Revert "unlzma: speedup, by Pascal Bellard (pascal.bellard AT ads-lu.com)"

https://bugs.busybox.net/show_bug.cgi?id=599

This reverts commit 9ac3dc764a78b51fe8fdcd1b4682850de098733b.
This commit is contained in:
Denys Vlasenko 2009-09-06 15:06:25 +02:00
parent 043b1e5d99
commit 3de3f57c6d
2 changed files with 98 additions and 60 deletions

View File

@ -298,8 +298,8 @@ config FEATURE_LZMA_FAST
default n default n
depends on UNLZMA depends on UNLZMA
help help
This option reduces decompression time by about 25% at the cost of This option reduces decompression time by about 33% at the cost of
a 1K bigger binary. a 2K bigger binary.
config UNZIP config UNZIP
bool "unzip" bool "unzip"

View File

@ -8,15 +8,14 @@
* *
* Licensed under GPLv2 or later, see file LICENSE in this tarball for details. * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
*/ */
#include "libbb.h" #include "libbb.h"
#include "unarchive.h" #include "unarchive.h"
#if ENABLE_FEATURE_LZMA_FAST #if ENABLE_FEATURE_LZMA_FAST
# define speed_inline ALWAYS_INLINE # define speed_inline ALWAYS_INLINE
# define size_inline
#else #else
# define speed_inline # define speed_inline
# define size_inline ALWAYS_INLINE
#endif #endif
@ -45,8 +44,8 @@ typedef struct {
#define RC_MODEL_TOTAL_BITS 11 #define RC_MODEL_TOTAL_BITS 11
/* Called twice: once at startup (LZMA_FAST only) and once in rc_normalize() */ /* Called twice: once at startup and once in rc_normalize() */
static size_inline void rc_read(rc_t *rc) static void rc_read(rc_t *rc)
{ {
int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE); int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE);
if (buffer_size <= 0) if (buffer_size <= 0)
@ -55,17 +54,8 @@ static size_inline void rc_read(rc_t *rc)
rc->buffer_end = RC_BUFFER + buffer_size; rc->buffer_end = RC_BUFFER + buffer_size;
} }
/* Called twice, but one callsite is in speed_inline'd rc_is_bit_1() */
static void rc_do_normalize(rc_t *rc)
{
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->range <<= 8;
rc->code = (rc->code << 8) | *rc->ptr++;
}
/* Called once */ /* Called once */
static ALWAYS_INLINE rc_t* rc_init(int fd) /*, int buffer_size) */ static rc_t* rc_init(int fd) /*, int buffer_size) */
{ {
int i; int i;
rc_t *rc; rc_t *rc;
@ -73,18 +63,17 @@ static ALWAYS_INLINE rc_t* rc_init(int fd) /*, int buffer_size) */
rc = xmalloc(sizeof(*rc) + RC_BUFFER_SIZE); rc = xmalloc(sizeof(*rc) + RC_BUFFER_SIZE);
rc->fd = fd; rc->fd = fd;
/* rc->buffer_size = buffer_size; */
rc->buffer_end = RC_BUFFER + RC_BUFFER_SIZE;
rc->ptr = rc->buffer_end; rc->ptr = rc->buffer_end;
rc->code = 0;
rc->range = 0xFFFFFFFF;
for (i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
#if ENABLE_FEATURE_LZMA_FAST
if (rc->ptr >= rc->buffer_end) if (rc->ptr >= rc->buffer_end)
rc_read(rc); rc_read(rc);
rc->code = (rc->code << 8) | *rc->ptr++; rc->code = (rc->code << 8) | *rc->ptr++;
#else
rc_do_normalize(rc);
#endif
} }
rc->range = 0xFFFFFFFF;
return rc; return rc;
} }
@ -94,6 +83,14 @@ static ALWAYS_INLINE void rc_free(rc_t *rc)
free(rc); free(rc);
} }
/* Called twice, but one callsite is in speed_inline'd rc_is_bit_0_helper() */
static void rc_do_normalize(rc_t *rc)
{
if (rc->ptr >= rc->buffer_end)
rc_read(rc);
rc->range <<= 8;
rc->code = (rc->code << 8) | *rc->ptr++;
}
static ALWAYS_INLINE void rc_normalize(rc_t *rc) static ALWAYS_INLINE void rc_normalize(rc_t *rc)
{ {
if (rc->range < (1 << RC_TOP_BITS)) { if (rc->range < (1 << RC_TOP_BITS)) {
@ -101,28 +98,49 @@ static ALWAYS_INLINE void rc_normalize(rc_t *rc)
} }
} }
/* rc_is_bit_1 is called 9 times */ /* rc_is_bit_0 is called 9 times */
static speed_inline int rc_is_bit_1(rc_t *rc, uint16_t *p) /* Why rc_is_bit_0_helper exists?
* Because we want to always expose (rc->code < rc->bound) to optimizer.
* Thus rc_is_bit_0 is always inlined, and rc_is_bit_0_helper is inlined
* only if we compile for speed.
*/
static speed_inline uint32_t rc_is_bit_0_helper(rc_t *rc, uint16_t *p)
{ {
rc_normalize(rc); rc_normalize(rc);
rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS); rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
if (rc->code < rc->bound) { return rc->bound;
}
static ALWAYS_INLINE int rc_is_bit_0(rc_t *rc, uint16_t *p)
{
uint32_t t = rc_is_bit_0_helper(rc, p);
return rc->code < t;
}
/* Called ~10 times, but very small, thus inlined */
static speed_inline void rc_update_bit_0(rc_t *rc, uint16_t *p)
{
rc->range = rc->bound; rc->range = rc->bound;
*p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS; *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
return 0;
} }
static speed_inline void rc_update_bit_1(rc_t *rc, uint16_t *p)
{
rc->range -= rc->bound; rc->range -= rc->bound;
rc->code -= rc->bound; rc->code -= rc->bound;
*p -= *p >> RC_MOVE_BITS; *p -= *p >> RC_MOVE_BITS;
return 1;
} }
/* Called 4 times in unlzma loop */ /* Called 4 times in unlzma loop */
static speed_inline int rc_get_bit(rc_t *rc, uint16_t *p, int *symbol) static int rc_get_bit(rc_t *rc, uint16_t *p, int *symbol)
{ {
int ret = rc_is_bit_1(rc, p); if (rc_is_bit_0(rc, p)) {
*symbol = *symbol * 2 + ret; rc_update_bit_0(rc, p);
return ret; *symbol *= 2;
return 0;
} else {
rc_update_bit_1(rc, p);
*symbol = *symbol * 2 + 1;
return 1;
}
} }
/* Called once */ /* Called once */
@ -248,13 +266,13 @@ unpack_lzma_stream(int src_fd, int dst_fd)
header.dst_size = SWAP_LE64(header.dst_size); header.dst_size = SWAP_LE64(header.dst_size);
if (header.dict_size == 0) if (header.dict_size == 0)
header.dict_size++; header.dict_size = 1;
buffer = xmalloc(MIN(header.dst_size, header.dict_size)); buffer = xmalloc(MIN(header.dst_size, header.dict_size));
num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp)); num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
p = xmalloc(num_probs * sizeof(*p)); p = xmalloc(num_probs * sizeof(*p));
num_probs += LZMA_LITERAL - LZMA_BASE_SIZE; num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
for (i = 0; i < num_probs; i++) for (i = 0; i < num_probs; i++)
p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1; p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
@ -264,8 +282,9 @@ unpack_lzma_stream(int src_fd, int dst_fd)
int pos_state = (buffer_pos + global_pos) & pos_state_mask; int pos_state = (buffer_pos + global_pos) & pos_state_mask;
prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state; prob = p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state;
if (!rc_is_bit_1(rc, prob)) { if (rc_is_bit_0(rc, prob)) {
mi = 1; mi = 1;
rc_update_bit_0(rc, prob);
prob = (p + LZMA_LITERAL prob = (p + LZMA_LITERAL
+ (LZMA_LIT_SIZE * ((((buffer_pos + global_pos) & literal_pos_mask) << lc) + (LZMA_LIT_SIZE * ((((buffer_pos + global_pos) & literal_pos_mask) << lc)
+ (previous_byte >> (8 - lc)) + (previous_byte >> (8 - lc))
@ -321,21 +340,27 @@ unpack_lzma_stream(int src_fd, int dst_fd)
int offset; int offset;
uint16_t *prob_len; uint16_t *prob_len;
rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP + state; prob = p + LZMA_IS_REP + state;
if (!rc_is_bit_1(rc, prob)) { if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
rep3 = rep2; rep3 = rep2;
rep2 = rep1; rep2 = rep1;
rep1 = rep0; rep1 = rep0;
state = state < LZMA_NUM_LIT_STATES ? 0 : 3; state = state < LZMA_NUM_LIT_STATES ? 0 : 3;
prob = p + LZMA_LEN_CODER; prob = p + LZMA_LEN_CODER;
} else { } else {
prob += LZMA_IS_REP_G0 - LZMA_IS_REP; rc_update_bit_1(rc, prob);
if (!rc_is_bit_1(rc, prob)) { prob = p + LZMA_IS_REP_G0 + state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
prob = (p + LZMA_IS_REP_0_LONG prob = (p + LZMA_IS_REP_0_LONG
+ (state << LZMA_NUM_POS_BITS_MAX) + (state << LZMA_NUM_POS_BITS_MAX)
+ pos_state + pos_state
); );
if (!rc_is_bit_1(rc, prob)) { if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
state = state < LZMA_NUM_LIT_STATES ? 9 : 11; state = state < LZMA_NUM_LIT_STATES ? 9 : 11;
#if ENABLE_FEATURE_LZMA_FAST #if ENABLE_FEATURE_LZMA_FAST
pos = buffer_pos - rep0; pos = buffer_pos - rep0;
@ -347,16 +372,25 @@ unpack_lzma_stream(int src_fd, int dst_fd)
len = 1; len = 1;
goto string; goto string;
#endif #endif
} else {
rc_update_bit_1(rc, prob);
} }
} else { } else {
uint32_t distance; uint32_t distance;
prob += LZMA_IS_REP_G1 - LZMA_IS_REP_G0; rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G1 + state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = rep1; distance = rep1;
if (rc_is_bit_1(rc, prob)) { } else {
prob += LZMA_IS_REP_G2 - LZMA_IS_REP_G1; rc_update_bit_1(rc, prob);
prob = p + LZMA_IS_REP_G2 + state;
if (rc_is_bit_0(rc, prob)) {
rc_update_bit_0(rc, prob);
distance = rep2; distance = rep2;
if (rc_is_bit_1(rc, prob)) { } else {
rc_update_bit_1(rc, prob);
distance = rep3; distance = rep3;
rep3 = rep2; rep3 = rep2;
} }
@ -370,20 +404,24 @@ unpack_lzma_stream(int src_fd, int dst_fd)
} }
prob_len = prob + LZMA_LEN_CHOICE; prob_len = prob + LZMA_LEN_CHOICE;
if (!rc_is_bit_1(rc, prob_len)) { if (rc_is_bit_0(rc, prob_len)) {
prob_len += LZMA_LEN_LOW - LZMA_LEN_CHOICE rc_update_bit_0(rc, prob_len);
+ (pos_state << LZMA_LEN_NUM_LOW_BITS); prob_len = (prob + LZMA_LEN_LOW
+ (pos_state << LZMA_LEN_NUM_LOW_BITS));
offset = 0; offset = 0;
num_bits = LZMA_LEN_NUM_LOW_BITS; num_bits = LZMA_LEN_NUM_LOW_BITS;
} else { } else {
prob_len += LZMA_LEN_CHOICE_2 - LZMA_LEN_CHOICE; rc_update_bit_1(rc, prob_len);
if (!rc_is_bit_1(rc, prob_len)) { prob_len = prob + LZMA_LEN_CHOICE_2;
prob_len += LZMA_LEN_MID - LZMA_LEN_CHOICE_2 if (rc_is_bit_0(rc, prob_len)) {
+ (pos_state << LZMA_LEN_NUM_MID_BITS); rc_update_bit_0(rc, prob_len);
prob_len = (prob + LZMA_LEN_MID
+ (pos_state << LZMA_LEN_NUM_MID_BITS));
offset = 1 << LZMA_LEN_NUM_LOW_BITS; offset = 1 << LZMA_LEN_NUM_LOW_BITS;
num_bits = LZMA_LEN_NUM_MID_BITS; num_bits = LZMA_LEN_NUM_MID_BITS;
} else { } else {
prob_len += LZMA_LEN_HIGH - LZMA_LEN_CHOICE_2; rc_update_bit_1(rc, prob_len);
prob_len = prob + LZMA_LEN_HIGH;
offset = ((1 << LZMA_LEN_NUM_LOW_BITS) offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
+ (1 << LZMA_LEN_NUM_MID_BITS)); + (1 << LZMA_LEN_NUM_MID_BITS));
num_bits = LZMA_LEN_NUM_HIGH_BITS; num_bits = LZMA_LEN_NUM_HIGH_BITS;
@ -400,20 +438,19 @@ unpack_lzma_stream(int src_fd, int dst_fd)
((len < LZMA_NUM_LEN_TO_POS_STATES ? len : ((len < LZMA_NUM_LEN_TO_POS_STATES ? len :
LZMA_NUM_LEN_TO_POS_STATES - 1) LZMA_NUM_LEN_TO_POS_STATES - 1)
<< LZMA_NUM_POS_SLOT_BITS); << LZMA_NUM_POS_SLOT_BITS);
rc_bit_tree_decode(rc, prob, rc_bit_tree_decode(rc, prob, LZMA_NUM_POS_SLOT_BITS,
LZMA_NUM_POS_SLOT_BITS, &pos_slot); &pos_slot);
rep0 = pos_slot;
if (pos_slot >= LZMA_START_POS_MODEL_INDEX) { if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
num_bits = (pos_slot >> 1) - 1; num_bits = (pos_slot >> 1) - 1;
rep0 = 2 | (pos_slot & 1); rep0 = 2 | (pos_slot & 1);
prob = p + LZMA_ALIGN;
if (pos_slot < LZMA_END_POS_MODEL_INDEX) { if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
rep0 <<= num_bits; rep0 <<= num_bits;
prob += LZMA_SPEC_POS - LZMA_ALIGN - 1 + rep0 - pos_slot; prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1;
} else { } else {
num_bits -= LZMA_NUM_ALIGN_BITS; num_bits -= LZMA_NUM_ALIGN_BITS;
while (num_bits--) while (num_bits--)
rep0 = (rep0 << 1) | rc_direct_bit(rc); rep0 = (rep0 << 1) | rc_direct_bit(rc);
prob = p + LZMA_ALIGN;
rep0 <<= LZMA_NUM_ALIGN_BITS; rep0 <<= LZMA_NUM_ALIGN_BITS;
num_bits = LZMA_NUM_ALIGN_BITS; num_bits = LZMA_NUM_ALIGN_BITS;
} }
@ -424,7 +461,8 @@ unpack_lzma_stream(int src_fd, int dst_fd)
rep0 |= i; rep0 |= i;
i <<= 1; i <<= 1;
} }
} } else
rep0 = pos_slot;
if (++rep0 == 0) if (++rep0 == 0)
break; break;
} }