tls: reorder P256 functions to make more sense

Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
Denys Vlasenko 2021-04-27 01:21:26 +02:00
parent e52e43c72f
commit a2bc52dd44

View File

@ -220,6 +220,250 @@ static void sp_256_rshift1_10(sp_digit* r, sp_digit* a)
r[9] = a[9] >> 1; r[9] = a[9] >> 1;
} }
/* Mul a by scalar b and add into r. (r += a * b) */
static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
{
int64_t tb = b;
int64_t t = 0;
int i;
for (i = 0; i < 10; i++) {
t += (tb * a[i]) + r[i];
r[i] = t & 0x3ffffff;
t >>= 26;
}
r[10] += t;
}
/* Multiply a and b into r. (r = a * b) */
static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
int i, j, k;
int64_t c;
c = ((int64_t)a[9]) * b[9];
r[19] = (sp_digit)(c >> 26);
c = (c & 0x3ffffff) << 26;
for (k = 17; k >= 0; k--) {
for (i = 9; i >= 0; i--) {
j = k - i;
if (j >= 10)
break;
if (j < 0)
continue;
c += ((int64_t)a[i]) * b[j];
}
r[k + 2] += c >> 52;
r[k + 1] = (c >> 26) & 0x3ffffff;
c = (c & 0x3ffffff) << 26;
}
r[0] = (sp_digit)(c >> 26);
}
/* Square a and put result in r. (r = a * a) */
static void sp_256_sqr_10(sp_digit* r, const sp_digit* a)
{
int i, j, k;
int64_t c;
c = ((int64_t)a[9]) * a[9];
r[19] = (sp_digit)(c >> 26);
c = (c & 0x3ffffff) << 26;
for (k = 17; k >= 0; k--) {
for (i = 9; i >= 0; i--) {
j = k - i;
if (j >= 10 || i <= j)
break;
if (j < 0)
continue;
c += ((int64_t)a[i]) * a[j] * 2;
}
if (i == j)
c += ((int64_t)a[i]) * a[i];
r[k + 2] += c >> 52;
r[k + 1] = (c >> 26) & 0x3ffffff;
c = (c & 0x3ffffff) << 26;
}
r[0] = (sp_digit)(c >> 26);
}
/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
if (a[0] & 1)
sp_256_add_10(r, a, m);
sp_256_norm_10(r);
sp_256_rshift1_10(r, r);
}
/* Add two Montgomery form numbers (r = a + b % m) */
static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_256_add_10(r, a, b);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Subtract two Montgomery form numbers (r = a - b % m) */
static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_256_sub_10(r, a, b);
if (r[9] >> 22)
sp_256_add_10(r, r, m);
sp_256_norm_10(r);
}
/* Double a Montgomery form number (r = a + a % m) */
static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_256_add_10(r, a, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Triple a Montgomery form number (r = a + a + a % m) */
static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_256_add_10(r, a, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
sp_256_add_10(r, r, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Shift the result in the high 256 bits down to the bottom. */
static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
{
int i;
sp_digit n, s;
s = a[10];
n = a[9] >> 22;
for (i = 0; i < 9; i++) {
n += (s & 0x3ffffff) << 4;
r[i] = n & 0x3ffffff;
n >>= 26;
s = a[11 + i] + (s >> 26);
}
n += s << 4;
r[9] = n;
memset(&r[10], 0, sizeof(*r) * 10);
}
/* Reduce the number back to 256 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp)
{
int i;
sp_digit mu;
if (mp != 1) {
for (i = 0; i < 9; i++) {
mu = (a[i] * mp) & 0x3ffffff;
sp_256_mul_add_10(a+i, m, mu);
a[i+1] += a[i] >> 26;
}
mu = (a[i] * mp) & 0x3fffffl;
sp_256_mul_add_10(a+i, m, mu);
a[i+1] += a[i] >> 26;
a[i] &= 0x3ffffff;
}
else {
for (i = 0; i < 9; i++) {
mu = a[i] & 0x3ffffff;
sp_256_mul_add_10(a+i, p256_mod, mu);
a[i+1] += a[i] >> 26;
}
mu = a[i] & 0x3fffffl;
sp_256_mul_add_10(a+i, p256_mod, mu);
a[i+1] += a[i] >> 26;
a[i] &= 0x3ffffff;
}
sp_256_mont_shift_10(a, a);
if ((a[9] >> 22) > 0)
sp_256_sub_10(a, a, m);
sp_256_norm_10(a);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_256_mul_10(r, a, b);
sp_256_mont_reduce_10(r, m, mp);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_256_sqr_10(r, a);
sp_256_mont_reduce_10(r, m, mp);
}
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
* P256 curve. (r = 1 / a mod m)
*
* r Inverse result.
* a Number to invert.
*/
#if 0
/* Mod-2 for the P256 curve. */
static const uint32_t p256_mod_2[8] = {
0xfffffffd,0xffffffff,0xffffffff,0x00000000,
0x00000000,0x00000000,0x00000001,0xffffffff,
};
//Bit pattern:
//2 2 2 2 2 2 2 1...1
//5 5 4 3 2 1 0 9...0 9...1
//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
#endif
static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
{
sp_digit t[2*10]; //can be just [10]?
int i;
memcpy(t, a, sizeof(sp_digit) * 10);
for (i = 254; i >= 0; i--) {
sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
/*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
if (i >= 224 || i == 192 || (i <= 95 && i != 1))
sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
}
memcpy(r, t, sizeof(sp_digit) * 10);
}
/* Multiply a number by Montogmery normalizer mod modulus (prime). /* Multiply a number by Montogmery normalizer mod modulus (prime).
* *
* r The resulting Montgomery form number. * r The resulting Montgomery form number.
@ -320,250 +564,6 @@ static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
r[9] = (sp_digit)(t[7] >> 10); r[9] = (sp_digit)(t[7] >> 10);
} }
/* Mul a by scalar b and add into r. (r += a * b) */
static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
{
int64_t tb = b;
int64_t t = 0;
int i;
for (i = 0; i < 10; i++) {
t += (tb * a[i]) + r[i];
r[i] = t & 0x3ffffff;
t >>= 26;
}
r[10] += t;
}
/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
if (a[0] & 1)
sp_256_add_10(r, a, m);
sp_256_norm_10(r);
sp_256_rshift1_10(r, r);
}
/* Shift the result in the high 256 bits down to the bottom. */
static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a)
{
int i;
sp_digit n, s;
s = a[10];
n = a[9] >> 22;
for (i = 0; i < 9; i++) {
n += (s & 0x3ffffff) << 4;
r[i] = n & 0x3ffffff;
n >>= 26;
s = a[11 + i] + (s >> 26);
}
n += s << 4;
r[9] = n;
memset(&r[10], 0, sizeof(*r) * 10);
}
/* Add two Montgomery form numbers (r = a + b % m) */
static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_256_add_10(r, a, b);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Double a Montgomery form number (r = a + a % m) */
static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_256_add_10(r, a, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Triple a Montgomery form number (r = a + a + a % m) */
static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m)
{
sp_256_add_10(r, a, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
sp_256_add_10(r, r, a);
sp_256_norm_10(r);
if ((r[9] >> 22) > 0)
sp_256_sub_10(r, r, m);
sp_256_norm_10(r);
}
/* Subtract two Montgomery form numbers (r = a - b % m) */
static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m)
{
sp_256_sub_10(r, a, b);
if (r[9] >> 22)
sp_256_add_10(r, r, m);
sp_256_norm_10(r);
}
/* Reduce the number back to 256 bits using Montgomery reduction.
*
* a A single precision number to reduce in place.
* m The single precision number representing the modulus.
* mp The digit representing the negative inverse of m mod 2^n.
*/
static void sp_256_mont_reduce_10(sp_digit* a, const sp_digit* m, sp_digit mp)
{
int i;
sp_digit mu;
if (mp != 1) {
for (i = 0; i < 9; i++) {
mu = (a[i] * mp) & 0x3ffffff;
sp_256_mul_add_10(a+i, m, mu);
a[i+1] += a[i] >> 26;
}
mu = (a[i] * mp) & 0x3fffffl;
sp_256_mul_add_10(a+i, m, mu);
a[i+1] += a[i] >> 26;
a[i] &= 0x3ffffff;
}
else {
for (i = 0; i < 9; i++) {
mu = a[i] & 0x3ffffff;
sp_256_mul_add_10(a+i, p256_mod, mu);
a[i+1] += a[i] >> 26;
}
mu = a[i] & 0x3fffffl;
sp_256_mul_add_10(a+i, p256_mod, mu);
a[i+1] += a[i] >> 26;
a[i] &= 0x3ffffff;
}
sp_256_mont_shift_10(a, a);
if ((a[9] >> 22) > 0)
sp_256_sub_10(a, a, m);
sp_256_norm_10(a);
}
/* Multiply a and b into r. (r = a * b) */
static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b)
{
int i, j, k;
int64_t c;
c = ((int64_t)a[9]) * b[9];
r[19] = (sp_digit)(c >> 26);
c = (c & 0x3ffffff) << 26;
for (k = 17; k >= 0; k--) {
for (i = 9; i >= 0; i--) {
j = k - i;
if (j >= 10)
break;
if (j < 0)
continue;
c += ((int64_t)a[i]) * b[j];
}
r[k + 2] += c >> 52;
r[k + 1] = (c >> 26) & 0x3ffffff;
c = (c & 0x3ffffff) << 26;
}
r[0] = (sp_digit)(c >> 26);
}
/* Multiply two Montogmery form numbers mod the modulus (prime).
* (r = a * b mod m)
*
* r Result of multiplication.
* a First number to multiply in Montogmery form.
* b Second number to multiply in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b,
const sp_digit* m, sp_digit mp)
{
sp_256_mul_10(r, a, b);
sp_256_mont_reduce_10(r, m, mp);
}
/* Square a and put result in r. (r = a * a) */
static void sp_256_sqr_10(sp_digit* r, const sp_digit* a)
{
int i, j, k;
int64_t c;
c = ((int64_t)a[9]) * a[9];
r[19] = (sp_digit)(c >> 26);
c = (c & 0x3ffffff) << 26;
for (k = 17; k >= 0; k--) {
for (i = 9; i >= 0; i--) {
j = k - i;
if (j >= 10 || i <= j)
break;
if (j < 0)
continue;
c += ((int64_t)a[i]) * a[j] * 2;
}
if (i == j)
c += ((int64_t)a[i]) * a[i];
r[k + 2] += c >> 52;
r[k + 1] = (c >> 26) & 0x3ffffff;
c = (c & 0x3ffffff) << 26;
}
r[0] = (sp_digit)(c >> 26);
}
/* Square the Montgomery form number. (r = a * a mod m)
*
* r Result of squaring.
* a Number to square in Montogmery form.
* m Modulus (prime).
* mp Montogmery mulitplier.
*/
static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a, const sp_digit* m,
sp_digit mp)
{
sp_256_sqr_10(r, a);
sp_256_mont_reduce_10(r, m, mp);
}
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
* P256 curve. (r = 1 / a mod m)
*
* r Inverse result.
* a Number to invert.
*/
#if 0
/* Mod-2 for the P256 curve. */
static const uint32_t p256_mod_2[8] = {
0xfffffffd,0xffffffff,0xffffffff,0x00000000,
0x00000000,0x00000000,0x00000001,0xffffffff,
};
//Bit pattern:
//2 2 2 2 2 2 2 1...1
//5 5 4 3 2 1 0 9...0 9...1
//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
#endif
static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
{
sp_digit t[2*10]; //can be just [10]?
int i;
memcpy(t, a, sizeof(sp_digit) * 10);
for (i = 254; i >= 0; i--) {
sp_256_mont_sqr_10(t, t, p256_mod, p256_mp_mod);
/*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
if (i >= 224 || i == 192 || (i <= 95 && i != 1))
sp_256_mont_mul_10(t, t, a, p256_mod, p256_mp_mod);
}
memcpy(r, t, sizeof(sp_digit) * 10);
}
/* Map the Montgomery form projective co-ordinate point to an affine point. /* Map the Montgomery form projective co-ordinate point to an affine point.
* *
* r Resulting affine co-ordinate point. * r Resulting affine co-ordinate point.
@ -808,7 +808,7 @@ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
* pub2x32 Point to multiply. * pub2x32 Point to multiply.
* out32 Buffer to hold X ordinate. * out32 Buffer to hold X ordinate.
*/ */
static void sp_ecc_secret_gen_256(sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32)
{ {
sp_point point[1]; sp_point point[1];