750331b8bd
svn: r13460
2181 lines
100 KiB
Python
2181 lines
100 KiB
Python
#
|
|
# Gramps - a GTK+/GNOME based genealogy program
|
|
#
|
|
# Copyright (C) 2003-2005 Donald N. Allingham
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
|
|
# $Id:Relationship.py 9912 2008-01-22 09:17:46Z acraphae $
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# python modules
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
import os
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# GRAMPS modules
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
|
|
import gen.lib
|
|
from TransUtils import sgettext as _
|
|
from gen.plug import PluginRegister, BasePluginManager
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
#
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
|
|
_level_name = [ "", "first", "second", "third", "fourth", "fifth", "sixth",
|
|
"seventh", "eighth", "ninth", "tenth", "eleventh", "twelfth",
|
|
"thirteenth", "fourteenth", "fifteenth", "sixteenth",
|
|
"seventeenth", "eighteenth", "nineteenth", "twentieth" ]
|
|
|
|
_removed_level = [ "", " once removed", " twice removed",
|
|
" three times removed",
|
|
" four times removed", " five times removed",
|
|
" six times removed",
|
|
" seven times removed", " eight times removed",
|
|
" nine times removed",
|
|
" ten times removed", " eleven times removed",
|
|
" twelve times removed",
|
|
" thirteen times removed", " fourteen times removed",
|
|
" fifteen times removed",
|
|
" sixteen times removed", " seventeen times removed",
|
|
" eighteen times removed",
|
|
" nineteen times removed", " twenty times removed" ]
|
|
|
|
_parents_level = [ "", "parents", "grandparents", "great grandparents",
|
|
"second great grandparents",
|
|
"third great grandparents",
|
|
"fourth great grandparents",
|
|
"fifth great grandparents",
|
|
"sixth great grandparents",
|
|
"seventh great grandparents",
|
|
"eighth great grandparents",
|
|
"ninth great grandparents",
|
|
"tenth great grandparents",
|
|
"eleventh great grandparents",
|
|
"twelfth great grandparents",
|
|
"thirteenth great grandparents",
|
|
"fourteenth great grandparents",
|
|
"fifteenth great grandparents",
|
|
"sixteenth great grandparents",
|
|
"seventeenth great grandparents",
|
|
"eighteenth great grandparents",
|
|
"nineteenth great grandparents",
|
|
"twentieth great grandparents", ]
|
|
|
|
_father_level = [ "", "%(step)sfather%(inlaw)s", "%(step)sgrandfather%(inlaw)s",
|
|
"great %(step)sgrandfather%(inlaw)s",
|
|
"second great %(step)sgrandfather%(inlaw)s",
|
|
"third great %(step)sgrandfather%(inlaw)s",
|
|
"fourth great %(step)sgrandfather%(inlaw)s",
|
|
"fifth great %(step)sgrandfather%(inlaw)s",
|
|
"sixth great %(step)sgrandfather%(inlaw)s",
|
|
"seventh great %(step)sgrandfather%(inlaw)s",
|
|
"eighth great %(step)sgrandfather%(inlaw)s",
|
|
"ninth great %(step)sgrandfather%(inlaw)s",
|
|
"tenth great %(step)sgrandfather%(inlaw)s",
|
|
"eleventh great %(step)sgrandfather%(inlaw)s",
|
|
"twelfth great %(step)sgrandfather%(inlaw)s",
|
|
"thirteenth great %(step)sgrandfather%(inlaw)s",
|
|
"fourteenth great %(step)sgrandfather%(inlaw)s",
|
|
"fifteenth great %(step)sgrandfather%(inlaw)s",
|
|
"sixteenth great %(step)sgrandfather%(inlaw)s",
|
|
"seventeenth great %(step)sgrandfather%(inlaw)s",
|
|
"eighteenth great %(step)sgrandfather%(inlaw)s",
|
|
"nineteenth great %(step)sgrandfather%(inlaw)s",
|
|
"twentieth great %(step)sgrandfather%(inlaw)s", ]
|
|
|
|
_mother_level = [ "", "%(step)smother%(inlaw)s",
|
|
"%(step)sgrandmother%(inlaw)s",
|
|
"great %(step)sgrandmother%(inlaw)s",
|
|
"second great %(step)sgrandmother%(inlaw)s",
|
|
"third great %(step)sgrandmother%(inlaw)s",
|
|
"fourth great %(step)sgrandmother%(inlaw)s",
|
|
"fifth great %(step)sgrandmother%(inlaw)s",
|
|
"sixth great %(step)sgrandmother%(inlaw)s",
|
|
"seventh great %(step)sgrandmother%(inlaw)s",
|
|
"eighth great %(step)sgrandmother%(inlaw)s",
|
|
"ninth great %(step)sgrandmother%(inlaw)s",
|
|
"tenth great %(step)sgrandmother%(inlaw)s",
|
|
"eleventh great %(step)sgrandmother%(inlaw)s",
|
|
"twelfth great %(step)sgrandmother%(inlaw)s",
|
|
"thirteenth great %(step)sgrandmother%(inlaw)s",
|
|
"fourteenth great %(step)sgrandmother%(inlaw)s",
|
|
"fifteenth great %(step)sgrandmother%(inlaw)s",
|
|
"sixteenth great %(step)sgrandmother%(inlaw)s",
|
|
"seventeenth great %(step)sgrandmother%(inlaw)s",
|
|
"eighteenth great %(step)sgrandmother%(inlaw)s",
|
|
"nineteenth great %(step)sgrandmother%(inlaw)s",
|
|
"twentieth great %(step)sgrandmother%(inlaw)s", ]
|
|
|
|
_son_level = [ "", "%(step)sson%(inlaw)s", "%(step)sgrandson%(inlaw)s",
|
|
"great %(step)sgrandson%(inlaw)s",
|
|
"second great %(step)sgrandson%(inlaw)s",
|
|
"third great %(step)sgrandson%(inlaw)s",
|
|
"fourth great %(step)sgrandson%(inlaw)s",
|
|
"fifth great %(step)sgrandson%(inlaw)s",
|
|
"sixth great %(step)sgrandson%(inlaw)s",
|
|
"seventh great %(step)sgrandson%(inlaw)s",
|
|
"eighth great %(step)sgrandson%(inlaw)s",
|
|
"ninth great %(step)sgrandson%(inlaw)s",
|
|
"tenth great %(step)sgrandson%(inlaw)s",
|
|
"eleventh great %(step)sgrandson%(inlaw)s",
|
|
"twelfth great %(step)sgrandson%(inlaw)s",
|
|
"thirteenth great %(step)sgrandson%(inlaw)s",
|
|
"fourteenth great %(step)sgrandson%(inlaw)s",
|
|
"fifteenth great %(step)sgrandson%(inlaw)s",
|
|
"sixteenth great %(step)sgrandson%(inlaw)s",
|
|
"seventeenth great %(step)sgrandson%(inlaw)s",
|
|
"eighteenth great %(step)sgrandson%(inlaw)s",
|
|
"nineteenth great %(step)sgrandson%(inlaw)s",
|
|
"twentieth great %(step)sgrandson%(inlaw)s", ]
|
|
|
|
_daughter_level = [ "", "%(step)sdaughter%(inlaw)s", "%(step)sgranddaughter%(inlaw)s",
|
|
"great %(step)sgranddaughter%(inlaw)s",
|
|
"second great %(step)sgranddaughter%(inlaw)s",
|
|
"third great %(step)sgranddaughter%(inlaw)s",
|
|
"fourth great %(step)sgranddaughter%(inlaw)s",
|
|
"fifth great %(step)sgranddaughter%(inlaw)s",
|
|
"sixth great %(step)sgranddaughter%(inlaw)s",
|
|
"seventh great %(step)sgranddaughter%(inlaw)s",
|
|
"eighth great %(step)sgranddaughter%(inlaw)s",
|
|
"ninth great %(step)sgranddaughter%(inlaw)s",
|
|
"tenth great %(step)sgranddaughter%(inlaw)s",
|
|
"eleventh great %(step)sgranddaughter%(inlaw)s",
|
|
"twelfth great %(step)sgranddaughter%(inlaw)s",
|
|
"thirteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"fourteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"fifteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"sixteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"seventeenth great %(step)sgranddaughter%(inlaw)s",
|
|
"eighteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"nineteenth great %(step)sgranddaughter%(inlaw)s",
|
|
"twentieth great %(step)sgranddaughter%(inlaw)s", ]
|
|
|
|
_sister_level = [ "", "%(step)ssister%(inlaw)s", "%(step)saunt%(inlaw)s",
|
|
"%(step)sgrandaunt%(inlaw)s",
|
|
"great %(step)sgrandaunt%(inlaw)s",
|
|
"second great %(step)sgrandaunt%(inlaw)s",
|
|
"third great %(step)sgrandaunt%(inlaw)s",
|
|
"fourth great %(step)sgrandaunt%(inlaw)s",
|
|
"fifth great %(step)sgrandaunt%(inlaw)s",
|
|
"sixth great %(step)sgrandaunt%(inlaw)s",
|
|
"seventh great %(step)sgrandaunt%(inlaw)s",
|
|
"eighth great %(step)sgrandaunt%(inlaw)s",
|
|
"ninth great %(step)sgrandaunt%(inlaw)s",
|
|
"tenth great %(step)sgrandaunt%(inlaw)s",
|
|
"eleventh great %(step)sgrandaunt%(inlaw)s",
|
|
"twelfth great %(step)sgrandaunt%(inlaw)s",
|
|
"thirteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"fourteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"fifteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"sixteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"seventeenth great %(step)sgrandaunt%(inlaw)s",
|
|
"eighteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"nineteenth great %(step)sgrandaunt%(inlaw)s",
|
|
"twentieth great %(step)sgrandaunt%(inlaw)s", ]
|
|
|
|
_brother_level = [ "", "%(step)sbrother%(inlaw)s", "%(step)suncle%(inlaw)s",
|
|
"%(step)sgranduncle%(inlaw)s",
|
|
"great %(step)sgranduncle%(inlaw)s",
|
|
"second great %(step)sgranduncle%(inlaw)s",
|
|
"third great %(step)sgranduncle%(inlaw)s",
|
|
"fourth great %(step)sgranduncle%(inlaw)s",
|
|
"fifth great %(step)sgranduncle%(inlaw)s",
|
|
"sixth great %(step)sgranduncle%(inlaw)s",
|
|
"seventh great %(step)sgranduncle%(inlaw)s",
|
|
"eighth great %(step)sgranduncle%(inlaw)s",
|
|
"ninth great %(step)sgranduncle%(inlaw)s",
|
|
"tenth great %(step)sgranduncle%(inlaw)s",
|
|
"eleventh great %(step)sgranduncle%(inlaw)s",
|
|
"twelfth great %(step)sgranduncle%(inlaw)s",
|
|
"thirteenth great %(step)sgranduncle%(inlaw)s",
|
|
"fourteenth great %(step)sgranduncle%(inlaw)s",
|
|
"fifteenth great %(step)sgranduncle%(inlaw)s",
|
|
"sixteenth great %(step)sgranduncle%(inlaw)s",
|
|
"seventeenth great %(step)sgranduncle%(inlaw)s",
|
|
"eighteenth great %(step)sgranduncle%(inlaw)s",
|
|
"nineteenth great %(step)sgranduncle%(inlaw)s",
|
|
"twentieth great %(step)sgranduncle%(inlaw)s", ]
|
|
|
|
_nephew_level = [ "", "%(step)snephew%(inlaw)s", "%(step)sgrandnephew%(inlaw)s",
|
|
"great %(step)sgrandnephew%(inlaw)s",
|
|
"second great %(step)sgrandnephew%(inlaw)s",
|
|
"third great %(step)sgrandnephew%(inlaw)s",
|
|
"fourth great %(step)sgrandnephew%(inlaw)s",
|
|
"fifth great %(step)sgrandnephew%(inlaw)s",
|
|
"sixth great %(step)sgrandnephew%(inlaw)s",
|
|
"seventh great %(step)sgrandnephew%(inlaw)s",
|
|
"eighth great %(step)sgrandnephew%(inlaw)s",
|
|
"ninth great %(step)sgrandnephew%(inlaw)s",
|
|
"tenth great %(step)sgrandnephew%(inlaw)s",
|
|
"eleventh great %(step)sgrandnephew%(inlaw)s",
|
|
"twelfth great %(step)sgrandnephew%(inlaw)s",
|
|
"thirteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"fourteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"fifteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"sixteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"seventeenth great %(step)sgrandnephew%(inlaw)s",
|
|
"eighteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"nineteenth great %(step)sgrandnephew%(inlaw)s",
|
|
"twentieth great %(step)sgrandnephew%(inlaw)s", ]
|
|
|
|
_niece_level = [ "", "%(step)sniece%(inlaw)s", "%(step)sgrandniece%(inlaw)s",
|
|
"great %(step)sgrandniece%(inlaw)s",
|
|
"second great %(step)sgrandniece%(inlaw)s",
|
|
"third great %(step)sgrandniece%(inlaw)s",
|
|
"fourth great %(step)sgrandniece%(inlaw)s",
|
|
"fifth great %(step)sgrandniece%(inlaw)s",
|
|
"sixth great %(step)sgrandniece%(inlaw)s",
|
|
"seventh great %(step)sgrandniece%(inlaw)s",
|
|
"eighth great %(step)sgrandniece%(inlaw)s",
|
|
"ninth great %(step)sgrandniece%(inlaw)s",
|
|
"tenth great %(step)sgrandniece%(inlaw)s",
|
|
"eleventh great %(step)sgrandniece%(inlaw)s",
|
|
"twelfth great %(step)sgrandniece%(inlaw)s",
|
|
"thirteenth great %(step)sgrandniece%(inlaw)s",
|
|
"fourteenth great %(step)sgrandniece%(inlaw)s",
|
|
"fifteenth great %(step)sgrandniece%(inlaw)s",
|
|
"sixteenth great %(step)sgrandniece%(inlaw)s",
|
|
"seventeenth great %(step)sgrandniece%(inlaw)s",
|
|
"eighteenth great %(step)sgrandniece%(inlaw)s",
|
|
"nineteenth great %(step)sgrandniece%(inlaw)s",
|
|
"twentieth great %(step)sgrandniece%(inlaw)s", ]
|
|
|
|
_children_level = [ "",
|
|
"children", "grandchildren",
|
|
"great grandchildren", "second great grandchildren",
|
|
"third great grandchildren", "fourth great grandchildren",
|
|
"fifth great grandchildren", "sixth great grandchildren",
|
|
"seventh great grandchildren", "eighth great grandchildren",
|
|
"ninth great grandchildren", "tenth great grandchildren",
|
|
"eleventh great grandchildren", "twelfth great grandchildren",
|
|
"thirteenth great grandchildren", "fourteenth great grandchildren",
|
|
"fifteenth great grandchildren", "sixteenth great grandchildren",
|
|
"seventeenth great grandchildren", "eighteenth great grandchildren",
|
|
"nineteenth great grandchildren", "twentieth great grandchildren", ]
|
|
|
|
_siblings_level = [ "",
|
|
"siblings", "uncles/aunts",
|
|
"granduncles/aunts", "great granduncles/aunts",
|
|
"second great granduncles/aunts", "third great granduncles/aunts",
|
|
"fourth great granduncles/aunts", "fifth great granduncles/aunts",
|
|
"sixth great granduncles/aunts", "seventh great granduncles/aunts",
|
|
"eighth great granduncles/aunts", "ninth great granduncles/aunts",
|
|
"tenth great granduncles/aunts", "eleventh great granduncles/aunts",
|
|
"twelfth great granduncles/aunts", "thirteenth great granduncles/aunts",
|
|
"fourteenth great granduncles/aunts", "fifteenth great granduncles/aunts",
|
|
"sixteenth great granduncles/aunts", "seventeenth great granduncles/aunts",
|
|
"eighteenth great granduncles/aunts", "nineteenth great granduncles/aunts",
|
|
"twentieth great granduncles/aunts", ]
|
|
|
|
_sibling_level = [ "",
|
|
"%(step)ssibling%(inlaw)s",
|
|
"%(step)suncle/aunt%(inlaw)s",
|
|
"%(step)sgranduncle/aunt%(inlaw)s",
|
|
"great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"second great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"third great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"fourth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"fifth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"sixth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"seventh great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"eighth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"ninth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"tenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"eleventh great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"twelfth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"thirteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"fourteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"fifteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"sixteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"seventeenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"eighteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"nineteenth great %(step)sgranduncle/aunt%(inlaw)s",
|
|
"twentieth great %(step)sgranduncle/aunt%(inlaw)s", ]
|
|
|
|
_nephews_nieces_level = [ "",
|
|
"siblings",
|
|
"nephews/nieces",
|
|
"grandnephews/nieces",
|
|
"great grandnephews/nieces",
|
|
"second great grandnephews/nieces",
|
|
"third great grandnephews/nieces",
|
|
"fourth great grandnephews/nieces",
|
|
"fifth great grandnephews/nieces",
|
|
"sixth great grandnephews/nieces",
|
|
"seventh great grandnephews/nieces",
|
|
"eighth great grandnephews/nieces",
|
|
"ninth great grandnephews/nieces",
|
|
"tenth great grandnephews/nieces",
|
|
"eleventh great grandnephews/nieces",
|
|
"twelfth great grandnephews/nieces",
|
|
"thirteenth great grandnephews/nieces",
|
|
"fourteenth great grandnephews/nieces",
|
|
"fifteenth great grandnephews/nieces",
|
|
"sixteenth great grandnephews/nieces",
|
|
"seventeenth great grandnephews/nieces",
|
|
"eighteenth great grandnephews/nieces",
|
|
"nineteenth great grandnephews/nieces",
|
|
"twentieth great grandnephews/nieces", ]
|
|
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# RelationshipCalculator
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
class RelationshipCalculator(object):
|
|
"""
|
|
The relationship calculator helps to determine the relationship between
|
|
two people.
|
|
"""
|
|
REL_MOTHER = 'm' # going up to mother
|
|
REL_FATHER = 'f' # going up to father
|
|
REL_MOTHER_NOTBIRTH = 'M' # going up to mother, not birth relation
|
|
REL_FATHER_NOTBIRTH = 'F' # going up to father, not birth relation
|
|
REL_SIBLING = 's' # going sideways to sibling (no parents)
|
|
REL_FAM_BIRTH = 'a' # going up to family (mother and father)
|
|
REL_FAM_NONBIRTH = 'A' # going up to family, not birth relation
|
|
REL_FAM_BIRTH_MOTH_ONLY = 'b' # going up to fam, only birth rel to mother
|
|
REL_FAM_BIRTH_FATH_ONLY = 'c' # going up to fam, only birth rel to father
|
|
|
|
REL_FAM_INLAW_PREFIX = 'L' # going to the partner.
|
|
|
|
#sibling types
|
|
NORM_SIB = 0 # same birth parents
|
|
HALF_SIB_MOTHER = 1 # same mother, father known to be different
|
|
HALF_SIB_FATHER = 2 # same father, mother known to be different
|
|
STEP_SIB = 3 # birth parents known to be different
|
|
UNKNOWN_SIB = 4 # insufficient data to draw conclusion
|
|
|
|
#sibling strings
|
|
STEP = 'step'
|
|
HALF = 'half-'
|
|
|
|
INLAW = '-in-law'
|
|
|
|
#partner types
|
|
PARTNER_MARRIED = 1
|
|
PARTNER_UNMARRIED = 2
|
|
PARTNER_CIVIL_UNION = 3
|
|
PARTNER_UNKNOWN_REL = 4
|
|
PARTNER_EX_MARRIED = 5
|
|
PARTNER_EX_UNMARRIED = 6
|
|
PARTNER_EX_CIVIL_UNION = 7
|
|
PARTNER_EX_UNKNOWN_REL = 8
|
|
|
|
def __init__(self):
|
|
self.signal_keys = []
|
|
self.state_signal_key = None
|
|
self.storemap = False
|
|
self.dirtymap = True
|
|
self.stored_map = None
|
|
self.map_handle = None
|
|
self.map_meta = None
|
|
self.__db_connected = False
|
|
self.depth = 15
|
|
try:
|
|
import config
|
|
self.set_depth(config.get('behavior.generation-depth'))
|
|
except ImportError:
|
|
pass
|
|
|
|
def set_depth(self, depth):
|
|
""" set how deep relationships must be searched. Input must be an
|
|
integer > 0
|
|
"""
|
|
if not depth == self.depth:
|
|
self.depth = depth
|
|
self.dirtymap = True
|
|
|
|
def get_depth(self):
|
|
""" obtain depth of relationship search
|
|
"""
|
|
return self.depth
|
|
|
|
DIST_FATHER = "distant %(step)sancestor%(inlaw)s (%(level)d generations)"
|
|
|
|
def _get_father(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_father_level) - 1:
|
|
return self.DIST_FATHER % {'step': step, 'inlaw': inlaw,
|
|
'level': level}
|
|
else:
|
|
return _father_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_SON = "distant %(step)sdescendant%(inlaw)s (%(level)d generations)"
|
|
|
|
def _get_son(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_son_level) - 1:
|
|
return self.DIST_SON % {'step': step, 'inlaw': inlaw,
|
|
'level': level}
|
|
else:
|
|
return _son_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_MOTHER = "distant %(step)sancestor%(inlaw)s (%(level)d generations)"
|
|
|
|
def _get_mother(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_mother_level) - 1:
|
|
return self.DIST_MOTHER % {'step': step, 'inlaw': inlaw,
|
|
'level': level}
|
|
else:
|
|
return _mother_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_DAUGHTER = "distant %(step)sdescendant%(inlaw)s (%(level)d generations)"
|
|
|
|
def _get_daughter(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_daughter_level) - 1:
|
|
return self.DIST_DAUGHTER % {'step': step, 'inlaw': inlaw,
|
|
'level': level}
|
|
else:
|
|
return _daughter_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
def _get_parent_unknown(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level < len(_level_name):
|
|
return _level_name[level] + ' ' + '%sancestor%s' % (step, inlaw)
|
|
else:
|
|
return "distant %sancestor%s (%d generations)" % (step, inlaw,
|
|
level)
|
|
|
|
DIST_CHILD = "distant %(step)sdescendant (%(level)d generations)"
|
|
|
|
def _get_child_unknown(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level < len(_level_name):
|
|
return _level_name[level] + ' ' + '%(step)sdescendant%(inlaw)s' % {
|
|
'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return self.DIST_CHILD % {'step': step, 'level': level}
|
|
|
|
DIST_AUNT = "distant %(step)saunt%(inlaw)s"
|
|
|
|
def _get_aunt(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_sister_level) - 1:
|
|
return self.DIST_AUNT % {'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return _sister_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_UNCLE = "distant %(step)suncle%(inlaw)s"
|
|
|
|
def _get_uncle(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_brother_level) - 1:
|
|
return self.DIST_UNCLE % {'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return _brother_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_NEPHEW = "distant %(step)snephew%(inlaw)s"
|
|
|
|
def _get_nephew(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_nephew_level) - 1:
|
|
return self.DIST_NEPHEW % {'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return _nephew_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
DIST_NIECE = "distant %(step)sniece%(inlaw)s"
|
|
|
|
def _get_niece(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level > len(_niece_level) - 1:
|
|
return self.DIST_NIECE % {'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return _niece_level[level] % {'step': step, 'inlaw': inlaw}
|
|
|
|
def _get_cousin(self, level, removed, dir='', step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if removed == 0 and level < len(_level_name):
|
|
return "%s %scousin%s" % (_level_name[level],
|
|
step, inlaw)
|
|
elif removed > len(_removed_level)-1 or level>len(_level_name)-1:
|
|
return "distant %srelative%s" % (step, inlaw)
|
|
else:
|
|
return "%s %scousin%s%s%s" % (_level_name[level],
|
|
step, inlaw,
|
|
_removed_level[removed], dir)
|
|
|
|
DIST_SIB = "distant %(step)suncle/aunt%(inlaw)s"
|
|
|
|
def _get_sibling(self, level, step='', inlaw=''):
|
|
"""Internal english method to create relation string
|
|
"""
|
|
if level < len(_sibling_level):
|
|
return _sibling_level[level] % {'step': step, 'inlaw': inlaw}
|
|
else:
|
|
return self.DIST_SIB % {'step': step, 'inlaw': inlaw}
|
|
|
|
def get_sibling_type(self, db, orig, other):
|
|
""" Translation free determination of type of orig and other as siblings
|
|
The procedure returns sibling types, these can be passed to
|
|
get_sibling_relationship_string.
|
|
Only call this method if known that orig and other are siblings
|
|
"""
|
|
fatherorig, motherorig = self._get_birth_parents(db, orig)
|
|
fatherother, motherother = self._get_birth_parents(db, other)
|
|
if fatherorig and motherorig and fatherother and motherother:
|
|
if fatherother == fatherorig and motherother == motherorig:
|
|
return self.NORM_SIB
|
|
elif fatherother == fatherorig:
|
|
#all birth parents are known, one
|
|
return self.HALF_SIB_FATHER
|
|
elif motherother == motherorig:
|
|
return self.HALF_SIB_MOTHER
|
|
else :
|
|
return self.STEP_SIB
|
|
else:
|
|
# some birth parents are not known, hence we or cannot know if
|
|
# half siblings. step siblings might be possible, otherwise give up
|
|
orig_nb_par = self._get_nonbirth_parent_list(db, orig)
|
|
if fatherother and fatherother in orig_nb_par:
|
|
#the birth parent of other is non-birth of orig
|
|
if motherother and motherother == motherorig:
|
|
return self.HALF_SIB_MOTHER
|
|
else:
|
|
return self.STEP_SIB
|
|
if motherother and motherother in orig_nb_par:
|
|
#the birth parent of other is non-birth of orig
|
|
if fatherother and fatherother == fatherorig:
|
|
return self.HALF_SIB_FATHER
|
|
else:
|
|
return self.STEP_SIB
|
|
other_nb_par = self._get_nonbirth_parent_list(db, other)
|
|
if fatherorig and fatherorig in other_nb_par:
|
|
#the one birth parent of other is non-birth of orig
|
|
if motherorig and motherother == motherorig:
|
|
return self.HALF_SIB_MOTHER
|
|
else:
|
|
return self.STEP_SIB
|
|
if motherorig and motherorig in other_nb_par:
|
|
#the one birth parent of other is non-birth of orig
|
|
if fatherother and fatherother == fatherorig:
|
|
return self.HALF_SIB_FATHER
|
|
else:
|
|
return self.STEP_SIB
|
|
#there is an unknown birth parent, it could be that this is the
|
|
# birth parent of the other person
|
|
return self.UNKNOWN_SIB
|
|
|
|
def _get_birth_parents(self, db, person):
|
|
""" method that returns the birthparents of a person as tuple
|
|
(mother handle, father handle), if no known birthparent, the
|
|
handle is replaced by None
|
|
"""
|
|
birthfather = None
|
|
birthmother = None
|
|
for fam in person.get_parent_family_handle_list():
|
|
family = db.get_family_from_handle(fam)
|
|
childrel = [(ref.get_mother_relation(),
|
|
ref.get_father_relation()) for ref in
|
|
family.get_child_ref_list()
|
|
if ref.ref == person.handle]
|
|
if not birthmother and childrel[0][0] == gen.lib.ChildRefType.BIRTH:
|
|
birthmother = family.get_mother_handle()
|
|
if not birthfather and childrel[0][1] == gen.lib.ChildRefType.BIRTH:
|
|
birthfather = family.get_father_handle()
|
|
if birthmother and birthfather:
|
|
break
|
|
return (birthmother, birthfather)
|
|
|
|
def _get_nonbirth_parent_list(self, db, person):
|
|
""" returns a list of handles of parents of which it is known
|
|
they are not birth parents.
|
|
So all parents which do not have relation BIRTH or UNKNOWN
|
|
are returned.
|
|
"""
|
|
nb_parents = []
|
|
for fam in person.get_parent_family_handle_list():
|
|
family = db.get_family_from_handle(fam)
|
|
childrel = [(ref.get_mother_relation(),
|
|
ref.get_father_relation()) for ref in
|
|
family.get_child_ref_list()
|
|
if ref.ref == person.handle]
|
|
if not childrel[0][0] == gen.lib.ChildRefType.BIRTH \
|
|
and not childrel[0][0] == gen.lib.ChildRefType.UNKNOWN :
|
|
nb_parents.append(family.get_mother_handle())
|
|
if not childrel[0][1] == gen.lib.ChildRefType.BIRTH \
|
|
and not childrel[0][1] == gen.lib.ChildRefType.UNKNOWN :
|
|
nb_parents.append(family.get_father_handle())
|
|
#make every person appear only once:
|
|
return list(set(nb_parents))
|
|
|
|
def _get_spouse_type(self, db, orig, other, all_rel = False):
|
|
""" Translation free determination if orig and other are partners.
|
|
The procedure returns partner types, these can be passed to
|
|
get_partner_relationship_string.
|
|
If all_rel=False, returns None or a partner type.
|
|
If all_rel=True, returns a list, empty if no partner
|
|
"""
|
|
val = []
|
|
for family_handle in orig.get_family_handle_list():
|
|
family = db.get_family_from_handle(family_handle)
|
|
# return first found spouse type
|
|
if family and other.get_handle() in [family.get_father_handle(),
|
|
family.get_mother_handle()]:
|
|
family_rel = family.get_relationship()
|
|
#check for divorce event:
|
|
ex = False
|
|
for eventref in family.get_event_ref_list():
|
|
event = db.get_event_from_handle(eventref.ref)
|
|
if event and (event.get_type() == gen.lib.EventType.DIVORCE
|
|
or event.get_type() == gen.lib.EventType.ANNULMENT):
|
|
ex = True
|
|
break
|
|
if family_rel == gen.lib.FamilyRelType.MARRIED:
|
|
if ex:
|
|
val.append(self.PARTNER_EX_MARRIED)
|
|
else:
|
|
val.append(self.PARTNER_MARRIED)
|
|
elif family_rel == gen.lib.FamilyRelType.UNMARRIED:
|
|
if ex:
|
|
val.append(self.PARTNER_EX_UNMARRIED)
|
|
else:
|
|
val.append(self.PARTNER_UNMARRIED)
|
|
elif family_rel == gen.lib.FamilyRelType.CIVIL_UNION:
|
|
if ex:
|
|
val.append(self.PARTNER_EX_CIVIL_UNION)
|
|
else:
|
|
val.append(self.PARTNER_CIVIL_UNION)
|
|
else:
|
|
if ex:
|
|
val.append(self.PARTNER_EX_UNKNOWN_REL)
|
|
else:
|
|
val.append(self.PARTNER_UNKNOWN_REL)
|
|
|
|
if all_rel :
|
|
return val
|
|
else:
|
|
#last relation is normally the defenitive relation
|
|
if val:
|
|
return val[-1]
|
|
else:
|
|
return None
|
|
|
|
def is_spouse(self, db, orig, other, all_rel=False):
|
|
""" determine the spouse relation
|
|
"""
|
|
spouse_type = self._get_spouse_type(db, orig, other, all_rel)
|
|
if spouse_type:
|
|
return self.get_partner_relationship_string(spouse_type,
|
|
orig.get_gender(), other.get_gender())
|
|
else:
|
|
return None
|
|
|
|
def get_relationship_distance_new(self, db, orig_person,
|
|
other_person,
|
|
all_families=False,
|
|
all_dist=False,
|
|
only_birth=True):
|
|
"""
|
|
Return if all_dist == True a 'tuple, string':
|
|
(rank, person handle, firstRel_str, firstRel_fam,
|
|
secondRel_str, secondRel_fam), msg
|
|
or if all_dist == True a 'list of tuple, string':
|
|
[.....], msg:
|
|
|
|
NOTE: _new can be removed once all rel_xx modules no longer overwrite
|
|
get_relationship_distance
|
|
|
|
The tuple or list of tuples consists of:
|
|
|
|
*rank Total number of generations from common ancestor to
|
|
the two persons, rank is -1 if no relations found
|
|
*person_handle The Common ancestor
|
|
*firstRel_str String with the path to the common ancestor
|
|
from orig Person
|
|
*firstRel_fam Family numbers along the path as a list, eg [0,0,1].
|
|
For parent in multiple families, eg [0. [0, 2], 1]
|
|
*secondRel_str String with the path to the common ancestor
|
|
from otherPerson
|
|
*secondRel_fam Family numbers along the path, eg [0,0,1].
|
|
For parent in multiple families, eg [0. [0, 2], 1]
|
|
*msg List of messages indicating errors. Empyt list if no
|
|
errors.
|
|
|
|
Example:
|
|
firstRel_str = 'ffm' and firstRel_fam = [2,0,1] means
|
|
common ancestor is mother of the second family of the
|
|
father of the first family of the father of the third
|
|
family.
|
|
Note that the same person might be present twice if the person is
|
|
reached via a different branch too. Path (firstRel_str and
|
|
secondRel_str) will of course be different
|
|
|
|
:param db: database to work on
|
|
:param orig_person: first person
|
|
:type orig_person: Person Obj
|
|
:param other_person: second person, relation is sought between
|
|
first and second person
|
|
:type other_person: Person Obj
|
|
:param all_families: if False only Main family is searched, otherwise
|
|
all families are used
|
|
:type all_families: bool
|
|
:param all_dist: if False only the shortest distance is returned,
|
|
otherwise all relationships
|
|
:type all_dist: bool
|
|
:param only_birth: if True only parents with birth relation are
|
|
considered
|
|
:type only_birth: bool
|
|
"""
|
|
#data storage to communicate with recursive functions
|
|
self.__maxDepthReached = False
|
|
self.__loopDetected = False
|
|
self.__max_depth = self.get_depth()
|
|
self.__all_families = all_families
|
|
self.__all_dist = all_dist
|
|
self.__only_birth = only_birth
|
|
self.__crosslinks = False # no crosslinks
|
|
|
|
firstRel = -1
|
|
secondRel = -1
|
|
self.__msg = []
|
|
|
|
common = []
|
|
firstMap = {}
|
|
secondMap = {}
|
|
rank = 9999999
|
|
|
|
try:
|
|
if (self.storemap and self.stored_map is not None
|
|
and self.map_handle == orig_person.handle
|
|
and not self.dirtymap):
|
|
firstMap = self.stored_map
|
|
self.__maxDepthReached, self.__loopDetected, \
|
|
self.__all_families,\
|
|
self.__all_dist, self.__only_birth,\
|
|
self.__crosslinks, self.__msg = self.map_meta
|
|
self.__msg = list(self.__msg)
|
|
else:
|
|
self.__apply_filter(db, orig_person, '', [], firstMap)
|
|
self.map_meta = (self.__maxDepthReached,
|
|
self.__loopDetected,
|
|
self.__all_families,
|
|
self.__all_dist, self.__only_birth,
|
|
self.__crosslinks, list(self.__msg))
|
|
self.__apply_filter(db, other_person, '', [], secondMap,
|
|
stoprecursemap = firstMap)
|
|
except RuntimeError:
|
|
return (-1,None,-1,[],-1,[] ) , \
|
|
[_("Relationship loop detected")] + self.__msg
|
|
|
|
if self.storemap:
|
|
self.stored_map = firstMap
|
|
self.dirtymap = False
|
|
self.map_handle = orig_person.handle
|
|
|
|
for person_handle in secondMap :
|
|
if person_handle in firstMap :
|
|
com = []
|
|
#a common ancestor
|
|
for rel1, fam1 in zip(firstMap[person_handle][0],
|
|
firstMap[person_handle][1]):
|
|
l1 = len(rel1)
|
|
for rel2, fam2 in zip(secondMap[person_handle][0],
|
|
secondMap[person_handle][1]):
|
|
l2 = len(rel2)
|
|
#collect paths to arrive at common ancestor
|
|
com.append((l1+l2, person_handle, rel1, fam1,
|
|
rel2, fam2))
|
|
#insert common ancestor in correct position,
|
|
# if shorter links, check if not subset
|
|
# if longer links, check if not superset
|
|
pos=0
|
|
for ranknew, handlenew,rel1new,fam1new,rel2new,fam2new in com :
|
|
insert = True
|
|
for rank, handle, rel1, fam1, rel2, fam2 in common :
|
|
if ranknew < rank :
|
|
break
|
|
elif ranknew >= rank :
|
|
#check subset
|
|
if rel1 == rel1new[:len(rel1)] and \
|
|
rel2 == rel2new[:len(rel2)] :
|
|
#subset relation exists already
|
|
insert = False
|
|
break
|
|
pos += 1
|
|
if insert :
|
|
if common :
|
|
common.insert(pos, (ranknew, handlenew,
|
|
rel1new, fam1new,rel2new,fam2new))
|
|
else:
|
|
common = [(ranknew, handlenew,
|
|
rel1new, fam1new, rel2new, fam2new)]
|
|
#now check if superset must be deleted from common
|
|
deletelist=[]
|
|
index = pos+1
|
|
for rank, handle,rel1,fam1,rel2,fam2 in common[pos+1:]:
|
|
if rel1new == rel1[:len(rel1new)] and \
|
|
rel2new == rel2[:len(rel2new)] :
|
|
deletelist.append(index)
|
|
index += 1
|
|
deletelist.reverse()
|
|
for index in deletelist:
|
|
del common[index]
|
|
#check for extra messages
|
|
if self.__maxDepthReached :
|
|
self.__msg += [_('Family tree reaches back more than the maximum '
|
|
'%d generations searched.\nIt is possible that '
|
|
'relationships have been missed') % (self.__max_depth)]
|
|
|
|
if common and not self.__all_dist :
|
|
rank = common[0][0]
|
|
person_handle = common[0][1]
|
|
firstRel = common[0][2]
|
|
firstFam = common[0][3]
|
|
secondRel = common[0][4]
|
|
secondFam = common[0][5]
|
|
return (rank,person_handle,firstRel,firstFam,secondRel,secondFam),\
|
|
self.__msg
|
|
if common :
|
|
#list with tuples (rank, handle person,rel_str_orig,rel_fam_orig,
|
|
# rel_str_other,rel_fam_str) and messages
|
|
return common, self.__msg
|
|
if not self.__all_dist :
|
|
return (-1,None,'',[],'',[]), self.__msg
|
|
else :
|
|
return [(-1,None,'',[],'',[])], self.__msg
|
|
|
|
def __apply_filter(self, db, person, rel_str, rel_fam, pmap,
|
|
depth=1, stoprecursemap=None):
|
|
"""Typically this method is called recursively in two ways:
|
|
First method is stoprecursemap= None
|
|
In this case a recursemap is builded by storing all data.
|
|
|
|
Second method is with a stoprecursemap given
|
|
In this case parents are recursively looked up. If present in
|
|
stoprecursemap, a common ancestor is found, and the method can
|
|
stop looking further. If however self.__crosslinks == True, the data
|
|
of first contains loops, and parents
|
|
will be looked up anyway an stored if common. At end the doubles
|
|
are filtered out
|
|
"""
|
|
if person is None or not person.handle :
|
|
return
|
|
|
|
if depth > self.__max_depth:
|
|
self.__maxDepthReached = True
|
|
#print 'Maximum ancestor generations ('+str(depth)+') reached', \
|
|
# '(' + rel_str + ').',\
|
|
# 'Stopping relation algorithm.'
|
|
return
|
|
depth += 1
|
|
|
|
commonancestor = False
|
|
store = True #normally we store all parents
|
|
if stoprecursemap:
|
|
store = False #but not if a stop map given
|
|
if person.handle in stoprecursemap:
|
|
commonancestor = True
|
|
store = True
|
|
|
|
#add person to the map, take into account that person can be obtained
|
|
#from different sides
|
|
if person.handle in pmap:
|
|
#person is already a grandparent in another branch, we already have
|
|
# had lookup of all parents, we call that a crosslink
|
|
if not stoprecursemap:
|
|
self.__crosslinks = True
|
|
pmap[person.handle][0] += [rel_str]
|
|
pmap[person.handle][1] += [rel_fam]
|
|
#check if there is no loop father son of his son, ...
|
|
# loop means person is twice reached, same rel_str in begin
|
|
for rel1 in pmap[person.handle][0]:
|
|
for rel2 in pmap[person.handle][0] :
|
|
if len(rel1) < len(rel2) and \
|
|
rel1 == rel2[:len(rel1)]:
|
|
#loop, keep one message in storage!
|
|
self.__loopDetected = True
|
|
self.__msg += [_("Relationship loop detected:") + \
|
|
_("Person %s connects to himself via %s") % \
|
|
(person.get_primary_name().get_name(),
|
|
rel2[len(rel1):])]
|
|
return
|
|
elif store:
|
|
pmap[person.handle] = [[rel_str],[rel_fam]]
|
|
|
|
#having added person to the pmap, we only look up recursively to
|
|
# parents if this person is not common relative
|
|
# if however the first map has crosslinks, we need to continue reduced
|
|
if commonancestor and not self.__crosslinks :
|
|
#don't continue search, great speedup!
|
|
return
|
|
|
|
family_handles = []
|
|
main = person.get_main_parents_family_handle()
|
|
if main :
|
|
family_handles = [main]
|
|
if self.__all_families :
|
|
family_handles = person.get_parent_family_handle_list()
|
|
|
|
try:
|
|
parentstodo = {}
|
|
fam = 0
|
|
for family_handle in family_handles :
|
|
rel_fam_new = rel_fam + [fam]
|
|
family = db.get_family_from_handle(family_handle)
|
|
#obtain childref for this person
|
|
childrel = [(ref.get_mother_relation(),
|
|
ref.get_father_relation()) for ref in
|
|
family.get_child_ref_list()
|
|
if ref.ref == person.handle]
|
|
fhandle = family.father_handle
|
|
mhandle = family.mother_handle
|
|
for data in [(fhandle, self.REL_FATHER,
|
|
self.REL_FATHER_NOTBIRTH, childrel[0][1]),
|
|
(mhandle, self.REL_MOTHER,
|
|
self.REL_MOTHER_NOTBIRTH, childrel[0][0])]:
|
|
if data[0] and data[0] not in parentstodo :
|
|
persontodo = db.get_person_from_handle(data[0])
|
|
if data[3] == gen.lib.ChildRefType.BIRTH :
|
|
addstr = data[1]
|
|
elif not self.__only_birth :
|
|
addstr = data[2]
|
|
else :
|
|
addstr = ''
|
|
if addstr :
|
|
parentstodo[data[0]] = (persontodo,
|
|
rel_str + addstr,
|
|
rel_fam_new)
|
|
elif data [0] and data[0] in parentstodo:
|
|
#this person is already scheduled to research
|
|
#update family list
|
|
famlist = parentstodo[data[0]][2]
|
|
if not isinstance(famlist[-1], list) and \
|
|
not fam == famlist[-1]:
|
|
famlist = famlist[:-1] + [[famlist[-1]]]
|
|
if isinstance(famlist[-1], list) and \
|
|
fam not in famlist[-1] :
|
|
famlist = famlist[:-1] + [famlist[-1] + [fam]]
|
|
parentstodo[data[0]] = (parentstodo[data[0]][0],
|
|
parentstodo[data[0]][1],
|
|
famlist
|
|
)
|
|
if not fhandle and not mhandle and stoprecursemap is None:
|
|
#family without parents, add brothers for orig person
|
|
#other person has recusemap, and will stop when seeing
|
|
#the brother.
|
|
child_list = [ref.ref for ref in family.get_child_ref_list()
|
|
if ref.ref != person.handle]
|
|
addstr = self.REL_SIBLING
|
|
for chandle in child_list :
|
|
if chandle in pmap :
|
|
pmap[chandle][0] += [rel_str + addstr]
|
|
pmap[chandle][1] += [rel_fam_new]
|
|
#person is already a grandparent in another branch
|
|
else:
|
|
pmap[chandle] = [[rel_str+addstr],[rel_fam_new]]
|
|
fam += 1
|
|
|
|
for handle, data in parentstodo.iteritems():
|
|
self.__apply_filter(db, data[0],
|
|
data[1], data[2],
|
|
pmap, depth, stoprecursemap)
|
|
except:
|
|
import traceback
|
|
print traceback.print_exc()
|
|
return
|
|
|
|
def collapse_relations(self, relations):
|
|
""" Internal method to condense the relationships as returned by
|
|
get_relationship_distance_new.
|
|
Common ancestors in the same family are collapsed to one entry,
|
|
changing the person paths to family paths, eg 'mf' and 'mm' become
|
|
'ma'
|
|
|
|
relations : list of relations as returned by
|
|
get_relationship_distance_new with all_dist = True
|
|
|
|
returns : the same data as relations, but collapsed, hence the
|
|
handle entry is now a list of handles, and the
|
|
path to common ancestors can now contain family
|
|
identifiers (eg 'a', ...)
|
|
In the case of sibling, this is replaced by family
|
|
with common ancestor handles empty list []!
|
|
"""
|
|
if relations[0][0] == -1 :
|
|
return relations
|
|
commonnew = []
|
|
existing_path = []
|
|
for relation in relations:
|
|
relstrfirst = None
|
|
commonhandle = [relation[1]]
|
|
if relation[2] :
|
|
relstrfirst = relation[2][:-1]
|
|
relstrsec = None
|
|
if relation[4] :
|
|
relstrsec = relation[4][:-1]
|
|
relfamfirst = relation[3][:]
|
|
relfamsec = relation[5][:]
|
|
#handle pure sibling:
|
|
rela2 = relation[2]
|
|
rela4 = relation[4]
|
|
if relation[2] and relation[2][-1] == self.REL_SIBLING:
|
|
#sibling will be the unique common ancestor,
|
|
#change to a family with unknown handle for common ancestor
|
|
rela2 = relation[2][:-1] + self.REL_FAM_BIRTH
|
|
rela4 = relation[4] + self.REL_FAM_BIRTH
|
|
relfamsec = relfamsec + [relfamfirst[-1]]
|
|
relstrsec = relation[4][:-1]
|
|
commonhandle = []
|
|
|
|
# a unique path to family of common person:
|
|
familypaths = []
|
|
if relfamfirst and isinstance(relfamfirst[-1], list):
|
|
if relfamsec and isinstance(relfamsec[-1], list):
|
|
for val1 in relfamfirst[-1]:
|
|
for val2 in relfamsec[-1]:
|
|
familypaths.append((relstrfirst, relstrsec,
|
|
relfamfirst[:-1] + [val1],
|
|
relfamsec[:-1] + [val2]))
|
|
else:
|
|
for val1 in relfamfirst[-1]:
|
|
familypaths.append((relstrfirst, relstrsec,
|
|
relfamfirst[:-1] + [val1],
|
|
relfamsec))
|
|
elif relfamsec and isinstance(relfamsec[-1], list):
|
|
for val2 in relfamsec[-1]:
|
|
familypaths.append((relstrfirst, relstrsec,
|
|
relfamfirst,
|
|
relfamsec[:-1] + [val2]))
|
|
else:
|
|
familypaths.append((relstrfirst, relstrsec,
|
|
relfamfirst, relfamsec))
|
|
for familypath in familypaths:
|
|
#familypath = (relstrfirst, relstrsec, relfamfirst, relfamsec)
|
|
try:
|
|
posfam = existing_path.index(familypath)
|
|
except ValueError:
|
|
posfam = None
|
|
#if relstr is '', the ancestor is unique, if posfam None,
|
|
# first time we see this family path
|
|
if (posfam is not None and relstrfirst is not None and
|
|
relstrsec is not None):
|
|
# We already have a common ancestor of this family, just
|
|
# add the other, setting correct family relation.
|
|
tmp = commonnew[posfam]
|
|
frstcomstr = rela2[-1]
|
|
scndcomstr = tmp[2][-1]
|
|
newcomstra = self._famrel_from_persrel(frstcomstr,
|
|
scndcomstr)
|
|
frstcomstr = rela4[-1]
|
|
scndcomstr = tmp[4][-1]
|
|
newcomstrb = self._famrel_from_persrel(frstcomstr,
|
|
scndcomstr)
|
|
|
|
commonnew[posfam] = (tmp[0], tmp[1]+commonhandle,
|
|
rela2[:-1]+newcomstra,
|
|
tmp[3], rela4[:-1]+newcomstrb,
|
|
tmp[5])
|
|
else :
|
|
existing_path.append(familypath)
|
|
commonnew.append((relation[0], commonhandle, rela2,
|
|
familypath[2], rela4, familypath[3])
|
|
)
|
|
#we now have multiple person handles, single families, now collapse
|
|
# families again if all else equal
|
|
collapsed = commonnew[:1]
|
|
for rel in commonnew[1:]:
|
|
found = False
|
|
for newrel in collapsed:
|
|
if newrel[0:3] == rel[0:3] and newrel[4] == rel[4]:
|
|
#another familypath to arrive at same result, merge
|
|
path1 = []
|
|
path2 = []
|
|
for a, b in zip(newrel[3], rel[3]):
|
|
if a == b:
|
|
path1.append(a)
|
|
elif isinstance(a, list):
|
|
path1.append(a.append(b))
|
|
else:
|
|
path1.append([a, b])
|
|
for a, b in zip(newrel[5], rel[5]):
|
|
if a == b:
|
|
path2.append(a)
|
|
elif isinstance(a, list):
|
|
path2.append(a.append(b))
|
|
else:
|
|
path2.append([a, b])
|
|
newrel[3][:] = path1[:]
|
|
newrel[5][:] = path2[:]
|
|
found = True
|
|
break
|
|
if not found:
|
|
collapsed.append(rel)
|
|
|
|
return collapsed
|
|
|
|
def _famrel_from_persrel(self, persrela, persrelb):
|
|
""" Conversion from eg 'f' and 'm' to 'a', so relation to the two
|
|
persons of a common family is converted to a family relation
|
|
"""
|
|
if persrela == persrelb:
|
|
#should not happen, procedure called in error, just return value
|
|
return persrela
|
|
if (persrela == self.REL_MOTHER and persrelb == self.REL_FATHER) or \
|
|
(persrelb == self.REL_MOTHER and persrela == self.REL_FATHER):
|
|
return self.REL_FAM_BIRTH
|
|
if (persrela == self.REL_MOTHER and persrelb == self.REL_FATHER_NOTBIRTH) or \
|
|
(persrelb == self.REL_MOTHER and persrela == self.REL_FATHER_NOTBIRTH):
|
|
return self.REL_FAM_BIRTH_MOTH_ONLY
|
|
if (persrela == self.REL_FATHER and persrelb == self.REL_MOTHER_NOTBIRTH) or \
|
|
(persrelb == self.REL_FATHER and persrela == self.REL_MOTHER_NOTBIRTH):
|
|
return self.REL_FAM_BIRTH_FATH_ONLY
|
|
#catch calling with family relations already, return val
|
|
if (persrela == self.REL_FAM_BIRTH or
|
|
persrela == self.REL_FAM_BIRTH_FATH_ONLY or
|
|
persrela == self.REL_FAM_BIRTH_MOTH_ONLY or
|
|
persrela == self.REL_FAM_NONBIRTH):
|
|
return persrela
|
|
if (persrelb == self.REL_FAM_BIRTH or
|
|
persrelb == self.REL_FAM_BIRTH_FATH_ONLY or
|
|
persrelb == self.REL_FAM_BIRTH_MOTH_ONLY or
|
|
persrelb == self.REL_FAM_NONBIRTH):
|
|
return persrelb
|
|
return self.REL_FAM_NONBIRTH
|
|
|
|
def only_birth(self, path):
|
|
""" given a path to common ancestor. Return True if only birth
|
|
relations, False otherwise
|
|
"""
|
|
only_birth = True
|
|
for str in path:
|
|
only_birth = only_birth and (str not in [self.REL_FAM_NONBIRTH,
|
|
self.REL_FATHER_NOTBIRTH, self.REL_MOTHER_NOTBIRTH])
|
|
return only_birth
|
|
|
|
def get_one_relationship(self, db, orig_person, other_person,
|
|
extra_info=False):
|
|
"""
|
|
returns a string representing the most relevant relationship between
|
|
the two people. If extra_info = True, extra information is returned:
|
|
(relation_string, distance_common_orig, distance_common_other)
|
|
"""
|
|
stop = False
|
|
if orig_person is None:
|
|
rel_str = _("undefined")
|
|
stop = True
|
|
|
|
if not stop and orig_person.get_handle() == other_person.get_handle():
|
|
rel_str = ''
|
|
stop = True
|
|
|
|
if not stop:
|
|
is_spouse = self.is_spouse(db, orig_person, other_person)
|
|
if is_spouse:
|
|
rel_str = is_spouse
|
|
stop = True
|
|
|
|
if stop:
|
|
if extra_info:
|
|
return (rel_str, -1, -1)
|
|
else:
|
|
return rel_str
|
|
|
|
data, msg = self.get_relationship_distance_new(
|
|
db, orig_person, other_person,
|
|
all_dist=True,
|
|
all_families=True, only_birth=False)
|
|
if data[0][0] == -1:
|
|
if extra_info:
|
|
return ('', -1, -1)
|
|
else:
|
|
return ''
|
|
|
|
data = self.collapse_relations(data)
|
|
|
|
#most relevant relationship is a birth family relation of lowest rank
|
|
databest = [data[0]]
|
|
rankbest = data[0][0]
|
|
for rel in data :
|
|
#data is sorted on rank
|
|
if rel[0] == rankbest:
|
|
databest.append(rel)
|
|
rel = databest[0]
|
|
dist_orig = len(rel[2])
|
|
dist_other = len(rel[4])
|
|
if len(databest) == 1:
|
|
birth = self.only_birth(rel[2]) and self.only_birth(rel[4])
|
|
if dist_orig == dist_other == 1:
|
|
rel_str = self.get_sibling_relationship_string(
|
|
self.get_sibling_type(
|
|
db, orig_person, other_person),
|
|
orig_person.get_gender(),
|
|
other_person.get_gender())
|
|
else:
|
|
rel_str = self.get_single_relationship_string(dist_orig,
|
|
dist_other,
|
|
orig_person.get_gender(),
|
|
other_person.get_gender(),
|
|
rel[2], rel[4],
|
|
only_birth=birth,
|
|
in_law_a=False,
|
|
in_law_b=False)
|
|
else:
|
|
order = [self.REL_FAM_BIRTH, self.REL_FAM_BIRTH_MOTH_ONLY,
|
|
self.REL_FAM_BIRTH_FATH_ONLY, self.REL_MOTHER,
|
|
self.REL_FATHER, self.REL_SIBLING, self.REL_FAM_NONBIRTH,
|
|
self.REL_MOTHER_NOTBIRTH, self.REL_FATHER_NOTBIRTH]
|
|
orderbest = order.index(self.REL_MOTHER)
|
|
for relother in databest:
|
|
relbirth = self.only_birth(rel[2]) and self.only_birth(rel[4])
|
|
if relother[2] == '' or relother[4] == '':
|
|
#direct relation, take that
|
|
rel = relother
|
|
break
|
|
if not relbirth and self.only_birth(relother[2]) \
|
|
and self.only_birth(relother[4]) :
|
|
#birth takes precedence
|
|
rel = relother
|
|
continue
|
|
if order.index(relother[2][-1]) < order.index(rel[2][-1]) and\
|
|
order.index(relother[2][-1]) < orderbest:
|
|
rel = relother
|
|
continue
|
|
if order.index(relother[4][-1]) < order.index(rel[4][-1]) and\
|
|
order.index(relother[4][-1]) < orderbest:
|
|
rel = relother
|
|
continue
|
|
if order.index(rel[2][-1]) < orderbest or \
|
|
order.index(rel[4][-1]) < orderbest:
|
|
#keep the good one
|
|
continue
|
|
if order.index(relother[2][-1]) < order.index(rel[2][-1]):
|
|
rel = relother
|
|
continue
|
|
if order.index(relother[2][-1]) == order.index(rel[2][-1]) and\
|
|
order.index(relother[4][-1]) < order.index(rel[4][-1]):
|
|
rel = relother
|
|
continue
|
|
dist_orig = len(rel[2])
|
|
dist_other = len(rel[4])
|
|
birth = self.only_birth(rel[2]) and self.only_birth(rel[4])
|
|
if dist_orig == dist_other == 1:
|
|
rel_str = self.get_sibling_relationship_string(
|
|
self.get_sibling_type(
|
|
db, orig_person, other_person),
|
|
orig_person.get_gender(),
|
|
other_person.get_gender())
|
|
else:
|
|
rel_str = self.get_single_relationship_string(dist_orig,
|
|
dist_other,
|
|
orig_person.get_gender(),
|
|
other_person.get_gender(),
|
|
rel[2], rel[4],
|
|
only_birth=birth,
|
|
in_law_a=False,
|
|
in_law_b=False)
|
|
if extra_info:
|
|
return (rel_str, dist_orig, dist_other)
|
|
else:
|
|
return rel_str
|
|
|
|
def get_all_relationships(self, db, orig_person, other_person):
|
|
""" Return a tuple, of which the first entry is a list with all
|
|
relationships in text, and the second a list of lists of all common
|
|
ancestors that have that text as relationship
|
|
"""
|
|
relstrings = []
|
|
commons = {}
|
|
if orig_person is None:
|
|
return ([], [])
|
|
|
|
if orig_person.get_handle() == other_person.get_handle():
|
|
return ([], [])
|
|
|
|
is_spouse = self.is_spouse(db, orig_person, other_person)
|
|
if is_spouse:
|
|
relstrings.append(is_spouse)
|
|
commons[is_spouse] = []
|
|
|
|
data, msg = self.get_relationship_distance_new(
|
|
db, orig_person, other_person,
|
|
all_dist=True,
|
|
all_families=True, only_birth=False)
|
|
if not data[0][0] == -1:
|
|
for rel in data :
|
|
rel2 = rel[2]
|
|
rel4 = rel[4]
|
|
rel1 = rel[1]
|
|
dist_orig = len(rel[2])
|
|
dist_other = len(rel[4])
|
|
if rel[2] and rel[2][-1] == self.REL_SIBLING:
|
|
rel2 = rel2[:-1] + self.REL_FAM_BIRTH
|
|
dist_other += 1
|
|
rel4 = rel4 + self.REL_FAM_BIRTH
|
|
rel1 = None
|
|
birth = self.only_birth(rel2) and self.only_birth(rel4)
|
|
if dist_orig == dist_other == 1:
|
|
rel_str = self.get_sibling_relationship_string(
|
|
self.get_sibling_type(
|
|
db, orig_person, other_person),
|
|
orig_person.get_gender(),
|
|
other_person.get_gender())
|
|
else:
|
|
rel_str = self.get_single_relationship_string(dist_orig,
|
|
dist_other,
|
|
orig_person.get_gender(),
|
|
other_person.get_gender(),
|
|
rel2, rel4,
|
|
only_birth=birth,
|
|
in_law_a=False,
|
|
in_law_b=False)
|
|
if not rel_str in relstrings:
|
|
relstrings.append(rel_str)
|
|
if rel1:
|
|
commons[rel_str] = [rel1]
|
|
else:
|
|
#unknown parent eg
|
|
commons[rel_str] = []
|
|
else:
|
|
if rel1:
|
|
commons[rel_str].append(rel1)
|
|
#construct the return tupply, relstrings is ordered on rank automatic
|
|
common_list = []
|
|
for rel_str in relstrings:
|
|
common_list.append(commons[rel_str])
|
|
return (relstrings, common_list)
|
|
|
|
def get_plural_relationship_string(self, Ga, Gb):
|
|
"""
|
|
Provide a string that describes the relationsip between a person, and
|
|
a group of people with the same relationship. E.g. "grandparents" or
|
|
"children".
|
|
|
|
Ga and Gb can be used to mathematically calculate the relationship.
|
|
See the Wikipedia entry for more information:
|
|
http://en.wikipedia.org/wiki/Cousin#Mathematical_definitions
|
|
|
|
:param Ga: The number of generations between the main person and the
|
|
common ancestor.
|
|
:type Ga: int
|
|
:param Gb: The number of generations between the group of people and the
|
|
common ancestor
|
|
:type Gb: int
|
|
:returns: A string describing the relationship between the person and
|
|
the group.
|
|
:rtype: str
|
|
"""
|
|
rel_str = "distant relatives"
|
|
if Ga == 0:
|
|
# These are descendants
|
|
if Gb < len(_children_level):
|
|
rel_str = _children_level[Gb]
|
|
else:
|
|
rel_str = "distant descendants"
|
|
elif Gb == 0:
|
|
# These are parents/grand parents
|
|
if Ga < len(_parents_level):
|
|
rel_str = _parents_level[Ga]
|
|
else:
|
|
rel_str = "distant ancestors"
|
|
elif Gb == 1:
|
|
# These are siblings/aunts/uncles
|
|
if Ga < len(_siblings_level):
|
|
rel_str = _siblings_level[Ga]
|
|
else:
|
|
rel_str = "distant uncles/aunts"
|
|
elif Ga == 1:
|
|
# These are nieces/nephews
|
|
if Gb < len(_nephews_nieces_level):
|
|
rel_str = _nephews_nieces_level[Gb]
|
|
else:
|
|
rel_str = "distant nephews/nieces"
|
|
elif Ga > 1 and Ga == Gb:
|
|
# These are cousins in the same generation
|
|
if Ga <= len(_level_name):
|
|
rel_str = "%s cousins" % _level_name[Ga-1]
|
|
else:
|
|
rel_str = "distant cousins"
|
|
elif Ga > 1 and Ga > Gb:
|
|
# These are cousins in different generations with the second person
|
|
# being in a higher generation from the common ancestor than the
|
|
# first person.
|
|
if Gb <= len(_level_name) and (Ga-Gb) < len(_removed_level):
|
|
rel_str = "%s cousins%s (up)" % ( _level_name[Gb-1],
|
|
_removed_level[Ga-Gb] )
|
|
else:
|
|
rel_str = "distant cousins"
|
|
elif Gb > 1 and Gb > Ga:
|
|
# These are cousins in different generations with the second person
|
|
# being in a lower generation from the common ancestor than the
|
|
# first person.
|
|
if Ga <= len(_level_name) and (Gb-Ga) < len(_removed_level):
|
|
rel_str = "%s cousins%s (down)" % ( _level_name[Ga-1],
|
|
_removed_level[Gb-Ga] )
|
|
else:
|
|
rel_str = "distant cousins"
|
|
return rel_str
|
|
|
|
def get_single_relationship_string(self, Ga, Gb, gender_a, gender_b,
|
|
reltocommon_a, reltocommon_b,
|
|
only_birth=True,
|
|
in_law_a=False, in_law_b=False):
|
|
"""
|
|
Provide a string that describes the relationsip between a person, and
|
|
another person. E.g. "grandparent" or "child".
|
|
To be used as: 'person b is the grandparent of a', this will
|
|
be in translation string :
|
|
'person b is the %(relation)s of a'
|
|
Note that languages with gender should add 'the' inside the
|
|
translation, so eg in french:
|
|
'person b est %(relation)s de a'
|
|
where relation will be here: le grandparent
|
|
|
|
Ga and Gb can be used to mathematically calculate the relationship.
|
|
See the Wikipedia entry for more information:
|
|
http://en.wikipedia.org/wiki/Cousin#Mathematical_definitions
|
|
|
|
Some languages need to know the specific path to the common ancestor.
|
|
Those languages should use reltocommon_a and reltocommon_b which is
|
|
a string like 'mfmf'. The possible string codes are:
|
|
REL_MOTHER # going up to mother
|
|
REL_FATHER # going up to father
|
|
REL_MOTHER_NOTBIRTH # going up to mother, not birth relation
|
|
REL_FATHER_NOTBIRTH # going up to father, not birth relation
|
|
REL_FAM_BIRTH # going up to family (mother and father)
|
|
REL_FAM_NONBIRTH # going up to family, not birth relation
|
|
REL_FAM_BIRTH_MOTH_ONLY # going up to fam, only birth rel to mother
|
|
REL_FAM_BIRTH_FATH_ONLY # going up to fam, only birth rel to father
|
|
Prefix codes are stripped, so REL_FAM_INLAW_PREFIX is not present.
|
|
If the relation starts with the inlaw of the person a, then 'in_law_a'
|
|
is True, if it starts with the inlaw of person b, then 'in_law_b' is
|
|
True.
|
|
Also REL_SIBLING (# going sideways to sibling (no parents)) is not
|
|
passed to this routine. The collapse_relations changes this to a
|
|
family relation.
|
|
Hence, calling routines should always strip REL_SIBLING and
|
|
REL_FAM_INLAW_PREFIX before calling get_single_relationship_string()
|
|
Note that only_birth=False, means that in the reltocommon one of the
|
|
NOTBIRTH specifiers is present.
|
|
The REL_FAM identifiers mean that the relation is not via a common
|
|
ancestor, but via a common family (note that that is not possible for
|
|
direct descendants or direct ancestors!). If the relation to one of the
|
|
parents in that common family is by birth, then 'only_birth' is not
|
|
set to False. The only_birth() method is normally used for this.
|
|
|
|
:param Ga: The number of generations between the main person and the
|
|
common ancestor.
|
|
:type Ga: int
|
|
:param Gb: The number of generations between the other person and the
|
|
common ancestor
|
|
:type Gb: int
|
|
:param gender_a : gender of person a
|
|
:type gender_a: int gender
|
|
:param gender_b : gender of person b
|
|
:type gender_b: int gender
|
|
:param reltocommon_a : relation path to common ancestor or common
|
|
Family for person a.
|
|
Note that length = Ga
|
|
:type reltocommon_a: str
|
|
:param reltocommon_b : relation path to common ancestor or common
|
|
Family for person b.
|
|
Note that length = Gb
|
|
:type reltocommon_b: str
|
|
:param in_law_a : True if path to common ancestors is via the partner
|
|
of person a
|
|
:type in_law_a: bool
|
|
:param in_law_b : True if path to common ancestors is via the partner
|
|
of person b
|
|
:type in_law_b: bool
|
|
:param only_birth : True if relation between a and b is by birth only
|
|
False otherwise
|
|
:type only_birth: bool
|
|
:returns: A string describing the relationship between the two people
|
|
:rtype: str
|
|
|
|
NOTE: 1/the self.REL_SIBLING should not be passed to this routine,
|
|
so we should not check on it. All other self.
|
|
2/for better determination of siblings, use if Ga=1=Gb
|
|
get_sibling_relationship_string
|
|
"""
|
|
if only_birth:
|
|
step = ''
|
|
else:
|
|
step = self.STEP
|
|
|
|
if in_law_a or in_law_b :
|
|
inlaw = self.INLAW
|
|
else:
|
|
inlaw = ''
|
|
|
|
rel_str = "distant %srelative%s" % (step, inlaw)
|
|
|
|
if Ga == 0:
|
|
# b is descendant of a
|
|
if Gb == 0 :
|
|
rel_str = 'same person'
|
|
elif gender_b == gen.lib.Person.MALE:
|
|
rel_str = self._get_son(Gb, step, inlaw)
|
|
elif gender_b == gen.lib.Person.FEMALE:
|
|
rel_str = self._get_daughter(Gb, step, inlaw)
|
|
else:
|
|
rel_str = self._get_child_unknown(Gb, step, inlaw)
|
|
elif Gb == 0:
|
|
# b is parents/grand parent of a
|
|
if gender_b == gen.lib.Person.MALE:
|
|
rel_str = self._get_father(Ga, step, inlaw)
|
|
elif gender_b == gen.lib.Person.FEMALE:
|
|
rel_str = self._get_mother(Ga, step, inlaw)
|
|
else:
|
|
rel_str = self._get_parent_unknown(Ga, step, inlaw)
|
|
elif Gb == 1:
|
|
# b is sibling/aunt/uncle of a
|
|
if gender_b == gen.lib.Person.MALE:
|
|
rel_str = self._get_uncle(Ga, step, inlaw)
|
|
elif gender_b == gen.lib.Person.FEMALE:
|
|
rel_str = self._get_aunt(Ga, step, inlaw)
|
|
else:
|
|
rel_str = self._get_sibling(Ga, step, inlaw)
|
|
elif Ga == 1:
|
|
# b is niece/nephew of a
|
|
if gender_b == gen.lib.Person.MALE:
|
|
rel_str = self._get_nephew(Gb-1, step, inlaw)
|
|
elif gender_b == gen.lib.Person.FEMALE:
|
|
rel_str = self._get_niece(Gb-1, step, inlaw)
|
|
elif Gb < len(_niece_level) and Gb < len(_nephew_level):
|
|
rel_str = "%s or %s" % (self._get_nephew(Gb-1, step, inlaw),
|
|
self._get_niece(Gb-1, step, inlaw))
|
|
else:
|
|
rel_str = "distant %snephews/nieces%s" % (step, inlaw)
|
|
elif Ga == Gb:
|
|
# a and b cousins in the same generation
|
|
rel_str = self._get_cousin(Ga-1, 0, dir = '', step=step,
|
|
inlaw=inlaw)
|
|
elif Ga > Gb:
|
|
# These are cousins in different generations with the second person
|
|
# being in a higher generation from the common ancestor than the
|
|
# first person.
|
|
rel_str = self._get_cousin(Gb-1, Ga-Gb, dir = ' (up)',
|
|
step=step, inlaw=inlaw)
|
|
elif Gb > Ga:
|
|
# These are cousins in different generations with the second person
|
|
# being in a lower generation from the common ancestor than the
|
|
# first person.
|
|
rel_str = self._get_cousin(Ga-1, Gb-Ga, dir = ' (down)',
|
|
step=step, inlaw=inlaw)
|
|
return rel_str
|
|
|
|
def get_sibling_relationship_string(self, sib_type, gender_a, gender_b,
|
|
in_law_a=False, in_law_b=False):
|
|
""" Determine the string giving the relation between two siblings of
|
|
type sib_type.
|
|
Eg: b is the brother of a
|
|
Here 'brother' is the string we need to determine
|
|
This method gives more details about siblings than
|
|
get_single_relationship_string can do.
|
|
DON'T TRANSLATE THIS PROCEDURE IF LOGIC IS EQUAL IN YOUR LANGUAGE,
|
|
AND SAME METHODS EXIST (get_uncle, get_aunt, get_sibling)
|
|
"""
|
|
if sib_type == self.NORM_SIB or sib_type == self.UNKNOWN_SIB:
|
|
typestr = ''
|
|
elif sib_type == self.HALF_SIB_MOTHER \
|
|
or sib_type == self.HALF_SIB_FATHER:
|
|
typestr = self.HALF
|
|
elif sib_type == self.STEP_SIB:
|
|
typestr = self.STEP
|
|
|
|
if in_law_a or in_law_b :
|
|
inlaw = self.INLAW
|
|
else:
|
|
inlaw = ''
|
|
|
|
if gender_b == gen.lib.Person.MALE:
|
|
rel_str = self._get_uncle(1, typestr, inlaw)
|
|
elif gender_b == gen.lib.Person.FEMALE:
|
|
rel_str = self._get_aunt(1, typestr, inlaw)
|
|
else:
|
|
rel_str = self._get_sibling(1, typestr, inlaw)
|
|
return rel_str
|
|
|
|
def get_partner_relationship_string(self, spouse_type, gender_a, gender_b):
|
|
""" Determine the string giving the relation between two partnes of
|
|
type spouse_type.
|
|
Eg: b is the spouse of a
|
|
Here 'spouse' is the string we need to determine
|
|
DON'T TRANSLATE THIS PROCEDURE IF LOGIC IS EQUAL IN YOUR LANGUAGE,
|
|
AS GETTEXT IS ALREADY USED !
|
|
"""
|
|
#english only needs gender of b, we don't guess if unknown like in old
|
|
# procedure as that is stupid in present day cases!
|
|
gender = gender_b
|
|
|
|
if not spouse_type:
|
|
return ''
|
|
|
|
if spouse_type == self.PARTNER_MARRIED:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("husband")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("wife")
|
|
else:
|
|
return _("gender unknown|spouse")
|
|
elif spouse_type == self.PARTNER_EX_MARRIED:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("ex-husband")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("ex-wife")
|
|
else:
|
|
return _("gender unknown|ex-spouse")
|
|
elif spouse_type == self.PARTNER_UNMARRIED:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("unmarried|husband")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("unmarried|wife")
|
|
else:
|
|
return _("gender unknown,unmarried|spouse")
|
|
elif spouse_type == self.PARTNER_EX_UNMARRIED:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("unmarried|ex-husband")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("unmarried|ex-wife")
|
|
else:
|
|
return _("gender unknown,unmarried|ex-spouse")
|
|
elif spouse_type == self.PARTNER_CIVIL_UNION:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("male,civil union|partner")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("female,civil union|partner")
|
|
else:
|
|
return _("gender unknown,civil union|partner")
|
|
elif spouse_type == self.PARTNER_EX_CIVIL_UNION:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("male,civil union|former partner")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("female,civil union|former partner")
|
|
else:
|
|
return _("gender unknown,civil union|former partner")
|
|
elif spouse_type == self.PARTNER_UNKNOWN_REL:
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("male,unknown relation|partner")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("female,unknown relation|partner")
|
|
else:
|
|
return _("gender unknown,unknown relation|partner")
|
|
else:
|
|
# here we have spouse_type == self.PARTNER_EX_UNKNOWN_REL
|
|
# or other not catched types
|
|
if gender == gen.lib.Person.MALE:
|
|
return _("male,unknown relation|former partner")
|
|
elif gender == gen.lib.Person.FEMALE:
|
|
return _("female,unknown relation|former partner")
|
|
else:
|
|
return _("gender unknown,unknown relation|former partner")
|
|
|
|
def connect_db_signals(self, dbstate):
|
|
""" We can save work by storing a map, however, if database changes
|
|
this map must be regenerated.
|
|
Before close, the calling app must call disconnect_db_signals
|
|
"""
|
|
if self.__db_connected:
|
|
return
|
|
assert(len(self.signal_keys)==0)
|
|
self.state_signal_key = dbstate.connect('database-changed',
|
|
self._dbchange_callback)
|
|
self.__connect_db_signals(dbstate.db)
|
|
|
|
def __connect_db_signals(self, db):
|
|
signals = ['person-add', 'person-update', 'person-delete',
|
|
'person-rebuild', 'family-add', 'family-update',
|
|
'family-delete', 'family-rebuild', 'database-changed']
|
|
for name in signals:
|
|
self.signal_keys.append(db.connect(name,
|
|
self._datachange_callback))
|
|
self.storemap = True
|
|
self.__db_connected = True
|
|
|
|
def disconnect_db_signals(self, dbstate):
|
|
""" Method to disconnect to all signals the relationship calculator is
|
|
subscribed
|
|
"""
|
|
dbstate.disconnect(self.state_signal_key)
|
|
for key in self.signal_keys:
|
|
dbstate.db.disconnect(key)
|
|
self.storemap = False
|
|
self.stored_map = None
|
|
|
|
def _dbchange_callback(self, db):
|
|
""" When database changes, the map can no longer be used.
|
|
Connects must be remade
|
|
"""
|
|
self.dirtymap = True
|
|
#signals are disconnected on close of old database, connect to new
|
|
self.__connect_db_signals(db)
|
|
|
|
def _datachange_callback(self, list=[]):
|
|
""" When data in database changes, the map can no longer be used.
|
|
As the map might be in use or might be generated at the moment,
|
|
this method sets a dirty flag. Before reusing the map, this flag
|
|
will be checked
|
|
"""
|
|
self.dirtymap = True
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# define the default relationshipcalculator
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
|
|
__RELCALC_CLASS = None
|
|
|
|
def get_relationship_calculator(reinit=False):
|
|
"""
|
|
Return the relationship calculator for the current language.
|
|
"""
|
|
global __RELCALC_CLASS
|
|
|
|
if __RELCALC_CLASS is None or reinit:
|
|
lang = ' '
|
|
try:
|
|
lang = os.environ["LANG"]
|
|
except:
|
|
import locale
|
|
lang = locale.getlocale()[0]
|
|
|
|
__RELCALC_CLASS = RelationshipCalculator
|
|
# set correct relationship calculator based on LANG
|
|
for plugin in PluginRegister.get_instance().relcalc_plugins():
|
|
if lang in plugin.lang_list:
|
|
pmgr = BasePluginManager.get_instance()
|
|
# the loaded module is put in variable mod
|
|
mod = pmgr.load_plugin(plugin)
|
|
if mod:
|
|
__RELCALC_CLASS = eval('mod.' + plugin.relcalcclass)
|
|
break
|
|
return __RELCALC_CLASS()
|
|
|
|
#-------------------------------------------------------------------------
|
|
#
|
|
# Tests
|
|
#
|
|
#-------------------------------------------------------------------------
|
|
|
|
def _test(rc, onlybirth, inlawa, inlawb, printrelstr):
|
|
""" this is a generic test suite for the singular relationship
|
|
TRANSLATORS: do NOT translate, use __main__ !
|
|
"""
|
|
import sys
|
|
import random
|
|
random.seed()
|
|
def _rand_f_m():
|
|
if random.randint(0, 1) == 0 :
|
|
return 'f'
|
|
else:
|
|
return 'm'
|
|
|
|
def _rand_relstr(len, endstr):
|
|
if len == 0:
|
|
return ''
|
|
else:
|
|
relstr = ''
|
|
for i in range(len-1):
|
|
relstr += _rand_f_m()
|
|
return relstr + endstr
|
|
|
|
FMT = '%+50s'
|
|
MAX = 30
|
|
|
|
#rc = RelationshipCalculator()
|
|
|
|
print '\ntesting sons (Enter to start)\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(0, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.MALE,
|
|
'', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa,
|
|
in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting daughters\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(0, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.FEMALE,
|
|
'', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting unknown children\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(0, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.UNKNOWN,
|
|
'', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting grandfathers\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(i, 0,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.MALE,
|
|
relstr, '',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting grandmothers\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(i, 0,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.FEMALE,
|
|
relstr, '',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting unknown parents\n'
|
|
sys.stdin.readline()
|
|
for i in range(MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(i, 0,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.UNKNOWN,
|
|
relstr, '',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting nieces\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(1, i,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.FEMALE,
|
|
'm', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting nephews\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(1, i,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.MALE,
|
|
'f', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting unknown nephews/nieces\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(1, i,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.UNKNOWN,
|
|
'f', relstr,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting uncles\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(i, 1,
|
|
gen.lib.Person.FEMALE,
|
|
gen.lib.Person.MALE,
|
|
relstr, 'f',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting aunts\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(i, 1,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.FEMALE,
|
|
relstr, 'f',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting unknown uncles/aunts\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstr = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(i, 1,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.UNKNOWN,
|
|
relstr, 'm',
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
print '\n\ntesting male cousins same generation\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstra = _rand_relstr(i,'f')
|
|
relstrb = _rand_relstr(i,'f')
|
|
rel = FMT % rc.get_single_relationship_string(i, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.MALE,
|
|
relstra,
|
|
relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
print '\n\ntesting female cousins same generation\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstra = _rand_relstr(i,'m')
|
|
relstrb = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(i, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.FEMALE,
|
|
relstra,
|
|
relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
print '\n\ntesting unknown cousins same generation\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
relstra = _rand_relstr(i,'m')
|
|
relstrb = _rand_relstr(i,'m')
|
|
rel = FMT % rc.get_single_relationship_string(i, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.UNKNOWN,
|
|
relstra,
|
|
relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
print '\n\ntesting some cousins up\n'
|
|
sys.stdin.readline()
|
|
import random
|
|
random.seed()
|
|
for i in range(1,MAX) :
|
|
for j in range (i,MAX) :
|
|
rnd = random.randint(0, 100)
|
|
if rnd < 10 :
|
|
relstra = _rand_relstr(j,'f')
|
|
relstrb = _rand_relstr(i,'f')
|
|
if rnd < 5 :
|
|
rel = (FMT + ' |info: female, Ga=%2d, Gb=%2d') % (
|
|
rc.get_single_relationship_string(j, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.FEMALE,
|
|
relstra, relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb), j, i )
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
else:
|
|
rel = (FMT + ' |info: male, Ga=%2d, Gb=%2d') % (
|
|
rc.get_single_relationship_string(j, i,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.MALE,
|
|
relstra, relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb), j, i )
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
print '\n\ntesting some cousins down\n'
|
|
sys.stdin.readline()
|
|
for i in range(1,MAX) :
|
|
for j in range (i,MAX) :
|
|
rnd = random.randint(0, 100)
|
|
if rnd < 10 :
|
|
relstra = _rand_relstr(i,'f')
|
|
relstrb = _rand_relstr(j,'f')
|
|
if rnd < 5 :
|
|
rel = (FMT + ' |info: female, Ga=%2d, Gb=%2d') % (
|
|
rc.get_single_relationship_string(i, j,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.FEMALE,
|
|
relstra, relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb), i, j)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstra, relstrb
|
|
else:
|
|
print rel
|
|
else:
|
|
rel = (FMT + ' |info: male, Ga=%2d, Gb=%2d') % (
|
|
rc.get_single_relationship_string(i, j,
|
|
gen.lib.Person.MALE,
|
|
gen.lib.Person.MALE,
|
|
relstra, relstrb,
|
|
only_birth=onlybirth,
|
|
in_law_a=inlawa, in_law_b=inlawb), i, j)
|
|
if printrelstr :
|
|
print rel + ' |info:', relstr
|
|
else:
|
|
print rel
|
|
|
|
def _testsibling(rc):
|
|
vals = [(rc.NORM_SIB, 'sibling'),
|
|
(rc.HALF_SIB_MOTHER, 'half sib mother side'),
|
|
(rc.HALF_SIB_FATHER, 'half sib father side'),
|
|
(rc.STEP_SIB, 'step sib'), (rc.UNKNOWN_SIB, 'undetermined sib')]
|
|
FMT = '%+50s'
|
|
for gendr, strgen in [(gen.lib.Person.MALE, 'male'),
|
|
(gen.lib.Person.FEMALE, 'female'),
|
|
(gen.lib.Person.UNKNOWN, 'unknown')]:
|
|
for inlaw in [False, True]:
|
|
for sibt, str in vals:
|
|
print FMT % rc.get_sibling_relationship_string(
|
|
sibt, gen.lib.Person.MALE, gendr,
|
|
in_law_a = inlaw) + ' |info:', str, strgen
|
|
|
|
def _test_spouse(rc):
|
|
FMT = '%+50s'
|
|
vals = [(rc.PARTNER_MARRIED, 'married'), (rc.PARTNER_UNMARRIED, 'unmarried'),
|
|
(rc.PARTNER_CIVIL_UNION, 'civil union'),
|
|
(rc.PARTNER_UNKNOWN_REL, 'unknown rel'),
|
|
(rc.PARTNER_EX_MARRIED, 'ex-married'),
|
|
(rc.PARTNER_EX_UNMARRIED, 'ex-unmarried'),
|
|
(rc.PARTNER_EX_CIVIL_UNION, 'ex civil union'),
|
|
(rc.PARTNER_EX_UNKNOWN_REL, 'ex unknown rel')]
|
|
|
|
for gender, strgen in [(gen.lib.Person.MALE, 'male'),
|
|
(gen.lib.Person.FEMALE, 'female'),
|
|
(gen.lib.Person.UNKNOWN, 'unknown')] :
|
|
for spouse_type, str in vals:
|
|
print FMT % rc.get_partner_relationship_string(
|
|
spouse_type, gen.lib.Person.MALE, gender) + \
|
|
' |info: gender='+strgen+', rel='+str
|
|
|
|
def test(rc, printrelstr):
|
|
""" this is a generic test suite for the singular relationship
|
|
TRANSLATORS: do NOT translate, call this from
|
|
__main__ in the rel_xx.py module.
|
|
"""
|
|
import sys
|
|
|
|
print '\nType y to do a test\n\n'
|
|
print 'Test normal relations?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_test(rc, True, False, False, printrelstr)
|
|
print '\n\nTest step relations?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_test(rc, False, False, False, printrelstr)
|
|
print '\n\nTest in-law relations (first pers)?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_test(rc, True, True, False, printrelstr)
|
|
print '\n\nTest step and in-law relations?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_test(rc, False, True, False, printrelstr)
|
|
print '\n\nTest sibling types?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_testsibling(rc)
|
|
print '\n\nTest partner types?'
|
|
data = sys.stdin.readline()
|
|
if data == 'y\n':
|
|
_test_spouse(rc)
|
|
|
|
if __name__ == "__main__":
|
|
# Test function. Call it as follows from the command line (so as to find
|
|
# imported modules):
|
|
# export PYTHONPATH=/path/to/gramps/src python src/plugins/rel_fr.py
|
|
# (Above not needed here)
|
|
|
|
"""TRANSLATORS, copy this if statement at the bottom of your
|
|
rel_xx.py module, after adding: 'from Relationship import test'
|
|
and test your work with:
|
|
export PYTHONPATH=/path/to/gramps/src
|
|
python src/plugins/rel_xx.py
|
|
|
|
See eg rel_fr.py at the bottom
|
|
"""
|
|
rc = RelationshipCalculator()
|
|
test(rc, True)
|