2007-10-23 Benny Malengier <benny.malengier@gramps-project.org>

* src/Relationship.py: new algorithm to calculate relation
	* src/plugins/all_relations.py: begin of quick report to show extended relationship.



svn: r9237
This commit is contained in:
Benny Malengier 2007-10-23 20:47:13 +00:00
parent 48b7b5db8f
commit cb3771a715
3 changed files with 759 additions and 90 deletions

View File

@ -1,3 +1,7 @@
2007-10-23 Benny Malengier <benny.malengier@gramps-project.org>
* src/Relationship.py: new algorithm to calculate relation
* src/plugins/all_relations.py: begin of quick report to show extended relationship.
2007-10-22 Benny Malengier <benny.malengier@gramps-project.org>
* src/DisplayTabs/_GalleryTab.py: correctly update displaytab

View File

@ -41,12 +41,18 @@ _level_name = [ "", "first", "second", "third", "fourth", "fifth", "sixth",
"thirteenth", "fourteenth", "fifteenth", "sixteenth",
"seventeenth", "eighteenth", "nineteenth", "twentieth" ]
_removed_level = [ "", " once removed", " twice removed", " three times removed",
" four times removed", " five times removed", " six times removed",
" sevent times removed", " eight times removed", " nine times removed",
" ten times removed", " eleven times removed", " twelve times removed",
" thirteen times removed", " fourteen times removed", " fifteen times removed",
" sixteen times removed", " seventeen times removed", " eighteen times removed",
_removed_level = [ "", " once removed", " twice removed",
" three times removed",
" four times removed", " five times removed",
" six times removed",
" sevent times removed", " eight times removed",
" nine times removed",
" ten times removed", " eleven times removed",
" twelve times removed",
" thirteen times removed", " fourteen times removed",
" fifteen times removed",
" sixteen times removed", " seventeen times removed",
" eighteen times removed",
" nineteen times removed", " twenty times removed" ]
_parents_level = [ "", "parents", "grandparents", "great grandparents", "second great grandparents",
@ -176,6 +182,20 @@ _siblings_level = [ "",
"eighteenth great granduncles/aunts", "nineteenth great granduncles/aunts",
"twentieth great granduncles/aunts", ]
_sibling_level = [ "",
"sibling", "uncle/aunt",
"granduncle/aunt", "great granduncle/aunt",
"second great granduncle/aunt", "third great granduncle/aunt",
"fourth great granduncle/aunt", "fifth great granduncle/aunt",
"sixth great granduncle/aunt", "seventh great granduncle/aunt",
"eighth great granduncle/aunt", "ninth great granduncle/aunt",
"tenth great granduncle/aunt", "eleventh great granduncle/aunt",
"twelfth great granduncle/aunt", "thirteenth great granduncle/aunt",
"fourteenth great granduncle/aunt", "fifteenth great granduncle/aunt",
"sixteenth great granduncle/aunt", "seventeenth great granduncle/aunt",
"eighteenth great granduncle/aunt", "nineteenth great granduncle/aunt",
"twentieth great granduncle/aunt", ]
_nephews_nieces_level = [ "",
"siblings",
"nephews/nieces",
@ -212,36 +232,21 @@ MAX_DEPTH = 15
class RelationshipCalculator:
REL_MOTHER = 'm'
REL_FATHER = 'f'
REL_MOTHER_NOTBIRTH = 'M'
REL_FATHER_NOTBIRTH = 'F'
REL_SIBLING = 's'
def __init__(self):
pass
def __apply_filter(self,db,person,rel_str,plist,pmap,gen=1):
if person == None or gen > MAX_DEPTH:
return
gen += 1
plist.append(person.handle)
pmap[person.handle] = rel_str
family_handle = person.get_main_parents_family_handle()
try:
if family_handle:
family = db.get_family_from_handle(family_handle)
fhandle = family.father_handle
if fhandle:
father = db.get_person_from_handle(fhandle)
self.__apply_filter(db,father,rel_str+'f',plist,pmap,gen)
mhandle = family.mother_handle
if mhandle:
mother = db.get_person_from_handle(mhandle)
self.__apply_filter(db,mother,rel_str+'m',plist,pmap,gen)
except:
return
def get_cousin(self, level, removed):
if removed > len(_removed_level)-1 or level>len(_level_name)-1:
return "distant relative"
else:
return "%s cousin%s" % (_level_name[level],_removed_level[removed])
return "%s cousin%s" % (_level_name[level],
_removed_level[removed])
def get_parents(self, level):
if level>len(_parents_level)-1:
@ -354,18 +359,25 @@ class RelationshipCalculator:
return None
return None
def get_relationship_distance(self,db,orig_person,other_person):
def get_relationship_distance_old(self, db, orig_person, other_person):
"""
** DEPRECATED -- USE NEW **
NOTE: CHANGED ORDER OF RETURN, now first is rel to orig, second to other
(as it should, but wasn't !! )
Returns a tuple (firstRel, secondRel, common):
firstRel Number of generations from the orig_person to their
closest common ancestor
secondRel Number of generations from the other_person to their
closest common ancestor
common list of their common ancestors, the closest is the first
closest common ancestors, as eg 'ffmm'
secondRel Number of generations from the other_person to that
firstRel closest common ancestors, as eg 'ffmm'
common list of all these common ancestors (so same generation
difference with firstRel), no specific order !!
is returned
in the Rel, f is father, m is mother
"""
print "get_relationship_distance_old is deprecated, use new instead!"
firstRel = -1
secondRel = -1
@ -394,68 +406,441 @@ class RelationshipCalculator:
if common:
person_handle = common[0]
secondRel = firstMap[person_handle]
firstRel = secondMap[person_handle]
firstRel = firstMap[person_handle]
secondRel = secondMap[person_handle]
return (firstRel,secondRel,common)
def __apply_filter(self, db, person, rel_str, plist, pmap, depth=1):
if person == None or depth > MAX_DEPTH:
return
depth += 1
plist.append(person.handle)
pmap[person.handle] = rel_str # ?? this overwrites if person is double!
family_handle = person.get_main_parents_family_handle()
try:
if family_handle:
family = db.get_family_from_handle(family_handle)
fhandle = family.father_handle
if fhandle:
father = db.get_person_from_handle(fhandle)
self.__apply_filter(db, father, rel_str+'f', plist, pmap,
depth)
mhandle = family.mother_handle
if mhandle:
mother = db.get_person_from_handle(mhandle)
self.__apply_filter(db, mother, rel_str+'m', plist, pmap,
depth)
except:
return
def get_relationship_distance(self, db, orig_person, other_person):
"""
wrapper around get_relationship_distance_new to return a value like
the old method (note, firstRel is now to orig person, not to other as
it was in 2.2.x series !!!)
*** DO NOT USE, IS INCORRECT IN SOME CASES, eg person common
ancestor along two paths, only one returned,
however this should not matter for number of generation or
last gender, eg firstRel is 'ffffm' or 'mmfmm', only one
returned ***
Returns a tuple (firstRel, secondRel, common):
firstRel Number of generations from the orig_person to their
closest common ancestors, as eg 'ffmm'
secondRel Number of generations from the other_person to that
firstRel closest common ancestors, as eg 'ffmm'
common list of all these common ancestors (so same generation
difference with firstRel), no specific order !!
in the Rel, f is father, m is mother
"""
firstRel = -1
secondRel = -1
common = []
rank = 9999999
data, msg = self.get_relationship_distance_new(
db, orig_person, other_person,
all_dist=True,
all_families=False, only_birth=True)
#data is sorted on rank, we need closest to orig instead
if data[0][0] == -1 :
return firstRel, secondRel, common
for common_anc in data :
# common_anc looks like:
#(total dist, handle_common, 'ffffff', [0,0,0,0,0,0],'ff',[0, 0])
#where 2&3 are related to orig_pers, 4&5 other_pers
new_rank = len(common_anc[2])
if new_rank < rank:
rank = new_rank
common = [ common_anc[1] ]
firstRel = common_anc[2]
secondRel = common_anc[4]
elif new_rank == rank:
common.append( common_anc[1] )
return (firstRel, secondRel, common)
def get_relationship_distance_new(self, db, orig_person,
other_person,
all_families=False,
all_dist=False,
only_birth=True,
max_depth = MAX_DEPTH):
"""
Returns if all_dist == First a 'tuple, string':
(rank, person handle, firstRel_str, firstRel_fam,
secondRel_str, secondRel_fam), msg
or if all_dist == True a 'list of tuple, string':
[.....], msg:
The tuple or list of tuples consists of:
*rank Total number of generations from common ancestor to
the two persons, rank is -1 if no relations found
*person_handle The Common ancestor
*firstRel_str String with the path to the common ancestor
from orig Person
*firstRel_fam Family numbers along the path
*secondRel_str String with the path to the common ancestor
from otherPerson
*secondRel_fam Family numbers along the path
*msg List of messages indicating errors. Empyt list if no
errors.
Example:
firstRel_str = 'ffm' and firstRel_fam = [2,0,1] means
common ancestor is mother of the second family of the
father of the first family of the father of the third
family.
Note that the same person might be present twice if the person is
reached via a different branch too. Path (firstRel_str and
secondRel_str) will of course be different
@param db: database to work on
@param orig_person: first person
@type orig_person: Person Obj
@param other_person: second person, relation is sought between
first and second person
@type other_person: Person Obj
@param all_families: if False only Main family is searched, otherwise
all families are used
@type all_families: bool
@param all_dist: if False only the shortest distance is returned,
otherwise all relationships
@type all_dist: bool
@param only_birth: if True only parents with birth relation are
considered
@type only_birth: bool
@param max_depth: how many generations deep do we search?
@type max_depth: int
"""
#data storage to communicate with recursive functions
self.__maxDepthReached = False
self.__loopDetected = False
self.__max_depth = max_depth
self.__all_families = all_families
self.__all_dist = all_dist
self.__only_birth = only_birth
firstRel = -1
secondRel = -1
common_str = []
common_fam = []
self.__msg = []
common = []
firstMap = {}
firstList = []
secondMap = {}
secondList = []
rank = 9999999
try:
self.__apply_filter_new(db, orig_person, '', [], firstMap)
self.__apply_filter_new(db, other_person, '', [], secondMap,
stoprecursemap = firstMap,
store_all=False)
## print firstMap
## print secondMap
except RuntimeError:
return (-1,None,-1,[],-1,[] ) , \
[_("Relationship loop detected")] + self.__msg
for person_handle in secondMap.keys() :
if firstMap.has_key(person_handle) :
com = []
#a common ancestor
for rel1,fam1 in zip(firstMap[person_handle][0],
firstMap[person_handle][1]):
l1 = len(rel1)
for rel2,fam2 in zip(secondMap[person_handle][0],
secondMap[person_handle][1]):
l2 = len(rel2)
#collect paths to arrive at common ancestor
com.append((l1+l2,person_handle,rel1,fam1,
rel2,fam2))
#insert common ancestor in correct position,
# if shorter links, check if not subset
# if longer links, check if not superset
pos=0
for ranknew,handlenew,rel1new,fam1new,rel2new,fam2new in com :
insert = True
for rank, handle, rel1, fam1, rel2, fam2 in common :
if ranknew < rank :
break
elif ranknew >= rank :
#check subset
if rel1 == rel1new[:len(rel1)] and \
rel2 == rel2new[:len(rel2)] :
#subset relation exists already
insert = False
break
pos += 1
if insert :
if common :
common.insert(pos, (ranknew, handlenew,
rel1new, fam1new,rel2new,fam2new))
else:
common = [(ranknew, handlenew,
rel1new, fam1new, rel2new, fam2new)]
#now check if superset must be deleted from common
deletelist=[]
index = pos+1
for rank,handle,rel1,fam1,rel2,fam2 in common[pos+1:]:
if rel1new == rel1[:len(rel1new)] and \
rel2new == rel2[:len(rel2new)] :
deletelist.append(index)
index += 1
deletelist.reverse()
for index in deletelist:
del common[index]
#check for extra messages
if self.__maxDepthReached :
self.__msg += [_('Family tree reaches back more than the maximum '
'%d generations searched.\nIt is possible that '
'relationships have been missed') % (max_depth)]
## print 'common list :', common
if common and not self.__all_dist :
rank = common[0][0]
person_handle = common[0][1]
firstRel = common[0][2]
firstFam = common[0][3]
secondRel = common[0][4]
secondFam = common[0][5]
return (rank,person_handle,firstRel,firstFam,secondRel,secondFam),\
self.__msg
if common :
#list with tuples (rank,handle person,rel_str_orig,rel_fam_orig,
# rel_str_other,rel_fam_str) and messages
return common, self.__msg
if not self.__all_dist :
return (-1,None,'',[],'',[]), self.__msg
else :
return [(-1,None,'',[],'',[])], self.__msg
def __apply_filter_new(self, db, person, rel_str, rel_fam, pmap,
depth=1, stoprecursemap=None, store_all=True):
'''We recursively add parents of person in pmap with correct rel_str,
if store_all. If store_all false, only store parents if in the
stoprecursemap.
Stop recursion if parent is in the stoprecursemap (no need to
look parents of otherpers if done so already for origpers)
store pers
'''
if person == None or not person.handle :
return
if depth > self.__max_depth:
self.__maxDepthReached = True
print 'Max depth reached for ', person.get_primary_name(), depth,\
rel_str
return
depth += 1
commonancestor = False
if stoprecursemap and stoprecursemap.has_key(person.handle) :
commonancestor = True
#add person to the map, take into account that person can be obtained
#from different sides
if pmap.has_key(person.handle) :
#person is already a grandparent in another branch, we already have
# had lookup of all parents
pmap[person.handle][0] += [rel_str]
pmap[person.handle][1] += [rel_fam]
#check if there is no loop father son of his son, ...
# loop means person is twice reached, same rel_str in begin
for rel1 in pmap[person.handle][0]:
for rel2 in pmap[person.handle][0] :
if len(rel1) < len(rel2) and \
rel1 == rel2[:len(rel1)]:
#loop, keep one message in storage!
self.__loopDetected = True
self.__msg += [_("Relationship loop detected:") + \
_("Person %s connects to himself via %s") % \
(person.get_primary_name().get_name(),
rel2[len(rel1):])]
return
elif store_all or commonancestor:
pmap[person.handle] = [[rel_str],[rel_fam]]
#having added person to the pmap, we only look up recursively to
# parents if this person is not common relative
if commonancestor :
## print 'common ancestor found'
return
family_handles = []
main = person.get_main_parents_family_handle()
## print 'main',main
if main :
family_handles = [main]
if self.__all_families :
family_handles = person.get_parent_family_handle_list()
## print 'all_families', family_handles
try:
parentsdone = [] #avoid doing same parent twice in diff families
fam = 0
## print 'starting family loop over family_handles', family_handles
for family_handle in family_handles :
rel_fam_new = rel_fam +[fam]
family = db.get_family_from_handle(family_handle)
#obtain childref for this person
childrel = [(ref.get_mother_relation(),
ref.get_father_relation()) for ref in
family.get_child_ref_list()
if ref.ref == person.handle]
fhandle = family.father_handle
## print 'fhandle', fhandle, parentsdone
if fhandle and not fhandle in parentsdone:
father = db.get_person_from_handle(fhandle)
if childrel[0][1] == gen.lib.ChildRefType.BIRTH :
addstr = self.REL_FATHER
elif not self.only_birth :
addstr = self.REL_FATHER_NOTBIRTH
else :
addstr = ''
## print 'for father, add string is =',addstr
if addstr :
parentsdone.append(fhandle)
self.__apply_filter_new(db, father,
rel_str + addstr, rel_fam_new,
pmap, depth, stoprecursemap, store_all)
mhandle = family.mother_handle
if mhandle and not mhandle in parentsdone:
mother = db.get_person_from_handle(mhandle)
if childrel[0][0] == gen.lib.ChildRefType.BIRTH :
addstr = self.REL_MOTHER
elif not self.only_birth :
addstr = self.REL_MOTHER_NOTBIRTH
else :
addstr = ''
## print 'for mother, add string is =',addstr
if addstr:
parentsdone.append(mhandle)
self.__apply_filter_new(db, mother,
rel_str + addstr, rel_fam_new,
pmap, depth, stoprecursemap, store_all)
if not fhandle and not mhandle :
#family without parents, add brothers
child_list = [ref.ref for ref in family.get_child_ref_list()
if ref.ref != person.handle]
addstr = self.REL_SIBLING
if pmap.has_key(person.handle) :
pmap[person.handle][0] += [rel_str + addstr]
pmap[person.handle][1] += [rel_fam_new]
#person is already a grandparent in another branch
elif store_all or commonancestor:
pmap[person.handle] = [[rel_str+addstr],[rel_fam_new]]
fam += 1
except:
import traceback
print traceback.print_exc()
return
def get_relationship(self,db,orig_person,other_person):
"""
returns a string representping the relationshp between the two people,
returns a string representing the relationshp between the two people,
along with a list of common ancestors (typically father,mother)
"""
if orig_person == None:
return ("undefined",[])
return (_("undefined"),[])
if orig_person.get_handle() == other_person.get_handle():
return ('', [])
is_spouse = self.is_spouse(db,orig_person,other_person)
if is_spouse:
return (is_spouse,[])
(firstRel,secondRel,common) = \
self.get_relationship_distance(db,orig_person,other_person)
if type(common) == types.StringType or \
type(common) == types.UnicodeType:
if is_spouse:
return (is_spouse,[])
else:
return (common,[])
elif common:
person_handle = common[0]
else:
if is_spouse:
return (is_spouse,[])
else:
return ("",[])
firstRel = len(firstRel)
secondRel = len(secondRel)
if firstRel == 0:
if secondRel == 0:
return ('',common)
elif other_person.get_gender() == gen.lib.Person.MALE:
return (self.get_father(secondRel),common)
#distance from common ancestor to the people
dist_orig = len(firstRel)
dist_other= len(secondRel)
rel_str = self.get_single_relationship_string(dist_orig,
dist_other,
orig_person.get_gender(),
other_person.get_gender()
)
if is_spouse:
return (is_spouse + ' and ' + rel_str, common)
else:
return (self.get_mother(secondRel),common)
elif secondRel == 0:
if other_person.get_gender() == gen.lib.Person.MALE:
return (self.get_son(firstRel),common)
else:
return (self.get_daughter(firstRel),common)
elif firstRel == 1:
if other_person.get_gender() == gen.lib.Person.MALE:
return (self.get_uncle(secondRel),common)
else:
return (self.get_aunt(secondRel),common)
elif secondRel == 1:
if other_person.get_gender() == gen.lib.Person.MALE:
return (self.get_nephew(firstRel-1),common)
else:
return (self.get_niece(firstRel-1),common)
else:
if secondRel > firstRel:
return (self.get_cousin(firstRel-1,secondRel-firstRel),common)
else:
return (self.get_cousin(secondRel-1,firstRel-secondRel),common)
return (rel_str, common)
## #original programmer did a sick joke here, switching first with other!
## firstRel = dist_other
## secondRel = dist_orig
##
## if firstRel == 0: #other is common ancestor, so a father/mother
## if secondRel == 0:
## return ('',common)
## elif other_person.get_gender() == gen.lib.Person.MALE:
## return (self.get_father(secondRel),common)
## else:
## return (self.get_mother(secondRel),common)
## elif secondRel == 0: #orig is common ancestor, so other is son/daugh
## if other_person.get_gender() == gen.lib.Person.MALE:
## return (self.get_son(firstRel),common)
## else:
## return (self.get_daughter(firstRel),common)
## elif firstRel == 1:
## if other_person.get_gender() == gen.lib.Person.MALE:
## return (self.get_uncle(secondRel),common)
## else:
## return (self.get_aunt(secondRel),common)
## elif secondRel == 1:
## if other_person.get_gender() == gen.lib.Person.MALE:
## return (self.get_nephew(firstRel-1),common)
## else:
## return (self.get_niece(firstRel-1),common)
## else:
## if secondRel > firstRel:
## return (self.get_cousin(firstRel-1,secondRel-firstRel),common)
## else:
## return (self.get_cousin(secondRel-1,firstRel-secondRel),common)
def get_grandparents_string(self,db,orig_person,other_person):
@ -558,3 +943,106 @@ class RelationshipCalculator:
else:
rel_str = "distant cousins"
return rel_str
def get_single_relationship_string(self, Ga, Gb, gender_a, gender_b,
only_birth=True):
"""
Provides a string that describes the relationsip between a person, and
another person. E.g. "grandparent" or "child".
To be used as: 'person a is the grandparent of b', this will
be in translation string :
'person a is the %(relation)s of b'
Note that languages with gender should add 'the' inside the
translation, so eg in french:
'person a est %(relation)s de b'
where relation will be here: le grandparent
Ga and Gb can be used to mathematically calculate the relationship.
See the Wikipedia entry for more information:
http://en.wikipedia.org/wiki/Cousin#Mathematical_definitions
@param Ga: The number of generations between the main person and the
common ancestor.
@type Ga: int
@param Gb: The number of generations between the other person and the
common ancestor
@type Gb: int
@param gender_a : gender of person a
@type gender_a: int gender
@param gender_b : gender of person b
@type gender_b: int gender
@param only_birth : True if relation between a and b is by birth only
False otherwise
@type only_birth: bool
@returns: A string describing the relationship between the two people
@rtype: str
"""
## print 'Ga, Gb :', Ga, Gb
rel_str = "distant relatives"
if Ga == 0:
# b is descendant of a
if Gb == 0 :
rel_str = 'same person'
elif gender_b == gen.lib.Person.MALE and Gb < len(_son_level):
rel_str = _son_level[Gb]
elif gender_b == gen.lib.Person.FEMALE and Gb < len(_daughter_level):
rel_str = _daughter_level[Gb]
elif Gb < len(_level_name):
rel_str = _level_name[Gb] + ' ' + 'descendant'
else:
rel_str = "distant descendant (%d generations)" % Gb
elif Gb == 0:
# b is parents/grand parent of a
if gender_b == gen.lib.Person.MALE and Ga < len(_father_level):
rel_str = _father_level[Ga]
elif gender_b == gen.lib.Person.FEMALE and Gb < len(_mother_level):
rel_str = _mother_level[Ga]
elif Ga < len(_level_name):
rel_str = _level_name[Ga] + ' ' + 'ancestor'
else:
rel_str = "distant ancestor (%d generations)" % Ga
elif Gb == 1:
# b is sibling/aunt/uncle of a
if gender_b == gen.lib.Person.MALE and Ga < len(_brother_level):
rel_str = _brother_level[Ga]
elif gender_b == gen.lib.Person.FEMALE and Ga < len(_sister_level):
rel_str = _sister_level[Ga]
elif Ga < len(_sibling_level):
rel_str = _sibling_level[Ga]
else:
rel_str = "distant uncle/aunt"
elif Ga == 1:
# b is niece/nephew of a
if gender_b == gen.lib.Person.MALE and Gb < len(_nephew_level):
rel_str = _nephew_level[Gb]
elif gender_b == gen.lib.Person.FEMALE and Gb < len(_niece_level):
rel_str = _niece_level[Gb]
elif Gb < len(_niece_level) and Gb < len(_nephew_level):
rel_str = "%s or %s" %(_nephew_level[Gb], _niece_level[Gb])
else:
rel_str = "distant nephews/nieces"
elif Ga > 1 and Ga == Gb:
# a and b cousins in the same generation
if Ga <= len(_level_name):
rel_str = "%s cousin" % _level_name[Ga-1]
else:
rel_str = "distant cousin"
elif Ga > 1 and Ga > Gb:
# These are cousins in different generations with the second person
# being in a higher generation from the common ancestor than the
# first person.
if Gb <= len(_level_name) and (Ga-Gb) < len(_removed_level):
rel_str = "%s cousin%s (up)" % ( _level_name[Gb-1],
_removed_level[Ga-Gb] )
else:
rel_str = "distant cousin"
elif Gb > 1 and Gb > Ga:
# These are cousins in different generations with the second person
# being in a lower generation from the common ancestor than the
# first person.
if Ga <= len(_level_name) and (Gb-Ga) < len(_removed_level):
rel_str = "%s cousin%s (down)" % ( _level_name[Ga-1],
_removed_level[Gb-Ga] )
else:
rel_str = "distant cousin"
return rel_str

View File

@ -0,0 +1,177 @@
#
# Gramps - a GTK+/GNOME based genealogy program
#
# Copyright (C) 2007 B. Malengier
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
"""
Display a person's relations to the home person
"""
#-------------------------------------------------------------------------
#
# GRAMPS modules
#
#-------------------------------------------------------------------------
from Simple import SimpleAccess, SimpleDoc
from gettext import gettext as _
from PluginUtils import register_quick_report
from ReportBase import CATEGORY_QR_PERSON
from PluginUtils import Tool, relationship_class, register_tool
import RelLib
# define the formatting string once as a constant. Since this is reused
__FMT = "%-3d %s"
__FMT_DET1 ="%-3s %-15s"
__FMT_DET2 ="%-30s %-15s\t%-10s %-2s"
def run(database, document, person):
"""
Obtains all relationships, displays the relations, and in details, the
relation path
"""
sdb = SimpleAccess(database)
sdoc = SimpleDoc(document)
rel_class = relationship_class()
#get home_person
home_person = database.get_default_person()
if not home_person :
sdoc.paragraph(_("Home person not set."))
return
#print title
sdoc.title(_("Relationships of %s to %s") % (sdb.name(person) ,
sdb.name(home_person)))
sdoc.paragraph("")
#obtain all relationships, assume home person has largest tree
common, msg_list = rel_class.get_relationship_distance_new(
database, person, home_person,
all_families=True,
all_dist=True,
only_birth=False,
max_depth=20)
#check if not a family too:
is_spouse = rel_class.is_spouse(database,person,home_person)
if is_spouse:
msg_list.insert(0,_('Additional relation:')+is_spouse)
#all relations
if not common or common[0][0]== -1 :
rel_str = _("Not related.")
remarks(msg_list,sdoc)
return
count = 1
for relation in common:
rel_str = rel_class.get_single_relationship_string(len(relation[4]),
len(relation[2]),person.get_gender())
sdoc.paragraph(__FMT % (count, rel_str))
count += 1
remarks(msg_list, sdoc)
sdoc.paragraph("")
sdoc.header1(_("Detailed path to common ancestor"))
sdoc.paragraph("")
sdoc.header2(__FMT_DET1 % (_(' '), _('Name Common ancestor')))
sdoc.header2(__FMT_DET2 % (' ', _('Parent'), _('Birth'), _('Family')))
sdoc.paragraph("")
count = 1
for relation in common:
counter = str(count)
name = sdb.name(database.get_person_from_handle(relation[1]))
sdoc.paragraph(__FMT_DET1 % (counter, name))
for rel,fam in zip(relation[2],relation[3]) :
par_str = _('Unknown')
if rel == rel_class.REL_MOTHER \
or rel == rel_class.REL_MOTHER_NOTBIRTH:
par_str = _('Mother')
if rel == rel_class.REL_FATHER \
or rel == rel_class.REL_FATHER_NOTBIRTH:
par_str = _('Father')
birth_str = _('Yes')
if rel == rel_class.REL_MOTHER_NOTBIRTH \
or rel == rel_class.REL_FATHER_NOTBIRTH:
birth_str = _('No')
sdoc.paragraph(__FMT_DET2 % (' ', par_str, birth_str, str(fam+1)))
counter=''
name = ''
count += 1
sdoc.paragraph("")
sdoc.header1(_("Detailed path for home person to common ancestor"))
sdoc.paragraph("")
sdoc.header2(__FMT_DET1 % (_(' '), _('Name Common ancestor')))
sdoc.header2(__FMT_DET2 % (' ', _('Parent'), _('Birth'), _('Family')))
sdoc.paragraph("")
count = 1
for relation in common:
counter = str(count)
name = sdb.name(database.get_person_from_handle(relation[1]))
sdoc.paragraph(__FMT_DET1 % (counter, name))
for rel,fam in zip(relation[4],relation[5]) :
par_str = _('Unknown')
if rel == rel_class.REL_MOTHER \
or rel == rel_class.REL_MOTHER_NOTBIRTH:
par_str = _('Mother')
if rel == rel_class.REL_FATHER \
or rel == rel_class.REL_FATHER_NOTBIRTH:
par_str = _('Father')
birth_str = _('Yes')
if rel == rel_class.REL_MOTHER_NOTBIRTH \
or rel == rel_class.REL_FATHER_NOTBIRTH:
birth_str = _('No')
sdoc.paragraph(__FMT_DET2 % (' ', par_str, birth_str, str(fam+1)))
counter=''
name = ''
count += 1
def remarks(msg_list,sdoc):
if msg_list :
sdoc.paragraph("")
sdoc.header1(_("Remarks"))
sdoc.paragraph("")
sdoc.paragraph(_("The following problems where encountered:"))
for msg in msg_list :
sdoc.paragraph(msg)
sdoc.paragraph("")
sdoc.paragraph("")
#------------------------------------------------------------------------
#
#
#
#------------------------------------------------------------------------
register_quick_report(
name = 'all_relations',
category = CATEGORY_QR_PERSON,
run_func = run,
translated_name = _("Relation to Home Person"),
status = _("Stable"),
description= _("Display all relationships between person and home person."),
author_name="B. Malengier",
author_email="benny.malengier@gramps-project.org"
)