gramps/src/plugins/rel_sv.py
Peter Landgren a3380d2e69 Upgrade to 3.0, first rev
svn: r9637
2007-12-30 12:53:06 +00:00

441 lines
18 KiB
Python

# -*- coding: utf-8 -*-
#
# Gramps - a GTK+/GNOME based genealogy program
#
# Copyright (C) 2003-2006 Donald N. Allingham
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# $Id$
# Written by Alex Roitman, largely based on Relationship.py by Don Allingham
# and on valuable input from Jens Arvidsson
# Updated to 3.0 by Peter Landgren 2007-12-30.
#-------------------------------------------------------------------------
#
# GRAMPS modules
#
#-------------------------------------------------------------------------
import gen.lib
import Relationship
import types
from gettext import gettext as _
from PluginUtils import register_relcalc
#-------------------------------------------------------------------------
#
# Swedish-specific definitions of relationships
#
#-------------------------------------------------------------------------
_cousin_level = [ "", "kusin",
"tremänning", "fyrmänning", "femmänning",
"sexmänning", "sjumänning", "åttamänning",
"niomänning", "tiomänning", "elvammänning",
"tolvmänning", "trettonmänning", "fjortonmänning",
"femtonmänning", "sextonmänning", "sjuttonmänning",
"artonmänning", "nittonmänning", "tjugomänning",
"tjugoettmänning", "tjugotvåmänning", "tjugotremänning",
"tjugofyramänning","tjugofemmänning","tjugoexmänning",
"tjugosjumänning","tjugoåttamänning","tjugoniomänning",
"trettiomänning" ]
#-------------------------------------------------------------------------
#
#
#
#-------------------------------------------------------------------------
class RelationshipCalculator(Relationship.RelationshipCalculator):
#sibling strings
STEP= 'styv'
HALF = 'halv'
#in-law string
INLAW='ingift '
def __init__(self):
Relationship.RelationshipCalculator.__init__(self)
def XXget_parents(self,level):
if level == 1:
return "föräldrar"
else:
return "anor i generation %d" % (level)
def _get_cousin(self,level,step,inlaw):
if level>len(_cousin_level)-1:
return "avlägset släkt"
else:
result=inlaw + _cousin_level[level]
if step:
result = result + ' [styv]'
return result
def pair_up(self,rel_list,step):
result = []
item = ""
for word in rel_list[:]:
if not word:
continue
if word in _cousin_level:
if item:
result.append(item)
item = ""
result.append(word)
continue
if item:
if word == 'syster':
item = item[0:-1]
word = 'ster'
elif word == 'dotter' and item == 'bror':
item = 'brors'
result.append(item + word)
item = ""
else:
item = word
if item:
result.append(item)
gen_result = [ item + 's' for item in result[0:-1] ]
gen_result = ' '.join(gen_result+result[-1:])
if len(rel_list)>1 and step != '':
gen_result=gen_result + ' [styv]'
return gen_result
def _get_direct_ancestor(self,person_gender,rel_string,step,inlaw):
result = []
for ix in range(len(rel_string)):
if rel_string[ix] == 'f':
result.append('far')
else:
result.append('mor')
if person_gender == gen.lib.Person.MALE:
result[-1] = 'far'
if person_gender == gen.lib.Person.FEMALE:
result[-1] = 'mor'
if person_gender == gen.lib.Person.UNKNOWN:
result[-1] = 'förälder'
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
if inlaw != '':
result[-1]='svär' + result[-1]
if len(result)>1 and len(result) % 2 == 0 and (person_gender == gen.lib.Person.UNKNOWN or inlaw != ''):
result[-2] = result[-2] + 's '
return self.pair_up(result,step)
def _get_direct_descendant(self,person_gender,rel_string,step,inlaw):
result = []
for ix in range(len(rel_string)-2,-1,-1):
if rel_string[ix] == 'f':
result.append('son')
else:
result.append('dotter')
if person_gender == gen.lib.Person.MALE:
result.append('son')
elif person_gender == gen.lib.Person.FEMALE:
result.append('dotter')
else:
if person_gender == gen.lib.Person.UNKNOWN and inlaw == '':
result.append('barn')
if person_gender == gen.lib.Person.UNKNOWN and inlaw != '':
result.append('-son/dotter')
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
if inlaw != '':
result[-1]= 'svär' + result[-1]
if len(result)>1 and len(result) % 2 == 0 and (person_gender == gen.lib.Person.UNKNOWN or inlaw != ''):
result[-2] = result[-2] + 's '
return self.pair_up(result,step)
def _get_ancestors_cousin(self,rel_string_long,rel_string_short,step,inlaw):
result = []
removed = len(rel_string_long)-len(rel_string_short)
level = len(rel_string_short)-1
for ix in range(removed):
if rel_string_long[ix] == 'f':
result.append('far')
else:
result.append('mor')
if inlaw != '' :
inlaw='ingifta '
if inlaw != '' and len(result) % 2 !=0:
result[-1] = result[-1] + 's '
result.append(self._get_cousin(level,step,inlaw))
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
return self.pair_up(result,step)
def _get_cousins_descendant(self,person_gender,rel_string_long,rel_string_short,step,inlaw):
result = []
removed = len(rel_string_long)-len(rel_string_short)-1
level = len(rel_string_short)-1
if level:
result.append(self._get_cousin(level,step,inlaw))
elif rel_string_long[removed] == 'f':
result.append('bror')
else:
result.append('syster')
for ix in range(removed-1,-1,-1):
if rel_string_long[ix] == 'f':
result.append('son')
else:
result.append('dotter')
if person_gender == gen.lib.Person.MALE:
result.append('son')
elif person_gender == gen.lib.Person.FEMALE:
result.append('dotter')
else:
if person_gender == gen.lib.Person.UNKNOWN and inlaw == '':
result.append('barn')
if person_gender == gen.lib.Person.UNKNOWN and inlaw != '':
result.append('-son/dotter')
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
if inlaw != '':
result[-1]= 'svär' + result[-1]
if len(result)>1 and len(result) % 2 == 0 and (person_gender == gen.lib.Person.UNKNOWN or inlaw != ''):
result[-2] = result[-2] + 's '
return self.pair_up(result,step)
def _get_ancestors_brother(self,rel_string,person_gender,step,inlaw):
result = []
for ix in range(len(rel_string)-1):
if rel_string[ix] == 'f':
result.append('far')
else:
result.append('mor')
result.append('bror')
if person_gender == gen.lib.Person.UNKNOWN: result[-1] = 'syskon'
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
if inlaw != '': result[-1]='svåger'
if inlaw != '' and person_gender == gen.lib.Person.UNKNOWN:
result[-1]='svåger/svägerska'
if len(result)>1 and len(result) % 2 == 0 and (person_gender == gen.lib.Person.UNKNOWN or inlaw != ''):
result[-2] = result[-2] + 's '
return self.pair_up(result,step)
def _get_ancestors_sister(self,rel_string,step,inlaw):
result = []
for ix in range(len(rel_string)-1):
if rel_string[ix] == 'f':
result.append('far')
else:
result.append('mor')
result.append('syster')
if step != '' and len(result)==1:
result[0]=self.STEP + result[0]
if inlaw != '' : result[-1]= 'svägerska'
if len(result)>1 and len(result) % 2 == 0 and inlaw != '':
result[-2] = result[-2] + 's '
return self.pair_up(result,step)
def get_sibling_relationship_string(self, sib_type, gender_a, gender_b,
in_law_a=False, in_law_b=False):
""" Determine the string giving the relation between two siblings of
type sib_type.
Eg: b is the brother of a
Here 'brother' is the string we need to determine
This method gives more details about siblings than
get_single_relationship_string can do.
DON'T TRANSLATE THIS PROCEDURE IF LOGIC IS EQUAL IN YOUR LANGUAGE,sib_type
AND SAME METHODS EXIST (get_uncle, get_aunt, get_sibling)
"""
#print "S:",sib_type,gender_a, gender_b,in_law_a, in_law_b
if sib_type == self.NORM_SIB or sib_type == self.UNKNOWN_SIB:
typestr = ''
elif sib_type == self.HALF_SIB_MOTHER \
or sib_type == self.HALF_SIB_FATHER:
typestr = self.HALF
elif sib_type == self.STEP_SIB:
typestr = self.STEP
if gender_b == gen.lib.Person.MALE:
rel_str = "bror"
elif gender_b == gen.lib.Person.FEMALE:
rel_str = "syster"
else:
rel_str = "syskon"
return typestr + rel_str
def get_single_relationship_string(self, Ga, Gb, gender_a, gender_b,
reltocommon_a, reltocommon_b,
only_birth=True,
in_law_a=False, in_law_b=False):
"""
Provides a string that describes the relationsip between a person, and
another person. E.g. "grandparent" or "child".
To be used as: 'person b is the grandparent of a', this will
be in translation string :"avlägs %snephews/nieces%s" % (step, inlaw)
'person b is the %(relation)s of a'
Note that languages with gender should add 'the' inside the
translation, so eg in french:
'person b est %(relation)s de a'
where relation will be here: le grandparent
Ga and Gb can be used to mathematically calculate the relationship.
See the Wikipedia entry for more information:
http://en.wikipedia.org/wiki/Cousin#Mathematical_definitions
Some languages need to know the specific path to the common ancestor.
Those languages should use reltocommon_a and reltocommon_b which is
a string like 'mfmf'. The possible string codes are:
REL_MOTHER # going up to mother
REL_FATHER # going up to father
REL_MOTHER_NOTBIRTH # going up to mother, not birth relation
REL_FATHER_NOTBIRTH # going up to father, not birth relation
REL_FAM_BIRTH # going up to family (mother and father)
REL_FAM_NONBIRTH # going up to family, not birth relation
REL_FAM_BIRTH_MOTH_ONLY # going up to fam, only birth rel to mother
REL_FAM_BIRTH_FATH_ONLY # going up to fam, only birth rel to father
Prefix codes are stripped, so REL_FAM_INLAW_PREFIX is not present.
If the relation starts with the inlaw of the person a, then 'in_law_a'
is True, if it starts with the inlaw of person b, then 'in_law_b' is
True.
Also REL_SIBLING (# going sideways to sibling (no parents)) is not
passed to this routine. The collapse_relations changes this to a
family relation.
Hence, calling routines should always strip REL_SIBLING and
REL_FAM_INLAW_PREFIX before calling get_single_relationship_string()
Note that only_birth=False, means that in the reltocommon one of the
NOTBIRTH specifiers is present.
The REL_FAM identifiers mean that the relation is not via a common
ancestor, but via a common family (note that that is not possible for
direct descendants or direct ancestors!). If the relation to one of the
parents in that common family is by birth, then 'only_birth' is not
set to False. The only_birth() method is normally used for this.
@param Ga: The number of generations between the main person and the
common ancestor.
@type Ga: int
@param Gb: The number of generations between the other person and the
common ancestor
@type Gb: int
@param gender_a : gender of person a
@type gender_a: int gender
@param gender_b : gender of person b
@type gender_b: int gender
@param reltocommon_a : relation path to common ancestor or common
Family for person a.
Note that length = Ga
@type reltocommon_a: str
@param reltocommon_b : relation path to common ancestor or common
Family for person b.
Note that length = Gb
@type reltocommon_b: str
@param in_law_a : True if path to common ancestors is via the partner
of person a
@type in_law_a: bool
@param in_law_b : True if path to common ancestors is via the partner
of person b
@type in_law_b: bool
@param only_birth : True if relation between a and b is by birth only
False otherwise
@type only_birth: bool
@returns: A string describing the relationship between the two people
@rtype: str
NOTE: 1/the self.REL_SIBLING should not be passed to this routine,
so we should not check on it. All other self.
2/for better determination of siblings, use if Ga=1=Gb
get_sibling_relationship_string
"""
if only_birth:
step = ''
else:
step = self.STEP
if in_law_a or in_law_b :
inlaw = self.INLAW
else:
inlaw = ''
#print "N:",Ga,Gb,gender_a, gender_b,only_birth,in_law_a, in_law_b
#print "Z:",reltocommon_a, reltocommon_b
rel_str = "avlägsen %s-släkting eller %s släkting" % (step,inlaw)
if Ga == 0:
# b is descendant of a
if Gb == 0 :
rel_str = 'samma person'
else:
rel_str = self._get_direct_descendant(gender_b,reltocommon_b,step,inlaw)
elif Gb == 0:
# b is parents/grand parent of a
rel_str = self._get_direct_ancestor(gender_b,reltocommon_a,step,inlaw)
elif Gb == 1:
# b is sibling/aunt/uncle of a
# handles brother and unknown gender as second person,
# shows up in "testing unknown cousins same generation"
if gender_b == gen.lib.Person.MALE or gender_b == gen.lib.Person.UNKNOWN:
rel_str = self._get_ancestors_brother(reltocommon_a,gender_b,step,inlaw)
elif gender_b == gen.lib.Person.FEMALE:
rel_str = self._get_ancestors_sister(reltocommon_a,step,inlaw)
#else:
#rel_str = self._get_ancestors_brother(reltocommon_a,gender_b)
#elif Ga == 1:
# This is taken care of at Ga>Gb and Gb>Ga below
# b is niece/nephew of a
#if gender_b == gen.lib.Person.MALE:
# rel_str = self._get_nephew(Gb-1, step, inlaw)
#elif gender_b == gen.lib.Person.FEMALE:
# rel_str = self._get_niece(Gb-1, step, inlaw)
#elif Gb < len(_niece_level) and Gb < len(_nephew_level):
# rel_str = "%s eller %s" % (self._get_nephew(Gb-1, step, inlaw),
# self._get_niece(Gb-1, step, inlaw))
#else:
#rel_str = "XXXavlägsen %s-släkting eller %s släkting" % (step,inlaw)
elif Ga == Gb:
# a and b cousins in the same generation
rel_str = self._get_cousin(Ga-1,step,inlaw)
elif Ga > Gb:
# These are cousins in different generations with the second person
# being in a higher generation from the common ancestor than the
# first person.
rel_str = self._get_ancestors_cousin(reltocommon_a,reltocommon_b,step,inlaw)
elif Gb > Ga:
# These are cousins in different generations with the second person
# being in a lower generation from the common ancestor than the
# first person.
rel_str = self._get_cousins_descendant(gender_b,reltocommon_b,reltocommon_a,step,inlaw)
return rel_str
#-------------------------------------------------------------------------
#
# Register this class with the Plugins system
#
#-------------------------------------------------------------------------
register_relcalc(RelationshipCalculator,
["sv","SV","sv_SE","swedish","Swedish","sv_SE.UTF8","sv_SE@euro","sv_SE.UTF8@euro",
"svenska","Svenska", "sv_SE.UTF-8", "sv_SE.utf-8", "sv_SE.utf8"])
if __name__ == "__main__":
# Test function. Call it as follows from the command line (so as to find
# imported modules):
# export PYTHONPATH=/path/to/gramps/src
# python src/plugins/rel_fr.py
# (Above not needed here)
"""TRANSLATORS, copy this if statement at the bottom of your
rel_xx.py module, and test your work with:
python src/plugins/rel_xx.py
"""
from Relationship import test
rc = RelationshipCalculator()
test(rc, True)