define RTC_ALMINUTES 3
#define RTC_HOURS 4
# define RTC_AMPM 0x80 /* PM flag if 12h format in use */
#define RTC_ALHOURS 5
#define RTC_DOW 6
#define RTC_DOM 7
#define RTC_MONTH 8
#define RTC_YEAR 9
#define RTC_REGA 10
# define REGA_UIP 0x80
# define REGA_DV2 0x40
# define REGA_DV1 0x20
# define REGA_DV0 0x10
# define REGA_DV 0x70
# define REGA_RS3 0x08
# define REGA_RS2 0x04
# define REGA_RS1 0x02
# define REGA_RS0 0x01
# define REGA_RS 0x0f
#define RTC_REGB 11
# define REGB_SET 0x80
# define REGB_PIE 0x40
# define REGB_AIE 0x20
# define REGB_UIE 0x10
# define REGB_SQWE 0x08
# define REGB_DM 0x04
# define REGB_2412 0x02
# define REGB_DSE 0x01
#define RTC_REGC 12
# define REGC_IRQF 0x80
# define REGC_PF 0x40
# define REGC_AF 0x20
# define REGC_UF 0x10
#define RTC_REGD 13
# define REGD_VRT 0x80
#define RTC_CENTURY_AT 0x32 /* century register for AT etc */
#define RTC_CENTURY_PS 0x37 /* century register for PS/1 PS/2 */
#define RTC_ALDAY 0x7D /* VIA VT82C586B - alarm day */
#define RTC_ALMONTH 0x7E /* VIA VT82C586B - alarm month */
#define RTC_CENTURY_VIA 0x7F /* century register for VIA VT82C586B */
#define RTC_REGS 14 /* number of registers */
#define FLAG_LS_HACK 0x01
#define FLAG_APOLLO_HACK 0x02
#define FLAG_PIIX4 0x04
typedef struct {
int8_t stat;
uint8_t cent, def,
flags, read_addr;
uint8_t addr[8], wp[2],
bank[8], *lock;
int16_t count, state;
uint64_t ecount,
rtc_time;
pc_timer_t update_timer,
rtc_timer;
} local_t;
static uint8_t nvr_at_inited = 0;
/* Get the current NVR time. */
static void
time_get(nvr_t *nvr, struct tm *tm)
{
local_t *local = (local_t *)nvr->data;
int8_t temp;
if (nvr->regs[RTC_REGB] & REGB_DM) {
/* NVR is in Binary data mode. */
tm->tm_sec = nvr->regs[RTC_SECONDS];
tm->tm_min = nvr->regs[RTC_MINUTES];
temp = nvr->regs[RTC_HOURS];
tm->tm_wday = (nvr->regs[RTC_DOW] - 1);
tm->tm_mday = nvr->regs[RTC_DOM];
tm->tm_mon = (nvr->regs[RTC_MONTH] - 1);
tm->tm_year = nvr->regs[RTC_YEAR];
if (local->cent != 0xFF)
tm->tm_year += (nvr->regs[local->cent] * 100) - 1900;
} else {
/* NVR is in BCD data mode. */
tm->tm_sec = RTC_DCB(nvr->regs[RTC_SECONDS]);
tm->tm_min = RTC_DCB(nvr->regs[RTC_MINUTES]);
temp = RTC_DCB(nvr->regs[RTC_HOURS]);
tm->tm_wday = (RTC_DCB(nvr->regs[RTC_DOW]) - 1);
tm->tm_mday = RTC_DCB(nvr->regs[RTC_DOM]);
tm->tm_mon = (RTC_DCB(nvr->regs[RTC_MONTH]) - 1);
tm->tm_year = RTC_DCB(nvr->regs[RTC_YEAR]);
if (local->cent != 0xFF)
tm->tm_year += (RTC_DCB(nvr->regs[local->cent]) * 100) - 1900;
}
/* Adjust for 12/24 hour mode. */
if (nvr->regs[RTC_REGB] & REGB_2412)
tm->tm_hour = temp;
else
tm->tm_hour = ((temp & ~RTC_AMPM)%12) + ((temp&RTC_AMPM) ? 12 : 0);
}
/* Set the current NVR time. */
static void
time_set(nvr_t *nvr, struct tm *tm)
{
local_t *local = (local_t *)nvr->data;
int year = (tm->tm_year + 1900);
if (nvr->regs[RTC_REGB] & REGB_DM) {
/* NVR is in Binary data mode. */
nvr->regs[RTC_SECONDS] = tm->tm_sec;
nvr->regs[RTC_MINUTES] = tm->tm_min;
nvr->regs[RTC_DOW] = (tm->tm_wday + 1);
nvr->regs[RTC_DOM] = tm->tm_mday;
nvr->regs[RTC_MONTH] = (tm->tm_mon + 1);
nvr->regs[RTC_YEAR] = (year % 100);
if (local->cent != 0xFF)
nvr->regs[local->cent] = (year / 100);
if (nvr->regs[RTC_REGB] & REGB_2412) {
/* NVR is in 24h mode. */
nvr->regs[RTC_HOURS] = tm->tm_hour;
} else {
/* NVR is in 12h mode. */
nvr->regs[RTC_HOURS] = (tm->tm_hour % 12) ? (tm->tm_hour % 12) : 12;
if (tm->tm_hour > 11)
nvr->regs[RTC_HOURS] |= RTC_AMPM;
}
} else {
/* NVR is in BCD data mode. */
nvr->regs[RTC_SECONDS] = RTC_BCD(tm->tm_sec);
nvr->regs[RTC_MINUTES] = RTC_BCD(tm->tm_min);
nvr->regs[RTC_DOW] = RTC_BCD(tm->tm_wday + 1);
nvr->regs[RTC_DOM] = RTC_BCD(tm->tm_mday);
nvr->regs[RTC_MONTH] = RTC_BCD(tm->tm_mon + 1);
nvr->regs[RTC_YEAR] = RTC_BCD(year % 100);
if (local->cent != 0xFF)
nvr->regs[local->cent] = RTC_BCD(year / 100);
if (nvr->regs[RTC_REGB] & REGB_2412) {
/* NVR is in 24h mode. */
nvr->regs[RTC_HOURS] = RTC_BCD(tm->tm_hour);
} else {
/* NVR is in 12h mode. */
nvr->regs[RTC_HOURS] = (tm->tm_hour % 12)
? RTC_BCD(tm->tm_hour % 12)
: RTC_BCD(12);
if (tm->tm_hour > 11)
nvr->regs[RTC_HOURS] |= RTC_AMPM;
}
}
}
/* Check if the current time matches a set alarm time. */
static int8_t
check_alarm(nvr_t *nvr, int8_t addr)
{
return((nvr->regs[addr+1] == nvr->regs[addr]) ||
((nvr->regs[addr+1] & AL_DONTCARE) == AL_DONTCARE));
}
/* Check for VIA stuff. */
static int8_t
check_alarm_via(nvr_t *nvr, int8_t addr, int8_t addr_2)
{
local_t *local = (local_t *)nvr->data;
if (local->cent == RTC_CENTURY_VIA) {
return((nvr->regs[addr_2] == nvr->regs[addr]) ||
((nvr->regs[addr_2] & AL_DONTCARE) == AL_DONTCARE));
} else
return 0;
}
/* Update the NVR registers from the internal clock. */
static void
timer_update(void *priv)
{
nvr_t *nvr = (nvr_t *)priv;
local_t *local = (local_t *)nvr->data;
struct tm tm;
local->ecount = 0LL;
if (! (nvr->regs[RTC_REGB] & REGB_SET)) {
/* Get the current time from the internal clock. */
nvr_time_get(&tm);
/* Update registers with current time. */
time_set(nvr, &tm);
/* Clear update status. */
local->stat = 0x00;
/* Check for any alarms we need to handle. */
if (check_alarm(nvr, RTC_SECONDS) &&
check_alarm(nvr, RTC_MINUTES) &&
check_alarm(nvr, RTC_HOURS) &&
check_alarm_via(nvr, RTC_DOM, RTC_ALDAY) &&
check_alarm_via(nvr, RTC_MONTH, RTC_ALMONTH)) {
nvr->regs[RTC_REGC] |= REGC_AF;
if (nvr->regs[RTC_REGB] & REGB_AIE) {
nvr->regs[RTC_REGC] |= REGC_IRQF;
/* Generate an interrupt. */
if (nvr->irq != -1)
picint(1 << nvr->irq);
}
}
/*
* The flag and interrupt should be issued
* on update ended, not started.
*/
nvr->regs[RTC_REGC] |= REGC_UF;
if (nvr->regs[RTC_REGB] & REGB_UIE) {
nvr->regs[RTC_REGC] |= REGC_IRQF;
/* Generate an interrupt. */
if (nvr->irq != -1)
picint(1 << nvr->irq);
}
}
}
static void
timer_load_count(nvr_t *nvr)
{
int c = nvr->regs[RTC_REGA] & REGA_RS;
local_t *local = (local_t *) nvr->data;
if ((nvr->regs[RTC_REGA] & 0x70) != 0x20) {
local->state = 0;
return;
}
local->state = 1;
switch (c) {
case 0:
local->state = 0;
break;
case 1: case 2:
local->count = 1 << (c + 6);
break;
default:
local->count = 1 << (c - 1);
break;
}
}
static void
timer_intr(void *priv)
{
nvr_t *nvr = (nvr_t *)priv;
local_t *local = (local_t *)nvr->data;
timer_advance_u64(&local->rtc_timer, RTCCONST);
if (local->state == 1) {
if (--local->count == 0) {
timer_load_count(nvr);
nvr->regs[RTC_REGC] |= REGC_PF;
if (nvr->regs[RTC_REGB] & REGB_PIE) {
nvr->regs[RTC_REGC] |= REGC_IRQF;
/* Generate an interrupt. */
if (nvr->irq != -1)
picint(1 << nvr->irq);
}
}
}
}
/* Callback from internal clock, another second passed. */
static void
timer_tick(nvr_t *nvr)
{
local_t *local = (local_t *)nvr->data;
/* Only update it there is no SET in progress. */
if (! (nvr->regs[RTC_REGB] & REGB_SET)) {
/* Set the UIP bit, announcing the update. */
local->stat = REGA_UIP;
rtc_tick();
/* Schedule the actual update. */
local->ecount = (244ULL + 1984ULL) * TIMER_USEC;
timer_set_delay_u64(&local->update_timer, local->ecount);
}
}
/* This must be exposed because ACPI uses it. */
void
nvr_reg_write(uint16_t reg, uint8_t val, void *priv)
{
nvr_t *nvr = (nvr_t *)priv;
local_t *local = (local_t *)nvr->data;
struct tm tm;
uint8_t old, i;
uint16_t checksum = 0x0000;
old = nvr->regs[reg];
switch(reg) {
case RTC_REGA:
nvr->regs[RTC_REGA] = val;
timer_load_count(nvr);
break;
case RTC_REGB:
nvr->regs[RTC_REGB] = val;
if (((old^val) & REGB_SET) && (val&REGB_SET)) {
/* According to the datasheet... */
nvr->regs[RTC_REGA] &= ~REGA_UIP;
nvr->regs[RTC_REGB] &= ~REGB_UIE;
}
break;
case RTC_REGC: /* R/O */
break;
case RTC_REGD: /* R/O */
/* VT82C686A/B have an ACPI register bit controlled by 0D bit 7.
This is overwritten on read, but testing shows BIOSes will
immediately check the ACPI register after writing to this. */
if (local->cent == RTC_CENTURY_VIA) {
nvr->regs[RTC_REGD] &= ~0x80;
if (val & 0x80)
nvr->regs[RTC_REGD] |= 0x80;
}
break;
case 0x2e:
case 0x2f:
if (local->flags & FLAG_LS_HACK) {
/* 2E and 2F are a simple sum of the values of 0E to 2D. */
for (i = 0x0e; i < 0x2e; i++)
checksum += (uint16_t) nvr->regs[i];
nvr->regs[0x2e] = checksum >> 8;
nvr->regs[0x2f] = checksum & 0xff;
break;
}
/*FALLTHROUGH*/
default: /* non-RTC registers are just NVRAM */
if ((reg >= 0x38) && (reg <= 0x3f) && local->wp[0])
break;
if ((reg >= 0xb8) && (reg <= 0xbf) && local->wp[1])
break;
if (local->lock[reg])
break;
if (nvr->regs[reg] != val) {
nvr->regs[reg] = val;
nvr_dosave = 1;
}
break;
}
if ((reg < RTC_REGA) || ((local->cent != 0xff) && (reg == local->cent))) {
if ((reg != 1) && (reg != 3) && (reg != 5)) {
if ((old != val) && !(time_sync & TIME_SYNC_ENABLED)) {
/* Update internal clock. */
time_get(nvr, &tm);
nvr_time_set(&tm);
nvr_dosave = 1;
}
}
}
}
/* Write to one of the NVR registers. */
static void
nvr_write(uint16_t addr, uint8_t val, void *priv)
{
nvr_t *nvr = (nvr_t *)priv;
local_t *local = (local_t *)nvr->data;
uint8_t addr_id = (addr & 0x0e) >> 1;
cycles -= ISA_CYCLES(8);
if (local->bank[addr_id] == 0xff)
return;
if (addr & 1) {
// if (local->bank[addr_id] == 0xff)
// return;
nvr_reg_write(local->addr[addr_id], val, priv);
} else {
local->addr[addr_id] = (val & (nvr->size - 1));
/* Some chipsets use a 256 byte NVRAM but ports 70h and 71h always access only 128 bytes. */
if (addr_id == 0x0)
local->addr[addr_id] &= 0x7f;
else if ((addr_id == 0x1) && (local->flags & FLAG_PIIX4))
local->addr[addr_id] = (local->addr[addr_id] & 0x7f) | 0x80;
if (local->bank[addr_id] > 0)
local->addr[addr_id] = (local->addr[addr_id] & 0x7f) | (0x80 * local->bank[addr_id]);
if (!(machines[machine].flags & MACHINE_MCA) &&
!(machines[machine].flags & MACHINE_NONMI))
nmi_mask = (~val & 0x80);
}
}
/* Read from one of the NVR registers. */
static uint8_t
nvr_read(uint16_t addr, void *priv)
{
nvr_t *nvr = (nvr_t *)priv;
local_t *local = (local_t *)nvr->data;
uint8_t ret;
uint8_t addr_id = (addr & 0x0e) >> 1;
uint16_t i, checksum = 0x0000;
cycles -= ISA_CYCLES(8);
if (/* (addr & 1) && */(local->bank[addr_id] == 0xff))
return 0xff;
if (addr & 1) switch(local->addr[addr_id]) {
case RTC_REGA:
ret = (nvr->regs[RTC_REGA] & 0x7f) | local->stat;
break;
case RTC_REGC:
picintc(1 << nvr->irq);
ret = nvr->regs[RTC_REGC];
nvr->regs[RTC_REGC] = 0x00;
break;
case RTC_REGD:
nvr->regs[RTC_REGD] |= REGD_VRT;
ret = nvr->regs[RTC_REGD];
break;
case 0x2c:
if (local->flags & FLAG_LS_HACK)
ret = nvr->regs[local->addr[addr_id]] & 0x7f;
else
ret = nvr->regs[local->addr[addr_id]];
break;
case 0x2e:
case 0x2f:
if (local->flags & FLAG_LS_HACK) {
for (i = 0x10; i <= 0x2d; i++) {
if (i == 0x2c)
checksum += (nvr->regs[i] & 0x7f);
else
checksum += nvr->regs[i];
}
if (local->addr[addr_id] == 0x2e)
ret = checksum >> 8;
else
ret = checksum & 0xff;
} else
ret = nvr->regs[local->addr[addr_id]];
break;
case 0x3e:
case 0x3f:
if (local->flags & FLAG_APOLLO_HACK) {
/* The checksum at 3E-3F is for 37-3D and 40-7F. */
for (i = 0x37; i <= 0x3d; i++)
checksum += nvr->regs[i];
for (i = 0x40; i <= 0x7f; i++) {
if (i == 0x52)
checksum += (nvr->regs[i] & 0xf3);
else
checksum += nvr->regs[i];
}
if (local->addr[addr_id] == 0x3e)
ret = checksum >> 8;
else
ret = checksum & 0xff;
} else
ret = nvr->regs[local->addr[addr_id]];
break;
case 0x52:
if (local->flags & FLAG_APOLLO_HACK)
ret = nvr->regs[local->addr[addr_id]] & 0xf3;
else
ret = nvr->regs[local->addr[addr_id]];
break;
default:
ret = nvr->regs[local->addr[addr_id]];
break;
} else {
ret = local->addr[addr_id];
if (!local->read_addr)
ret &= 0x80;
if (alt_access)
ret = (ret & 0x7f) | (nmi_mask ? 0x00 : 0x80);
}
return(ret);
}
/* Secondary NVR write - used by SMC. */
static void
nvr_sec_write(uint16_t addr, uint8_t val, void *priv)
{
nvr_write(0x72 + (addr & 1), val, priv);
}
/* Secondary NVR read - used by SMC. */
static uint8_t
nvr_sec_read(uint16_t addr, void *priv)
{
return nvr_read(0x72 + (addr & 1), priv);
}
/* Reset the RTC state to 1980/01/01 00:00. */
static void
nvr_reset(nvr_t *nvr)
{
local_t *local = (local_t *)nvr->data;
/* memset(nvr->regs, local->def, RTC_REGS); */
memset(nvr->regs, local->def, nvr->size);
nvr->regs[RTC_DOM] = 1;
nvr->regs[RTC_MONTH] = 1;
nvr->regs[RTC_YEAR] = RTC_BCD(80);
if (local->cent != 0xFF)
nvr->regs[local->cent] = RTC_BCD(19);
}
/* Process after loading from file. */
static void
nvr_start(nvr_t *nvr)
{
int i;
local_t *local = (local_t *) nvr->data;
struct tm tm;
int default_found = 0;
for (i = 0; i < nvr->size; i++) {
if (nvr->regs[i] == local->def)
default_found++;
}
if (default_found == nvr->size)
nvr->regs[0x0e] = 0xff; /* If load failed or it loaded an uninitialized NVR,
mark everything as bad. */
/* Initialize the internal and chip times. */
if (time_sync & TIME_SYNC_ENABLED) {
/* Use the internal clock's time. */
nvr_time_get(&tm);
time_set(nvr, &tm);
} else {
/* Set the internal clock from the chip time. */
time_get(nvr, &tm);
nvr_time_set(&tm);
}
/* Start the RTC. */
nvr->regs[RTC_REGA] = (REGA_RS2|REGA_RS1);
nvr->regs[RTC_REGB] = REGB_2412;
}
static void
nvr_at_speed_changed(void *priv)
{
nvr_t *nvr = (nvr_t *) priv;
local_t *local = (local_t *) nvr->data;
timer_disable(&local->rtc_timer);
timer_set_delay_u64(&local->rtc_timer, RTCCONST);
timer_disable(&local->update_timer);
if (local->ecount > 0ULL)
timer_set_delay_u64(&local->update_timer, local->ecount);
timer_disable(&nvr->onesec_time);
timer_set_delay_u64(&nvr->onesec_time, (10000ULL * TIMER_USEC));
}
void
nvr_at_handler(int set, uint16_t base, nvr_t *nvr)
{
io_handler(set, base, 2,
nvr_read,NULL,NULL, nvr_write,NULL,NULL, nvr);
}
void
nvr_at_sec_handler(int set, uint16_t base, nvr_t *nvr)
{
io_handler(set, base, 2,
nvr_sec_read,NULL,NULL, nvr_sec_write,NULL,NULL, nvr);
}
void
nvr_read_addr_set(int set, nvr_t *nvr)
{
local_t *local = (local_t *) nvr->data;
local->read_addr = set;
}
void
nvr_wp_set(int set, int h, nvr_t *nvr)
{
local_t *local = (local_t *) nvr->data;
local->wp[h] = set;
}
void
nvr_bank_set(int base, uint8_t bank, nvr_t *nvr)
{
local_t *local = (local_t *) nvr->data;
local->bank[base] = bank;
}
void
nvr_lock_set(int base, int size, int lock, nvr_t *nvr)
{
local_t *local = (local_t *) nvr->data;
int i;
for (i = 0; i < size; i++)
local->lock[base + i] = lock;
}
static void *
nvr_at_init(const device_t *info)
{
local_t *local;
nvr_t *nvr;
/* Allocate an NVR for this machine. */
nvr = (nvr_t *)malloc(sizeof(nvr_t));
if (nvr == NULL) return(NULL);
memset(nvr, 0x00, sizeof(nvr_t));
local = (local_t *)malloc(sizeof(local_t));
memset(local, 0x00, sizeof(local_t));
nvr->data = local;
/* This is machine specific. */
nvr->size = machines[machine].nvrmask + 1;
local->lock = (uint8_t *) malloc(nvr->size);
memset(local->lock, 0x00, nvr->size);
local->def = 0x00;
local->flags = 0x00;
switch(info->local & 7) {
case 0: /* standard AT, no century register */
nvr->irq = 8;
local->cent = 0xff;
break;
case 1: /* standard AT */
case 5: /* Lucky Star LS-486E */
case 6: /* AMI Apollo */
if (info->local == 9)
local->flags |= FLAG_PIIX4;
else {
if ((info->local & 7) == 5)
local->flags |= FLAG_LS_HACK;
else if ((info->local & 7) == 6)
local->flags |= FLAG_APOLLO_HACK;
}
nvr->irq = 8;
local->cent = RTC_CENTURY_AT;
break;
case 2: /* PS/1 or PS/2 */
nvr->irq = 8;
local->cent = RTC_CENTURY_PS;
break;
case 3: /* Amstrad PC's */
nvr->irq = 1;
local->cent = RTC_CENTURY_AT;
local->def = 0xff;
break;
case 4: /* IBM AT */
nvr->irq = 8;
local->cent = RTC_CENTURY_AT;
local->def = 0xff;
break;
case 7: /* VIA VT82C586B */
nvr->irq = 8;
local->cent = RTC_CENTURY_VIA;
break;
}
local->read_addr = 1;
/* Set up any local handlers here. */
nvr->reset = nvr_reset;
nvr->start = nvr_start;
nvr->tick = timer_tick;
/* Initialize the generic NVR. */
nvr_init(nvr);
if (nvr_at_inited == 0) {
/* Start the timers. */
timer_add(&local->update_timer, timer_update, nvr, 0);
timer_add(&local->rtc_timer, timer_intr, nvr, 0);
timer_load_count(nvr);
timer_set_delay_u64(&local->rtc_timer, RTCCONST);
/* Set up the I/O handler for this device. */
io_sethandler(0x0070, 2,
nvr_read,NULL,NULL, nvr_write,NULL,NULL, nvr);
if (info->local & 8) {
io_sethandler(0x0072, 2,
nvr_read,NULL,NULL, nvr_write,NULL,NULL, nvr);
}
nvr_at_inited = 1;
}
return(nvr);
}
static void
nvr_at_close(void *priv)
{
nvr_t *nvr = (nvr_t *) priv;
local_t *local = (local_t *) nvr->data;
nvr_close();
timer_disable(&local->rtc_timer);
timer_disable(&local->update_timer);
timer_disable(&nvr->onesec_time);
if (nvr->fn != NULL)
free(nvr->fn);
if (nvr->data != NULL)
free(nvr->data);
free(nvr);
if (nvr_at_inited == 1)
nvr_at_inited = 0;
}
const device_t at_nvr_old_device = {
"PC/AT NVRAM (No century)",
DEVICE_ISA | DEVICE_AT,
0,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t at_nvr_device = {
"PC/AT NVRAM",
DEVICE_ISA | DEVICE_AT,
1,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t ps_nvr_device = {
"PS/1 or PS/2 NVRAM",
DEVICE_PS2,
2,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t amstrad_nvr_device = {
"Amstrad NVRAM",
DEVICE_ISA | DEVICE_AT,
3,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t ibmat_nvr_device = {
"IBM AT NVRAM",
DEVICE_ISA | DEVICE_AT,
4,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t piix4_nvr_device = {
"Intel PIIX4 PC/AT NVRAM",
DEVICE_ISA | DEVICE_AT,
9,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t ls486e_nvr_device = {
"Lucky Star LS-486E PC/AT NVRAM",
DEVICE_ISA | DEVICE_AT,
13,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t ami_apollo_nvr_device = {
"AMI Apollo PC/AT NVRAM",
DEVICE_ISA | DEVICE_AT,
14,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};
const device_t via_nvr_device = {
"VIA PC/AT NVRAM",
DEVICE_ISA | DEVICE_AT,
15,
nvr_at_init, nvr_at_close, NULL,
{ NULL }, nvr_at_speed_changed,
NULL
};