#!/usr/bin/env python # -*- coding: utf-8 -*- # # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2007-2009 B. Malengier # Copyright (C) 2009 Swoon on bug tracker # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # $Id:PlaceUtils.py 9912 2008-01-22 09:17:46Z acraphae $ #------------------------------------------------------------------------- # # Standard python modules # #------------------------------------------------------------------------- from gettext import gettext as _ import math #------------------------------------------------------------------------- # # GRAMPS modules # #------------------------------------------------------------------------- #------------------------------------------------------------------------- # # begin localisation part # #------------------------------------------------------------------------- # translation of N/S/E/W, make sure translator understands degrees = "1" North = _("%(north_latitude)s N") % {'north_latitude' : degrees} South = _("%(south_latitude)s S") % {'south_latitude' : degrees} East = _("%(east_longitude)s E") % {'east_longitude' : degrees} West = _("%(west_longitude)s W") % {'west_longitude' : degrees} # extract letters we really need North = North.replace("1"," ").strip() South = South.replace("1"," ").strip() East = East.replace("1"," ").strip() West = West.replace("1"," ").strip() # build dictionary with translation en to local language translate_en_loc = {} translate_en_loc['N'] = North translate_en_loc['S'] = South translate_en_loc['E'] = East translate_en_loc['W'] = West # keep translation only if it does not conflict with english if 'N' == South or 'S' == North or 'E' == West or 'W' == East: translate_en_loc['N'] = 'N' translate_en_loc['S'] = 'S' translate_en_loc['E'] = 'E' translate_en_loc['W'] = 'W' # end localisation part #------------------ # # helper functions # #------------------ def __convert_structure_to_float(sign, degs, mins=0, secs=0.0) : """helper function which converts a structure to a nice representation """ v = float(degs) if mins is not None: v += float(mins) / 60. if secs is not None: v += secs / 3600. if sign == "-": v = v * -1. return v def __convert_using_float_repr(stringValue): """ helper function that tries to convert the string using the float representation """ try : v = float(stringValue) return v except ValueError : return None; def __convert_using_colon_repr(stringValue): """ helper function that tries to convert the string using the colon representation """ if stringValue.find(r':') == -1 : return None l = stringValue.split(':') if len(l) < 2 or len(l) > 3: return None l[0]=l[0].strip() # if no characters before ':' nothing useful is input! if len(l[0]) == 0: return None if l[0][0] == '-': sign = '-' l[0]=l[0][1:] else: sign = '+' try: degs = int(l[0]) if degs < 0: return None except: return None try: mins = int(l[1]) if mins < 0 or mins >= 60: return None except: return None secs=0. if len(l) == 3: try: secs = float(l[2]) if secs < 0. or secs >= 60.: return None except: return None return __convert_structure_to_float(sign, degs, mins, secs) def __convert_using_classic_repr(stringValue, typedeg): """helper function that tries to convert the string using the colon representation """ if stringValue.find(r'_') != -1: return None # not a valid lat or lon #exchange some characters stringValue = stringValue.replace(u'°',r'_') #allow to input ° as #, UTF-8 code c2b00a stringValue = stringValue.replace(u'º',r'_') #allow to input º as #, UTF-8 code c2ba0a stringValue = stringValue.replace(r'#',r'_') #allow to input " as '' stringValue = stringValue.replace(r"''",r'"') #allow some special unicode symbols stringValue = stringValue.replace(u'\u2033',r'"') stringValue = stringValue.replace(u'\u2032',r"'") #ignore spaces, a regex with \s* would be better here... stringValue = stringValue.replace(r' ', r'') stringValue = stringValue.replace(r'\t', r'') # get the degrees, must be present if stringValue.find(r'_') == -1: return None l = stringValue.split(r'_') if len(l) != 2: return None try: degs = int(l[0]) #degrees must be integer value if degs < 0: return None except: return None # next: minutes might be present once l2 = l[1].split(r"'") l3 = l2 mins = 0 # See if minutes might be decimal? # Then no seconds is supposed to be given if l2[0].find(r'.') > 0: # Split in integer and decimal parts l4 = l2[0].split(r".") # Set integer minutes l2[0] = l4[0] # Convert the decimal part of minutes to seconds try: lsecs=float('0.' + l4[1]) * 60.0 # Set the seconds followed by direction letter N/S/W/E l2[1] = str(lsecs) + '"' + l2[1] except: return None if len(l2) > 2: return None if len(l2) == 2: l3 = [l2[1],] try: mins = int(l2[0]) #minutes must be integer value if mins < 0 or mins >= 60: return None except: return None # next: seconds might be present once l3 = l3[0].split(r'"') last = l3[0] secs = 0. if len(l3) > 2: return None if len(l3) == 2: last = l3[1] try: secs = float(l3[0]) if secs < 0. or secs >= 60.: return None except: return None # last entry should be the direction if typedeg == 'lat': if last == 'N': sign = '+' elif last == 'S': sign = '-' else: return None elif typedeg == 'lon': if last == 'E': sign = '+' elif last == 'W': sign = '-' else: return None else: return None return __convert_structure_to_float(sign, degs, mins, secs) def __convert_float_val(val, typedeg = "lat"): # function converting input to float, recognizing decimal input, or # degree notation input. Only english input # There is no check on maximum/minimum of degree # In case of degree minutes seconds direction input, # it is checked that degree >0, 0<= minutes <= 60, # 0<= seconds <= 60, direction is in the directions dic. #change , to . so that , input works in non , localization #this is no problem, as a number like 100,000.20 cannot appear in #lat/lon #change XX,YY into XX.YY if val.find(r'.') == -1 : val = val.replace(u',', u'.') # format: XX.YYYY v = __convert_using_float_repr(val) if v is not None: return v # format: XX:YY:ZZ v = __convert_using_colon_repr(val) if v is not None : return v # format: XX° YY' ZZ" [NSWE] v = __convert_using_classic_repr(val, typedeg) if v is not None : return v # no format succeeded return None #------------------------------------------------------------------------- # # conversion function # #------------------------------------------------------------------------- def conv_lat_lon(latitude, longitude, format="D.D4"): """ Convert given string latitude and longitude to a required format. Possible formats: 'D.D4' : degree notation, 4 decimals eg +12.0154 , -124.3647 'D.D8' : degree notation, 8 decimals (precision like ISO-DMS) eg +12.01543265 , -124.36473268 'DEG' : degree, minutes, seconds notation eg 50°52'21.92''N , 124°52'21.92''E ° has UTF-8 code c2b00a or N50º52'21.92" , E14º52'21.92" º has UTF-8 code c2ba0a or N50º52.3456' , E14º52.9876' ; decimal minutes, no seconds 'DEG-:' : degree, minutes, seconds notation with : eg -50:52:21.92 , 124:52:21.92 'ISO-D' : ISO 6709 degree notation i.e. ±DD.DDDD±DDD.DDDD 'ISO-DM' : ISO 6709 degree, minutes notation i.e. ±DDMM.MMM±DDDMM.MMM 'ISO-DMS' : ISO 6709 degree, minutes, seconds notation i.e. ±DDMMSS.SS±DDDMMSS.SS 'RT90' : Output format for the Swedish coordinate system RT90 Return value: a tuple of 2 strings, or a string (for ISO formats) If conversion fails: returns: (None, None) or None (for ISO formats) Some generalities: -90 <= latitude <= +90 with +00 the equator -180 <= longitude < +180 with +000 prime meridian and -180 180th meridian """ # we start the function changing latitude/longitude in english if latitude.find('N') == -1 and latitude.find('S') == -1: # entry is not in english, convert to english latitude = latitude.replace(translate_en_loc['N'],'N') latitude = latitude.replace(translate_en_loc['S'],'S') if longitude.find('E') == -1 and longitude.find('W') == -1: # entry is not in english, convert to english longitude = longitude.replace(translate_en_loc['W'],'W') longitude = longitude.replace(translate_en_loc['E'],'E') # take away leading spaces latitude = latitude.lstrip() longitude = longitude.lstrip() # check if first character is alpha i.e. N or S, put it last if len(latitude) > 1 and latitude[0].isalpha(): latitude = latitude[1:] + latitude[0] # check if first character is alpha i.e. E or W, put it last if len(longitude) > 1 and longitude[0].isalpha(): longitude = longitude[1:] + longitude[0] # convert to float lat_float = __convert_float_val(latitude, 'lat') lon_float = __convert_float_val(longitude, 'lon') # give output (localized if needed) if lat_float is None or lon_float is None: if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS": return None else: return (None, None) if lat_float > 90. or lat_float < -90. \ or lon_float >= 180. or lon_float < -180.: if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS": return None else: return (None, None) if format == "D.D4": # correct possible roundoff error str_lon = "%.4f" % (lon_float) if str_lon == "180.0000": str_lon ="-180.0000" return ("%.4f" % lat_float , str_lon) if format == "D.D8" or format == "RT90": # correct possible roundoff error str_lon = "%.8f" % (lon_float) if str_lon == "180.00000000": str_lon ="-180.00000000" if format == "RT90": tx = __conv_WGS84_SWED_RT90(lat_float, lon_float) return ("%i" % tx[0], "%i" % tx[1]) else: return ("%.8f" % lat_float , str_lon) deg_lat = int(lat_float) deg_lon = int(lon_float) min_lat = int(60. * (lat_float - float(deg_lat) )) min_lon = int(60. * (lon_float - float(deg_lon) )) sec_lat = 3600. * (lat_float - float(deg_lat) - float(min_lat) / 60.) sec_lon = 3600. * (lon_float - float(deg_lon) - float(min_lon) / 60.) # dump minus sign on all, store minus sign. Carefull: int(-0.8)=0 !! if (deg_lat) < 0: deg_lat = -1 * deg_lat if (min_lat) < 0: min_lat = -1 * min_lat if (sec_lat) < 0.: sec_lat = -1. * sec_lat if (deg_lon) < 0: deg_lon = -1 * deg_lon if (min_lon) < 0: min_lon = -1 * min_lon if (sec_lon) < 0.: sec_lon = -1. * sec_lon # keep sign as -1* 0 = +0, so 0°2'S is given correct sign in ISO sign_lat = "+" dir_lat = "" if lat_float >= 0.: dir_lat = translate_en_loc['N'] else: dir_lat = translate_en_loc['S'] sign_lat= "-" sign_lon= "+" dir_lon = "" if lon_float >= 0.: dir_lon = translate_en_loc['E'] else: dir_lon = translate_en_loc['W'] sign_lon= "-" if format == "DEG": str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat, sec_lat)) + dir_lat str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon, sec_lon)) + dir_lon # correct possible roundoff error in seconds if str_lat[-6-len(dir_lat)] == '6': if min_lat == 59: str_lat = ("%d°%02d'%05.2f\"" % (deg_lat+1, 0, 0.)) + dir_lat else: str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat+1, 0.)) \ + dir_lat if str_lon[-6-len(dir_lon)] == '6': if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = ("%d°%02d'%05.2f\"" % (180, 0, 0.)) \ + translate_en_loc['W'] else: str_lon = ("%d°%02d'%05.2f\"" % (deg_lon+1, 0, 0.)) \ + dir_lon else: str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon+1, 0.)) \ + dir_lon return (str_lat, str_lon) if format == "DEG-:": if sign_lat=="+": sign_lat = "" sign_lon_h = sign_lon if sign_lon=="+": sign_lon_h = "" str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat, min_lat, sec_lat)) str_lon = sign_lon_h + ("%d:%02d:%05.2f" % (deg_lon, min_lon, sec_lon)) # correct possible roundoff error in seconds if str_lat[-5] == '6': if min_lat == 59: str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat+1, 0, 0.)) else: str_lat = sign_lat + \ ("%d:%02d:%05.2f" % (deg_lat, min_lat+1, 0.)) if str_lon[-5] == '6': if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = '-' + ("%d:%02d:%05.2f" % (180, 0, 0.)) else: str_lon = sign_lon_h + \ ("%d:%02d:%05.2f" % (deg_lon+1, 0, 0.)) else: str_lon = sign_lon_h + \ ("%d:%02d:%05.2f" % (deg_lon, min_lon+1, 0.)) return (str_lat, str_lon) if format == "ISO-D": # ±DD.DDDD±DDD.DDDD str_lon = "%+09.4f" % (lon_float) # correct possible roundoff error if str_lon == "+180.0000": str_lon = "-180.0000" return ("%+08.4f" % lat_float) + str_lon if format == "ISO-DM": # ±DDMM.MMM±DDDMM.MMM min_fl_lat = float(min_lat)+ sec_lat/60. min_fl_lon = float(min_lon)+ sec_lon/60. str_lat = sign_lat + ("%02d%06.3f" % (deg_lat, min_fl_lat)) str_lon = sign_lon + ("%03d%06.3f" % (deg_lon, min_fl_lon)) # correct possible roundoff error if str_lat[3:] == "60.000": str_lat = sign_lat + ("%02d%06.3f" % (deg_lat+1, 0.)) if str_lon[4:] == "60.000": if deg_lon == 179 and sign_lon == "+": str_lon = "-" + ("%03d%06.3f" % (180, 0.)) else: str_lon = sign_lon + ("%03d%06.3f" % (deg_lon+1, 0.)) return str_lat + str_lon if format == "ISO-DMS": # ±DDMMSS.SS±DDDMMSS.SS str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat, min_lat, sec_lat)) str_lon = sign_lon + ("%03d%02d%06.3f" % (deg_lon, min_lon, sec_lon)) # correct possible roundoff error if str_lat[5:] == "60.000": if min_lat == 59: str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat+1, 0, 0.)) else: str_lat = sign_lat + \ ("%02d%02d%06.3f" % (deg_lat, min_lat +1, 0.)) if str_lon[6:] == "60.000": if min_lon == 59: if deg_lon == 179 and sign_lon == "+": str_lon = "-" + ("%03d%02d%06.3f" % (180, 0, 0)) else: str_lon = sign_lon + \ ("%03d%02d%06.3f" % (deg_lon+1, 0, 0.)) else: str_lon = sign_lon + \ ("%03d%02d%06.3f" % (deg_lon, min_lon+1, 0.)) return str_lat + str_lon def atanh(x): """arctangent hyperbolicus""" return 1.0/2.0*math.log((1.0 + x)/(1.0 -x)) def __conv_WGS84_SWED_RT90(lat, lon): """ Input is lat and lon as two float numbers Output is X and Y coordinates in RT90 as a tuple of float numbers The code below converts to/from the Swedish RT90 koordinate system. The converion functions use "Gauss Conformal Projection (Transverse Marcator)" Krüger Formulas. The constanst are for the Swedish RT90-system. With other constants the conversion should be useful for other geographical areas. """ # Some constants used for conversion to/from Swedish RT90 f = 1.0/298.257222101 e2 = f*(2.0-f) n = f/(2.0-f) L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec k0 = 1.00000561024 a = 6378137.0 # meter at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4)) FN = -667.711 # m FE = 1500064.274 # m #the conversion lat_rad = math.radians(lat) lon_rad = math.radians(lon) A = e2 B = 1.0/6.0*(5.0*pow(e2,2) - pow(e2,3)) C = 1.0/120.0*(104.0*pow(e2,3) - 45.0*pow(e2,4)) D = 1.0/1260.0*(1237.0*pow(e2,4)) DL = lon_rad - L0 E = A + B*pow(math.sin(lat_rad),2) + \ C*pow(math.sin(lat_rad),4) + \ D*pow(math.sin(lat_rad),6) psi = lat_rad - math.sin(lat_rad)*math.cos(lat_rad)*E xi = math.atan2(math.tan(psi),math.cos(DL)) eta = atanh(math.cos(psi)*math.sin(DL)) B1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 5.0/16.0*pow(n,3) + 41.0/180.0*pow(n,4) B2 = 13.0/48.0*pow(n,2) - 3.0/5.0*pow(n,3) + 557.0/1440.0*pow(n,4) B3 = 61.0/240.0*pow(n,3) - 103.0/140.0*pow(n,4) B4 = 49561.0/161280.0*pow(n,4) X = xi + B1*math.sin(2.0*xi)*math.cosh(2.0*eta) + \ B2*math.sin(4.0*xi)*math.cosh(4.0*eta) + \ B3*math.sin(6.0*xi)*math.cosh(6.0*eta) + \ B4*math.sin(8.0*xi)*math.cosh(8.0*eta) Y = eta + B1*math.cos(2.0*xi)*math.sinh(2.0*eta) + \ B2*math.cos(4.0*xi)*math.sinh(4.0*eta) + \ B3*math.cos(6.0*xi)*math.sinh(6.0*eta) + \ B4*math.cos(8.0*xi)*math.sinh(8.0*eta) X = X*k0*at + FN Y = Y*k0*at + FE return (X, Y) def __conv_SWED_RT90_WGS84(X, Y): """ Input is X and Y coordinates in RT90 as float Output is lat and long in degrees, float as tuple """ # Some constants used for conversion to/from Swedish RT90 f = 1.0/298.257222101 e2 = f*(2.0-f) n = f/(2.0-f) L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec k0 = 1.00000561024 a = 6378137.0 # meter at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4)) FN = -667.711 # m FE = 1500064.274 # m xi = (X - FN)/(k0*at) eta = (Y - FE)/(k0*at) D1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 37.0/96.0*pow(n,3) - 1.0/360.0*pow(n,4) D2 = 1.0/48.0*pow(n,2) + 1.0/15.0*pow(n,3) - 437.0/1440.0*pow(n,4) D3 = 17.0/480.0*pow(n,3) - 37.0/840.0*pow(n,4) D4 = 4397.0/161280.0*pow(n,4) xip = xi - D1*math.sin(2.0*xi)*math.cosh(2.0*eta) - \ D2*math.sin(4.0*xi)*math.cosh(4.0*eta) - \ D3*math.sin(6.0*xi)*math.cosh(6.0*eta) - \ D4*math.sin(8.0*xi)*math.cosh(8.0*eta) etap = eta - D1*math.cos(2.0*xi)*math.sinh(2.0*eta) - \ D2*math.cos(4.0*xi)*math.sinh(4.0*eta) - \ D3*math.cos(6.0*xi)*math.sinh(6.0*eta) - \ D4*math.cos(8.0*xi)*math.sinh(8.0*eta) psi = math.asin(math.sin(xip)/math.cosh(etap)) DL = math.atan2(math.sinh(etap),math.cos(xip)) LON = L0 + DL A = e2 + pow(e2,2) + pow(e2,3) + pow(e2,4) B = -1.0/6.0*(7.0*pow(e2,2) + 17*pow(e2,3) + 30*pow(e2,4)) C = 1.0/120.0*(224.0*pow(e2,3) + 889.0*pow(e2,4)) D = 1.0/1260.0*(4279.0*pow(e2,4)) E = A + B*pow(math.sin(psi),2) + \ C*pow(math.sin(psi),4) + \ D*pow(math.sin(psi),6) LAT = psi + math.sin(psi)*math.cos(psi)*E LAT = math.degrees(LAT) LON = math.degrees(LON) return LAT, LON #------------------------------------------------------------------------- # # For Testing the convert function in this module, apply it as a script: # ==> in command line do "python PlaceUtils.py" # #------------------------------------------------------------------------- if __name__ == '__main__': def test_formats_success(lat1,lon1, text=''): format0 = "D.D4" format1 = "D.D8" format2 = "DEG" format3 = "DEG-:" format4 = "ISO-D" format5 = "ISO-DM" format6 = "ISO-DMS" format7 = "RT90" print "Testing conv_lat_lon function, "+text+':' res1, res2 = conv_lat_lon(lat1,lon1,format0) print lat1,lon1,"in format",format0, "is ",res1,res2 res1, res2 = conv_lat_lon(lat1,lon1,format1) print lat1,lon1,"in format",format1, "is ",res1,res2 res1, res2 = conv_lat_lon(lat1,lon1,format2) print lat1,lon1,"in format",format2, "is ",res1,res2 res1, res2 = conv_lat_lon(lat1,lon1,format3) print lat1,lon1,"in format",format3, "is ",res1,res2 res = conv_lat_lon(lat1,lon1,format4) print lat1,lon1,"in format",format4, "is ",res res = conv_lat_lon(lat1,lon1,format5) print lat1,lon1,"in format",format5, "is",res res = conv_lat_lon(lat1,lon1,format6) print lat1,lon1,"in format",format6, "is",res res1, res2 = conv_lat_lon(lat1,lon1,format7) print lat1,lon1,"in format",format7, "is",res1,res2,"\n" def test_formats_fail(lat1,lon1,text=''): print "This test should make conv_lat_lon function fail, "+text+":" res1, res2 = conv_lat_lon(lat1,lon1) print lat1,lon1," fails to convert, result=", res1,res2,"\n" def test_RT90_conversion(): """ a given lat/lon is converted to RT90 and back as a test: """ la = 59.0 + 40.0/60. + 9.09/3600.0 lo = 12.0 + 58.0/60.0 + 57.74/3600.0 x, y = __conv_WGS84_SWED_RT90(la, lo) lanew, lonew = __conv_SWED_RT90_WGS84(x,y) assert math.fabs(lanew - la) < 1e-6, math.fabs(lanew - la) assert math.fabs(lonew - lo) < 1e-6, math.fabs(lonew - lo) lat, lon = '50.849888888888', '2.885897222222' test_formats_success(lat,lon) lat, lon = u' 50°50\'59.60"N', u' 2°53\'9.23"E' test_formats_success(lat,lon) lat, lon = ' 50 : 50 : 59.60 ', ' -2:53 : 9.23 ' test_formats_success(lat,lon) lat, lon = ' dummy', ' 2#53 \' 9.23 " E ' test_formats_fail(lat,lon) lat, lon = ' 50:50: 59.60', ' d u m my' test_formats_fail(lat,lon) lat, lon = u' 50°59.60"N', u' 2°53\'E' test_formats_success(lat,lon) lat, lon = u' 11° 11\' 11" N, 11° 11\' 11" O', ' ' test_formats_fail(lat,lon) # very small negative lat, lon = '-0.00006', '-0.00006' test_formats_success(lat,lon) # missing direction N/S lat, lon = u' 50°59.60"', u' 2°53\'E' test_formats_fail(lat,lon) # wrong direction on latitude lat, lon = u' 50°59.60"E', u' 2°53\'N' test_formats_fail(lat,lon) # same as above lat, lon = u' 50°59.99"E', u' 2°59\'59.99"N' test_formats_fail(lat,lon) # test precision lat, lon = u' 50°59.99"S', u' 2°59\'59.99"E' test_formats_success(lat,lon) # to large value of lat lat, lon = '90.849888888888', '2.885897222222' test_formats_fail(lat,lon) # extreme values allowed lat, lon = '90', '-180' test_formats_success(lat,lon) # extreme values allowed lat, lon = u'90° 00\' 00.00" S ', u'179° 59\'59.99"W' test_formats_success(lat,lon) # extreme value not allowed lat, lon = u'90° 00\' 00.00" N', u'180° 00\'00.00" E' test_formats_fail(lat,lon) # extreme values allowed lat, lon = '90: 00: 00.00 ', '-179: 59:59.99' test_formats_success(lat,lon) # extreme value not allowed lat, lon = u'90° 00\' 00.00" N', '180:00:00.00' test_formats_fail(lat,lon) # extreme values not allowed lat, lon = '90', '180' test_formats_fail(lat,lon) lat, lon = u' 89°59\'60"N', u' 2°53\'W' test_formats_fail(lat,lon) lat, lon = u' 89°60\'00"N', u' 2°53\'W' test_formats_fail(lat,lon) lat, lon = u' 89.1°40\'00"N', u' 2°53\'W' test_formats_fail(lat,lon) lat, lon = u' 89°40\'00"N', u' 2°53.1\'W' test_formats_fail(lat,lon) lat, lon = '0', '0' test_formats_success(lat,lon, "Special 0 value, crossing 0-meridian and equator") # small values close to equator lat, lon = u' 1°1"N', u' 1°1\'E' test_formats_success(lat,lon) # roundoff lat, lon = u' 1°59.999"N', u' 1°59.999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = u' 1°59\'59.9999"N', u' 1°59\'59.9999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = u'89°59\'59.9999"S', u'179°59\'59.9999"W' test_formats_success(lat,lon,'Examples of round off and how it behaves') lat, lon = u'89°59\'59.9999"N', u'179°59\'59.9999"E' test_formats_success(lat,lon,'Examples of round off and how it behaves') #insane number of decimals: lat, lon = u'89°59\'59.99999999"N', u'179°59\'59.99999999"E' test_formats_success(lat,lon,'Examples of round off and how it begaves') #recognise '' as seconds " lat, lon = u'89°59\'59.99\'\' N', u'179°59\'59.99\'\'E' test_formats_success(lat,lon, "input \" as ''") #test localisation of , and . as delimiter lat, lon = '50.849888888888', '2,885897222222' test_formats_success(lat,lon, 'localisation of . and , ') lat, lon = u'89°59\'59.9999"S', u'179°59\'59,9999"W' test_formats_success(lat,lon, 'localisation of . and , ') lat, lon = u'89°59\'1.599,999"S', u'179°59\'59,9999"W' test_formats_fail(lat,lon, 'localisation of . and , ') #rest lat, lon = '81.2', '-182.3' test_formats_fail(lat,lon) lat, lon = '-91.2', '-1' test_formats_fail(lat,lon) lat, lon = '++50:10:1', '2:1:2' test_formats_fail(lat,lon) lat, lon = '-50:10:1', '-+2:1:2' test_formats_success(lat,lon) lat, lon = '-50::1', '-2:1:2' test_formats_fail(lat,lon) lat, lon = '- 50 : 2 : 1 ', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+ 50:2 : 1', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+50:', '-2:1:2' test_formats_fail(lat,lon) lat, lon = '+50:1', '-2:1:2' test_formats_success(lat,lon) lat, lon = '+50: 0 : 1 : 1', '-2:1:2' test_formats_fail(lat,lon) lat, lon = u'+61° 43\' 60.00"', u'+17° 7\' 60.00"' test_formats_fail(lat,lon) lat, lon = u'+61° 44\' 00.00"N', u'+17° 8\' 00.00"E' test_formats_success(lat,lon) lat, lon = ': 0 : 1 : 1', ':1:2' test_formats_fail(lat,lon) lat, lon = u'N 50º52\'21.92"', u'E 124º52\'21.92"' test_formats_success(lat,lon, 'New format with N/E first and another º - character') lat, lon = u'S 50º52\'21.92"', u'W 124º52\'21.92"' test_formats_success(lat,lon, 'New format with S/W first and another º - character') test_RT90_conversion()