2439 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2439 lines
		
	
	
		
			86 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2017 Denys Vlasenko
 | 
						|
 *
 | 
						|
 * Licensed under GPLv2, see file LICENSE in this source tree.
 | 
						|
 */
 | 
						|
//config:config TLS
 | 
						|
//config:	bool #No description makes it a hidden option
 | 
						|
//config:	default n
 | 
						|
//Note:
 | 
						|
//Config.src also defines FEATURE_TLS_SHA1 option
 | 
						|
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_pstm.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_montgomery_reduce.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_mul_comba.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_pstm_sqr_comba.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_aes.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_aesgcm.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_rsa.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_fe.o
 | 
						|
//kbuild:lib-$(CONFIG_TLS) += tls_sp_c32.o
 | 
						|
 | 
						|
#include "tls.h"
 | 
						|
 | 
						|
// Usually enabled. You can disable some of them to force only
 | 
						|
// specific ciphers to be advertized to server.
 | 
						|
// (this would not exclude code to handle disabled ciphers, no code size win)
 | 
						|
#define ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256       1
 | 
						|
#define ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256         1
 | 
						|
#define ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256       1
 | 
						|
#define ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256         1
 | 
						|
#define ALLOW_RSA_WITH_AES_128_CBC_SHA256       1
 | 
						|
#define ALLOW_RSA_WITH_AES_256_CBC_SHA256       1
 | 
						|
#define ALLOW_RSA_WITH_AES_128_GCM_SHA256       1
 | 
						|
#define ALLOW_CURVE_P256        1
 | 
						|
#define ALLOW_CURVE_X25519      1
 | 
						|
 | 
						|
// For testing (does everything except encrypting).
 | 
						|
// works against "openssl s_server -cipher NULL"
 | 
						|
// and against wolfssl-3.9.10-stable/examples/server/server.c:
 | 
						|
#define ALLOW_RSA_NULL_SHA256                   0
 | 
						|
 | 
						|
#define TLS_DEBUG      0
 | 
						|
#define TLS_DEBUG_HASH 0
 | 
						|
#define TLS_DEBUG_DER  0
 | 
						|
#define TLS_DEBUG_FIXED_SECRETS 0
 | 
						|
#if 0
 | 
						|
# define dump_raw_out(...) dump_hex(__VA_ARGS__)
 | 
						|
#else
 | 
						|
# define dump_raw_out(...) ((void)0)
 | 
						|
#endif
 | 
						|
#if 0
 | 
						|
# define dump_raw_in(...) dump_hex(__VA_ARGS__)
 | 
						|
#else
 | 
						|
# define dump_raw_in(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if TLS_DEBUG
 | 
						|
# define dbg(...) fprintf(stderr, __VA_ARGS__)
 | 
						|
#else
 | 
						|
# define dbg(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if TLS_DEBUG_DER
 | 
						|
# define dbg_der(...) fprintf(stderr, __VA_ARGS__)
 | 
						|
#else
 | 
						|
# define dbg_der(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
//TLS 1.2
 | 
						|
#define TLS_MAJ 3
 | 
						|
#define TLS_MIN 3
 | 
						|
 | 
						|
#define RECORD_TYPE_CHANGE_CIPHER_SPEC  20 /* 0x14 */
 | 
						|
#define RECORD_TYPE_ALERT               21 /* 0x15 */
 | 
						|
#define RECORD_TYPE_HANDSHAKE           22 /* 0x16 */
 | 
						|
#define RECORD_TYPE_APPLICATION_DATA    23 /* 0x17 */
 | 
						|
 | 
						|
#define HANDSHAKE_HELLO_REQUEST         0  /* 0x00 */
 | 
						|
#define HANDSHAKE_CLIENT_HELLO          1  /* 0x01 */
 | 
						|
#define HANDSHAKE_SERVER_HELLO          2  /* 0x02 */
 | 
						|
#define HANDSHAKE_HELLO_VERIFY_REQUEST  3  /* 0x03 */
 | 
						|
#define HANDSHAKE_NEW_SESSION_TICKET    4  /* 0x04 */
 | 
						|
#define HANDSHAKE_CERTIFICATE           11 /* 0x0b */
 | 
						|
#define HANDSHAKE_SERVER_KEY_EXCHANGE   12 /* 0x0c */
 | 
						|
#define HANDSHAKE_CERTIFICATE_REQUEST   13 /* 0x0d */
 | 
						|
#define HANDSHAKE_SERVER_HELLO_DONE     14 /* 0x0e */
 | 
						|
#define HANDSHAKE_CERTIFICATE_VERIFY    15 /* 0x0f */
 | 
						|
#define HANDSHAKE_CLIENT_KEY_EXCHANGE   16 /* 0x10 */
 | 
						|
#define HANDSHAKE_FINISHED              20 /* 0x14 */
 | 
						|
 | 
						|
#define TLS_EMPTY_RENEGOTIATION_INFO_SCSV       0x00FF /* not a real cipher id... */
 | 
						|
 | 
						|
#define SSL_NULL_WITH_NULL_NULL                 0x0000
 | 
						|
#define SSL_RSA_WITH_NULL_MD5                   0x0001
 | 
						|
#define SSL_RSA_WITH_NULL_SHA                   0x0002
 | 
						|
#define SSL_RSA_WITH_RC4_128_MD5                0x0004
 | 
						|
#define SSL_RSA_WITH_RC4_128_SHA                0x0005
 | 
						|
#define TLS_RSA_WITH_IDEA_CBC_SHA               0x0007  /* 7 */
 | 
						|
#define SSL_RSA_WITH_3DES_EDE_CBC_SHA           0x000A  /* 10 */
 | 
						|
 | 
						|
#define SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA       0x0016  /* 22 */
 | 
						|
#define SSL_DH_anon_WITH_RC4_128_MD5            0x0018  /* 24 */
 | 
						|
#define SSL_DH_anon_WITH_3DES_EDE_CBC_SHA       0x001B  /* 27 */
 | 
						|
#define TLS_RSA_WITH_AES_128_CBC_SHA            0x002F  /*SSLv3   Kx=RSA   Au=RSA   Enc=AES(128) Mac=SHA1 */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA        0x0033  /* 51 */
 | 
						|
#define TLS_DH_anon_WITH_AES_128_CBC_SHA        0x0034  /* 52 */
 | 
						|
#define TLS_RSA_WITH_AES_256_CBC_SHA            0x0035  /* 53 */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA        0x0039  /* 57 */
 | 
						|
#define TLS_DH_anon_WITH_AES_256_CBC_SHA        0x003A  /* 58 */
 | 
						|
#define TLS_RSA_WITH_NULL_SHA256                0x003B  /* 59 */
 | 
						|
#define TLS_RSA_WITH_AES_128_CBC_SHA256         0x003C  /* 60 */
 | 
						|
#define TLS_RSA_WITH_AES_256_CBC_SHA256         0x003D  /* 61 */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_128_CBC_SHA256     0x0067  /* 103 */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_256_CBC_SHA256     0x006B  /* 107 */
 | 
						|
#define TLS_PSK_WITH_AES_128_CBC_SHA            0x008C  /* 140 */
 | 
						|
#define TLS_PSK_WITH_AES_256_CBC_SHA            0x008D  /* 141 */
 | 
						|
#define TLS_DHE_PSK_WITH_AES_128_CBC_SHA        0x0090  /* 144 */
 | 
						|
#define TLS_DHE_PSK_WITH_AES_256_CBC_SHA        0x0091  /* 145 */
 | 
						|
#define TLS_RSA_WITH_SEED_CBC_SHA               0x0096  /* 150 */
 | 
						|
#define TLS_RSA_WITH_AES_128_GCM_SHA256         0x009C  /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESGCM(128) Mac=AEAD */
 | 
						|
#define TLS_RSA_WITH_AES_256_GCM_SHA384         0x009D  /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESGCM(256) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_128_GCM_SHA256     0x009E  /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESGCM(128) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_256_GCM_SHA384     0x009F  /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESGCM(256) Mac=AEAD */
 | 
						|
#define TLS_DH_anon_WITH_AES_128_GCM_SHA256     0x00A6  /* RFC 5288 */
 | 
						|
#define TLS_DH_anon_WITH_AES_256_GCM_SHA384     0x00A7  /* RFC 5288 */
 | 
						|
#define TLS_PSK_WITH_AES_128_CBC_SHA256         0x00AE  /* 174 */
 | 
						|
#define TLS_PSK_WITH_AES_256_CBC_SHA384         0x00AF  /* 175 */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA     0xC004  /* 49156 */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA     0xC005  /* 49157 */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA    0xC009  /*TLSv1   Kx=ECDH  Au=ECDSA Enc=AES(128) Mac=SHA1 */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA    0xC00A  /*TLSv1   Kx=ECDH  Au=ECDSA Enc=AES(256) Mac=SHA1 */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA       0xC00E  /* 49166 */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA       0xC00F  /* 49167 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA     0xC012  /* 49170 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA      0xC013  /*TLSv1   Kx=ECDH  Au=RSA   Enc=AES(128) Mac=SHA1 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA      0xC014  /*TLSv1   Kx=ECDH  Au=RSA   Enc=AES(256) Mac=SHA1 */
 | 
						|
#define TLS_ECDH_anon_WITH_AES_128_CBC_SHA      0xC018  /* RFC 4492 */
 | 
						|
#define TLS_ECDH_anon_WITH_AES_256_CBC_SHA      0xC019  /* RFC 4492 */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023  /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AES(128) Mac=SHA256 */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024  /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AES(256) Mac=SHA384 */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256  0xC025  /* 49189 */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384  0xC026  /* 49190 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256   0xC027  /*TLSv1.2 Kx=ECDH  Au=RSA   Enc=AES(128) Mac=SHA256 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384   0xC028  /*TLSv1.2 Kx=ECDH  Au=RSA   Enc=AES(256) Mac=SHA384 */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256    0xC029  /* 49193 */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384    0xC02A  /* 49194 */
 | 
						|
/* RFC 5288 "AES Galois Counter Mode (GCM) Cipher Suites for TLS" */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B  /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESGCM(128) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C  /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESGCM(256) Mac=AEAD */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256  0xC02D  /* 49197 */
 | 
						|
#define TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384  0xC02E  /* 49198 */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256   0xC02F  /*TLSv1.2 Kx=ECDH  Au=RSA   Enc=AESGCM(128) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384   0xC030  /*TLSv1.2 Kx=ECDH  Au=RSA   Enc=AESGCM(256) Mac=AEAD */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256    0xC031  /* 49201 */
 | 
						|
#define TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384    0xC032  /* 49202 */
 | 
						|
#define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA      0xC035
 | 
						|
#define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA      0xC036
 | 
						|
#define TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256   0xC037
 | 
						|
#define TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384   0xC038
 | 
						|
 | 
						|
/* From http://wiki.mozilla.org/Security/Server_Side_TLS */
 | 
						|
/* and 'openssl ciphers -V -stdname' */
 | 
						|
#define TLS_RSA_WITH_AES_128_CCM                      0xC09C /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESCCM(128) Mac=AEAD */
 | 
						|
#define TLS_RSA_WITH_AES_256_CCM                      0xC09D /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESCCM(256) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_128_CCM                  0xC09E /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESCCM(128) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_256_CCM                  0xC09F /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESCCM(256) Mac=AEAD */
 | 
						|
#define TLS_RSA_WITH_AES_128_CCM_8                    0xC0A0 /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESCCM8(128) Mac=AEAD */
 | 
						|
#define TLS_RSA_WITH_AES_256_CCM_8                    0xC0A1 /*TLSv1.2 Kx=RSA   Au=RSA   Enc=AESCCM8(256) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_128_CCM_8                0xC0A2 /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESCCM8(128) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_AES_256_CCM_8                0xC0A3 /*TLSv1.2 Kx=DH    Au=RSA   Enc=AESCCM8(256) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_128_CCM              0xC0AC /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESCCM(128) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_256_CCM              0xC0AD /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESCCM(256) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8            0xC0AE /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESCCM8(128) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8            0xC0AF /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=AESCCM8(256) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   0xCCA8 /*TLSv1.2 Kx=ECDH  Au=RSA   Enc=CHACHA20/POLY1305(256) Mac=AEAD */
 | 
						|
#define TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 /*TLSv1.2 Kx=ECDH  Au=ECDSA Enc=CHACHA20/POLY1305(256) Mac=AEAD */
 | 
						|
#define TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256     0xCCAA /*TLSv1.2 Kx=DH    Au=RSA   Enc=CHACHA20/POLY1305(256) Mac=AEAD */
 | 
						|
 | 
						|
#define TLS_AES_128_GCM_SHA256                        0x1301 /*TLSv1.3 Kx=any   Au=any   Enc=AESGCM(128) Mac=AEAD */
 | 
						|
#define TLS_AES_256_GCM_SHA384                        0x1302 /*TLSv1.3 Kx=any   Au=any   Enc=AESGCM(256) Mac=AEAD */
 | 
						|
#define TLS_CHACHA20_POLY1305_SHA256                  0x1303 /*TLSv1.3 Kx=any   Au=any   Enc=CHACHA20/POLY1305(256) Mac=AEAD */
 | 
						|
#define TLS_AES_128_CCM_SHA256                        0x1304 /*TLSv1.3 Kx=any   Au=any   Enc=AESCCM(128) Mac=AEAD */
 | 
						|
 | 
						|
/* Might go to libbb.h */
 | 
						|
#define TLS_MAX_CRYPTBLOCK_SIZE 16
 | 
						|
#define TLS_MAX_OUTBUF          (1 << 14)
 | 
						|
 | 
						|
enum {
 | 
						|
	SHA_INSIZE     = 64,
 | 
						|
 | 
						|
	AES128_KEYSIZE = 16,
 | 
						|
	AES256_KEYSIZE = 32,
 | 
						|
 | 
						|
	RSA_PREMASTER_SIZE = 48,
 | 
						|
 | 
						|
	RECHDR_LEN = 5,
 | 
						|
 | 
						|
	/* 8 = 3+5. 3 extra bytes result in record data being 32-bit aligned */
 | 
						|
	OUTBUF_PFX = 8 + AES_BLOCK_SIZE, /* header + IV */
 | 
						|
	OUTBUF_SFX = TLS_MAX_MAC_SIZE + TLS_MAX_CRYPTBLOCK_SIZE, /* MAC + padding */
 | 
						|
 | 
						|
	// RFC 5246:
 | 
						|
	// | 6.2.1. Fragmentation
 | 
						|
	// |  The record layer fragments information blocks into TLSPlaintext
 | 
						|
	// |  records carrying data in chunks of 2^14 bytes or less.  Client
 | 
						|
	// |  message boundaries are not preserved in the record layer (i.e.,
 | 
						|
	// |  multiple client messages of the same ContentType MAY be coalesced
 | 
						|
	// |  into a single TLSPlaintext record, or a single message MAY be
 | 
						|
	// |  fragmented across several records)
 | 
						|
	// |...
 | 
						|
	// |  length
 | 
						|
	// |    The length (in bytes) of the following TLSPlaintext.fragment.
 | 
						|
	// |    The length MUST NOT exceed 2^14.
 | 
						|
	// |...
 | 
						|
	// | 6.2.2. Record Compression and Decompression
 | 
						|
	// |...
 | 
						|
	// |  Compression must be lossless and may not increase the content length
 | 
						|
	// |  by more than 1024 bytes.  If the decompression function encounters a
 | 
						|
	// |  TLSCompressed.fragment that would decompress to a length in excess of
 | 
						|
	// |  2^14 bytes, it MUST report a fatal decompression failure error.
 | 
						|
	// |...
 | 
						|
	// |  length
 | 
						|
	// |    The length (in bytes) of the following TLSCompressed.fragment.
 | 
						|
	// |    The length MUST NOT exceed 2^14 + 1024.
 | 
						|
	// |...
 | 
						|
	// | 6.2.3.  Record Payload Protection
 | 
						|
	// |  The encryption and MAC functions translate a TLSCompressed
 | 
						|
	// |  structure into a TLSCiphertext.  The decryption functions reverse
 | 
						|
	// |  the process.  The MAC of the record also includes a sequence
 | 
						|
	// |  number so that missing, extra, or repeated messages are
 | 
						|
	// |  detectable.
 | 
						|
	// |...
 | 
						|
	// |  length
 | 
						|
	// |    The length (in bytes) of the following TLSCiphertext.fragment.
 | 
						|
	// |    The length MUST NOT exceed 2^14 + 2048.
 | 
						|
	MAX_INBUF = RECHDR_LEN + (1 << 14) + 2048,
 | 
						|
 | 
						|
	/* Bits for tls->flags */
 | 
						|
	NEED_EC_KEY            = 1 << 0,
 | 
						|
	GOT_CERT_RSA_KEY_ALG   = 1 << 1,
 | 
						|
	GOT_CERT_ECDSA_KEY_ALG = 1 << 2, // so far unused
 | 
						|
	GOT_EC_KEY             = 1 << 3,
 | 
						|
	GOT_EC_CURVE_X25519    = 1 << 4, // else P256
 | 
						|
	ENCRYPTION_AESGCM      = 1 << 5, // else AES-SHA (or NULL-SHA if ALLOW_RSA_NULL_SHA256=1)
 | 
						|
	ENCRYPT_ON_WRITE       = 1 << 6,
 | 
						|
};
 | 
						|
 | 
						|
struct record_hdr {
 | 
						|
	uint8_t type;
 | 
						|
	uint8_t proto_maj, proto_min;
 | 
						|
	uint8_t len16_hi, len16_lo;
 | 
						|
};
 | 
						|
 | 
						|
struct tls_handshake_data {
 | 
						|
	/* In bbox, md5/sha1/sha256 ctx's are the same structure */
 | 
						|
	md5sha_ctx_t handshake_hash_ctx;
 | 
						|
 | 
						|
	uint8_t client_and_server_rand32[2 * 32];
 | 
						|
	uint8_t master_secret[48];
 | 
						|
 | 
						|
//TODO: store just the DER key here, parse/use/delete it when sending client key
 | 
						|
//this way it will stay key type agnostic here.
 | 
						|
	psRsaKey_t server_rsa_pub_key;
 | 
						|
 | 
						|
	/* peer's elliptic curve key data */
 | 
						|
	/* for x25519, it contains one point in first 32 bytes */
 | 
						|
	/* for P256, it contains x,y point pair, each 32 bytes long */
 | 
						|
	uint8_t ecc_pub_key32[2 * 32];
 | 
						|
 | 
						|
/* HANDSHAKE HASH: */
 | 
						|
	//unsigned saved_client_hello_size;
 | 
						|
	//uint8_t saved_client_hello[1];
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static unsigned get24be(const uint8_t *p)
 | 
						|
{
 | 
						|
	return 0x100*(0x100*p[0] + p[1]) + p[2];
 | 
						|
}
 | 
						|
 | 
						|
#if TLS_DEBUG
 | 
						|
/* Nondestructively see the current hash value */
 | 
						|
# if TLS_DEBUG_HASH
 | 
						|
static unsigned sha_peek(md5sha_ctx_t *ctx, void *buffer)
 | 
						|
{
 | 
						|
	md5sha_ctx_t ctx_copy = *ctx; /* struct copy */
 | 
						|
	return sha_end(&ctx_copy, buffer);
 | 
						|
}
 | 
						|
# endif
 | 
						|
 | 
						|
static void dump_hex(const char *fmt, const void *vp, int len)
 | 
						|
{
 | 
						|
	char hexbuf[32 * 1024 + 4];
 | 
						|
	const uint8_t *p = vp;
 | 
						|
 | 
						|
	bin2hex(hexbuf, (void*)p, len)[0] = '\0';
 | 
						|
	dbg(fmt, hexbuf);
 | 
						|
}
 | 
						|
 | 
						|
static void dump_tls_record(const void *vp, int len)
 | 
						|
{
 | 
						|
	const uint8_t *p = vp;
 | 
						|
 | 
						|
	while (len > 0) {
 | 
						|
		unsigned xhdr_len;
 | 
						|
		if (len < RECHDR_LEN) {
 | 
						|
			dump_hex("< |%s|\n", p, len);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		xhdr_len = 0x100*p[3] + p[4];
 | 
						|
		dbg("< hdr_type:%u ver:%u.%u len:%u", p[0], p[1], p[2], xhdr_len);
 | 
						|
		p += RECHDR_LEN;
 | 
						|
		len -= RECHDR_LEN;
 | 
						|
		if (len >= 4 && p[-RECHDR_LEN] == RECORD_TYPE_HANDSHAKE) {
 | 
						|
			unsigned len24 = get24be(p + 1);
 | 
						|
			dbg(" type:%u len24:%u", p[0], len24);
 | 
						|
		}
 | 
						|
		if (xhdr_len > len)
 | 
						|
			xhdr_len = len;
 | 
						|
		dump_hex(" |%s|\n", p, xhdr_len);
 | 
						|
		p += xhdr_len;
 | 
						|
		len -= xhdr_len;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
# define dump_hex(...) ((void)0)
 | 
						|
# define dump_tls_record(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
void FAST_FUNC tls_get_random(void *buf, unsigned len)
 | 
						|
{
 | 
						|
	if (len != open_read_close("/dev/urandom", buf, len))
 | 
						|
		xfunc_die();
 | 
						|
}
 | 
						|
 | 
						|
static void xorbuf3(void *dst, const void *src1, const void *src2, unsigned count)
 | 
						|
{
 | 
						|
	uint8_t *d = dst;
 | 
						|
	const uint8_t *s1 = src1;
 | 
						|
	const uint8_t* s2 = src2;
 | 
						|
	while (count--)
 | 
						|
		*d++ = *s1++ ^ *s2++;
 | 
						|
}
 | 
						|
 | 
						|
void FAST_FUNC xorbuf(void *dst, const void *src, unsigned count)
 | 
						|
{
 | 
						|
	xorbuf3(dst, dst, src, count);
 | 
						|
}
 | 
						|
 | 
						|
void FAST_FUNC xorbuf_aligned_AES_BLOCK_SIZE(void *dst, const void *src)
 | 
						|
{
 | 
						|
	unsigned long *d = dst;
 | 
						|
	const unsigned long *s = src;
 | 
						|
	d[0] ^= s[0];
 | 
						|
#if ULONG_MAX <= 0xffffffffffffffff
 | 
						|
	d[1] ^= s[1];
 | 
						|
 #if ULONG_MAX == 0xffffffff
 | 
						|
	d[2] ^= s[2];
 | 
						|
	d[3] ^= s[3];
 | 
						|
 #endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if !TLS_DEBUG_HASH
 | 
						|
# define hash_handshake(tls, fmt, buffer, len) \
 | 
						|
         hash_handshake(tls, buffer, len)
 | 
						|
#endif
 | 
						|
static void hash_handshake(tls_state_t *tls, const char *fmt, const void *buffer, unsigned len)
 | 
						|
{
 | 
						|
	md5sha_hash(&tls->hsd->handshake_hash_ctx, buffer, len);
 | 
						|
#if TLS_DEBUG_HASH
 | 
						|
	{
 | 
						|
		uint8_t h[TLS_MAX_MAC_SIZE];
 | 
						|
		dump_hex(fmt, buffer, len);
 | 
						|
		dbg(" (%u bytes) ", (int)len);
 | 
						|
		len = sha_peek(&tls->hsd->handshake_hash_ctx, h);
 | 
						|
		if (ENABLE_FEATURE_TLS_SHA1 && len == SHA1_OUTSIZE)
 | 
						|
			dump_hex("sha1:%s\n", h, len);
 | 
						|
		else
 | 
						|
		if (len == SHA256_OUTSIZE)
 | 
						|
			dump_hex("sha256:%s\n", h, len);
 | 
						|
		else
 | 
						|
			dump_hex("sha???:%s\n", h, len);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if !ENABLE_FEATURE_TLS_SHA1
 | 
						|
# define TLS_MAC_SIZE(tls) SHA256_OUTSIZE
 | 
						|
#else
 | 
						|
# define TLS_MAC_SIZE(tls) (tls)->MAC_size
 | 
						|
#endif
 | 
						|
 | 
						|
// RFC 2104:
 | 
						|
// HMAC(key, text) based on a hash H (say, sha256) is:
 | 
						|
// ipad = [0x36 x INSIZE]
 | 
						|
// opad = [0x5c x INSIZE]
 | 
						|
// HMAC(key, text) = H((key XOR opad) + H((key XOR ipad) + text))
 | 
						|
//
 | 
						|
// H(key XOR opad) and H(key XOR ipad) can be precomputed
 | 
						|
// if we often need HMAC hmac with the same key.
 | 
						|
//
 | 
						|
// text is often given in disjoint pieces.
 | 
						|
typedef struct hmac_precomputed {
 | 
						|
	md5sha_ctx_t hashed_key_xor_ipad;
 | 
						|
	md5sha_ctx_t hashed_key_xor_opad;
 | 
						|
} hmac_precomputed_t;
 | 
						|
 | 
						|
typedef void md5sha_begin_func(md5sha_ctx_t *ctx) FAST_FUNC;
 | 
						|
#if !ENABLE_FEATURE_TLS_SHA1
 | 
						|
#define hmac_begin(pre,key,key_size,begin) \
 | 
						|
	hmac_begin(pre,key,key_size)
 | 
						|
#define begin sha256_begin
 | 
						|
#endif
 | 
						|
static void hmac_begin(hmac_precomputed_t *pre, uint8_t *key, unsigned key_size, md5sha_begin_func *begin)
 | 
						|
{
 | 
						|
	uint8_t key_xor_ipad[SHA_INSIZE];
 | 
						|
	uint8_t key_xor_opad[SHA_INSIZE];
 | 
						|
//	uint8_t tempkey[SHA1_OUTSIZE < SHA256_OUTSIZE ? SHA256_OUTSIZE : SHA1_OUTSIZE];
 | 
						|
	unsigned i;
 | 
						|
 | 
						|
	// "The authentication key can be of any length up to INSIZE, the
 | 
						|
	// block length of the hash function.  Applications that use keys longer
 | 
						|
	// than INSIZE bytes will first hash the key using H and then use the
 | 
						|
	// resultant OUTSIZE byte string as the actual key to HMAC."
 | 
						|
	if (key_size > SHA_INSIZE) {
 | 
						|
		bb_simple_error_msg_and_die("HMAC key>64"); //does not happen (yet?)
 | 
						|
//		md5sha_ctx_t ctx;
 | 
						|
//		begin(&ctx);
 | 
						|
//		md5sha_hash(&ctx, key, key_size);
 | 
						|
//		key_size = sha_end(&ctx, tempkey);
 | 
						|
//		//key = tempkey; - right? RIGHT? why does it work without this?
 | 
						|
//		// because SHA_INSIZE is 64, but hmac() is always called with
 | 
						|
//		// key_size = tls->MAC_size = SHA1/256_OUTSIZE (20 or 32),
 | 
						|
//		// and prf_hmac_sha256() -> hmac_sha256() key sizes are:
 | 
						|
//		// - RSA_PREMASTER_SIZE is 48
 | 
						|
//		// - CURVE25519_KEYSIZE is 32
 | 
						|
//		// - master_secret[] is 48
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < key_size; i++) {
 | 
						|
		key_xor_ipad[i] = key[i] ^ 0x36;
 | 
						|
		key_xor_opad[i] = key[i] ^ 0x5c;
 | 
						|
	}
 | 
						|
	for (; i < SHA_INSIZE; i++) {
 | 
						|
		key_xor_ipad[i] = 0x36;
 | 
						|
		key_xor_opad[i] = 0x5c;
 | 
						|
	}
 | 
						|
 | 
						|
	begin(&pre->hashed_key_xor_ipad);
 | 
						|
	begin(&pre->hashed_key_xor_opad);
 | 
						|
	md5sha_hash(&pre->hashed_key_xor_ipad, key_xor_ipad, SHA_INSIZE);
 | 
						|
	md5sha_hash(&pre->hashed_key_xor_opad, key_xor_opad, SHA_INSIZE);
 | 
						|
}
 | 
						|
#undef begin
 | 
						|
 | 
						|
static unsigned hmac_sha_precomputed_v(
 | 
						|
		hmac_precomputed_t *pre,
 | 
						|
		uint8_t *out,
 | 
						|
		va_list va)
 | 
						|
{
 | 
						|
	uint8_t *text;
 | 
						|
	unsigned len;
 | 
						|
 | 
						|
	/* pre->hashed_key_xor_ipad contains unclosed "H((key XOR ipad) +" state */
 | 
						|
	/* pre->hashed_key_xor_opad contains unclosed "H((key XOR opad) +" state */
 | 
						|
 | 
						|
	/* calculate out = H((key XOR ipad) + text) */
 | 
						|
	while ((text = va_arg(va, uint8_t*)) != NULL) {
 | 
						|
		unsigned text_size = va_arg(va, unsigned);
 | 
						|
		md5sha_hash(&pre->hashed_key_xor_ipad, text, text_size);
 | 
						|
	}
 | 
						|
	len = sha_end(&pre->hashed_key_xor_ipad, out);
 | 
						|
 | 
						|
	/* out = H((key XOR opad) + out) */
 | 
						|
	md5sha_hash(&pre->hashed_key_xor_opad, out, len);
 | 
						|
	return sha_end(&pre->hashed_key_xor_opad, out);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned hmac_sha_precomputed(hmac_precomputed_t *pre_init, uint8_t *out, ...)
 | 
						|
{
 | 
						|
	hmac_precomputed_t pre;
 | 
						|
	va_list va;
 | 
						|
	unsigned len;
 | 
						|
 | 
						|
	va_start(va, out);
 | 
						|
	pre = *pre_init; /* struct copy */
 | 
						|
	len = hmac_sha_precomputed_v(&pre, out, va);
 | 
						|
	va_end(va);
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
#if !ENABLE_FEATURE_TLS_SHA1
 | 
						|
#define hmac(tls,out,key,key_size,...) \
 | 
						|
	hmac(out,key,key_size, __VA_ARGS__)
 | 
						|
#endif
 | 
						|
static unsigned hmac(tls_state_t *tls, uint8_t *out, uint8_t *key, unsigned key_size, ...)
 | 
						|
{
 | 
						|
	hmac_precomputed_t pre;
 | 
						|
	va_list va;
 | 
						|
	unsigned len;
 | 
						|
 | 
						|
	va_start(va, key_size);
 | 
						|
 | 
						|
	hmac_begin(&pre, key, key_size,
 | 
						|
			(ENABLE_FEATURE_TLS_SHA1 && tls->MAC_size == SHA1_OUTSIZE)
 | 
						|
				? sha1_begin
 | 
						|
				: sha256_begin
 | 
						|
	);
 | 
						|
	len = hmac_sha_precomputed_v(&pre, out, va);
 | 
						|
 | 
						|
	va_end(va);
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
// RFC 5246:
 | 
						|
// 5.  HMAC and the Pseudorandom Function
 | 
						|
//...
 | 
						|
// In this section, we define one PRF, based on HMAC.  This PRF with the
 | 
						|
// SHA-256 hash function is used for all cipher suites defined in this
 | 
						|
// document and in TLS documents published prior to this document when
 | 
						|
// TLS 1.2 is negotiated.
 | 
						|
// ^^^^^^^^^^^^^ IMPORTANT!
 | 
						|
//               PRF uses sha256 regardless of cipher for all ciphers
 | 
						|
//               defined by RFC 5246. It's not sha1 for AES_128_CBC_SHA!
 | 
						|
//               However, for _SHA384 ciphers, it's sha384. See RFC 5288,5289.
 | 
						|
//...
 | 
						|
//    P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
 | 
						|
//                           HMAC_hash(secret, A(2) + seed) +
 | 
						|
//                           HMAC_hash(secret, A(3) + seed) + ...
 | 
						|
// where + indicates concatenation.
 | 
						|
// A() is defined as:
 | 
						|
//    A(0) = seed
 | 
						|
//    A(1) = HMAC_hash(secret, A(0)) = HMAC_hash(secret, seed)
 | 
						|
//    A(i) = HMAC_hash(secret, A(i-1))
 | 
						|
// P_hash can be iterated as many times as necessary to produce the
 | 
						|
// required quantity of data.  For example, if P_SHA256 is being used to
 | 
						|
// create 80 bytes of data, it will have to be iterated three times
 | 
						|
// (through A(3)), creating 96 bytes of output data; the last 16 bytes
 | 
						|
// of the final iteration will then be discarded, leaving 80 bytes of
 | 
						|
// output data.
 | 
						|
//
 | 
						|
// TLS's PRF is created by applying P_hash to the secret as:
 | 
						|
//
 | 
						|
//    PRF(secret, label, seed) = P_<hash>(secret, label + seed)
 | 
						|
//
 | 
						|
// The label is an ASCII string.
 | 
						|
//
 | 
						|
// RFC 5288:
 | 
						|
// For cipher suites ending with _SHA256, the PRF is the TLS PRF
 | 
						|
// with SHA-256 as the hash function.
 | 
						|
// For cipher suites ending with _SHA384, the PRF is the TLS PRF
 | 
						|
// with SHA-384 as the hash function.
 | 
						|
static void prf_hmac_sha256(/*tls_state_t *tls,*/
 | 
						|
		uint8_t *outbuf, unsigned outbuf_size,
 | 
						|
		uint8_t *secret, unsigned secret_size,
 | 
						|
		const char *label,
 | 
						|
		uint8_t *seed, unsigned seed_size)
 | 
						|
{
 | 
						|
	hmac_precomputed_t pre;
 | 
						|
	uint8_t a[TLS_MAX_MAC_SIZE];
 | 
						|
	uint8_t *out_p = outbuf;
 | 
						|
	unsigned label_size = strlen(label);
 | 
						|
	unsigned MAC_size = SHA256_OUTSIZE;
 | 
						|
 | 
						|
	/* In P_hash() calculation, "seed" is "label + seed": */
 | 
						|
#define SEED   label, label_size, seed, seed_size
 | 
						|
#define A      a, MAC_size
 | 
						|
 | 
						|
	hmac_begin(&pre, secret, secret_size, sha256_begin);
 | 
						|
 | 
						|
	/* A(1) = HMAC_hash(secret, seed) */
 | 
						|
	hmac_sha_precomputed(&pre, a, SEED, NULL);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/* HMAC_hash(secret, A(1) + seed) */
 | 
						|
		if (outbuf_size <= MAC_size) {
 | 
						|
			/* Last, possibly incomplete, block */
 | 
						|
			/* (use a[] as temp buffer) */
 | 
						|
			hmac_sha_precomputed(&pre, a, A, SEED, NULL);
 | 
						|
			memcpy(out_p, a, outbuf_size);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		/* Not last block. Store directly to result buffer */
 | 
						|
		hmac_sha_precomputed(&pre, out_p, A, SEED, NULL);
 | 
						|
		out_p += MAC_size;
 | 
						|
		outbuf_size -= MAC_size;
 | 
						|
		/* A(2) = HMAC_hash(secret, A(1)) */
 | 
						|
		hmac_sha_precomputed(&pre, a, A, NULL);
 | 
						|
	}
 | 
						|
#undef A
 | 
						|
#undef SECRET
 | 
						|
#undef SEED
 | 
						|
}
 | 
						|
 | 
						|
static void bad_record_die(tls_state_t *tls, const char *expected, int len)
 | 
						|
{
 | 
						|
	bb_error_msg("got bad TLS record (len:%d) while expecting %s", len, expected);
 | 
						|
	if (len > 0) {
 | 
						|
		uint8_t *p = tls->inbuf;
 | 
						|
		if (len > 99)
 | 
						|
			len = 99; /* don't flood, a few lines should be enough */
 | 
						|
		do {
 | 
						|
			fprintf(stderr, " %02x", *p++);
 | 
						|
			len--;
 | 
						|
		} while (len != 0);
 | 
						|
		fputc('\n', stderr);
 | 
						|
	}
 | 
						|
	xfunc_die();
 | 
						|
}
 | 
						|
 | 
						|
static void tls_error_die(tls_state_t *tls, int line)
 | 
						|
{
 | 
						|
	dump_tls_record(tls->inbuf, tls->ofs_to_buffered + tls->buffered_size);
 | 
						|
	bb_error_msg_and_die("tls error at line %d cipher:%04x", line, tls->cipher_id);
 | 
						|
}
 | 
						|
#define tls_error_die(tls) tls_error_die(tls, __LINE__)
 | 
						|
 | 
						|
#if 0 //UNUSED
 | 
						|
static void tls_free_inbuf(tls_state_t *tls)
 | 
						|
{
 | 
						|
	if (tls->buffered_size == 0) {
 | 
						|
		free(tls->inbuf);
 | 
						|
		tls->inbuf_size = 0;
 | 
						|
		tls->inbuf = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void tls_free_outbuf(tls_state_t *tls)
 | 
						|
{
 | 
						|
	free(tls->outbuf);
 | 
						|
	tls->outbuf_size = 0;
 | 
						|
	tls->outbuf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void *tls_get_outbuf(tls_state_t *tls, int len)
 | 
						|
{
 | 
						|
	if (len > TLS_MAX_OUTBUF)
 | 
						|
		xfunc_die();
 | 
						|
	len += OUTBUF_PFX + OUTBUF_SFX;
 | 
						|
	if (tls->outbuf_size < len) {
 | 
						|
		tls->outbuf_size = len;
 | 
						|
		tls->outbuf = xrealloc(tls->outbuf, len);
 | 
						|
	}
 | 
						|
	return tls->outbuf + OUTBUF_PFX;
 | 
						|
}
 | 
						|
 | 
						|
static void *tls_get_zeroed_outbuf(tls_state_t *tls, int len)
 | 
						|
{
 | 
						|
	void *record = tls_get_outbuf(tls, len);
 | 
						|
	memset(record, 0, len);
 | 
						|
	return record;
 | 
						|
}
 | 
						|
 | 
						|
static void xwrite_encrypted_and_hmac_signed(tls_state_t *tls, unsigned size, unsigned type)
 | 
						|
{
 | 
						|
	uint8_t *buf = tls->outbuf + OUTBUF_PFX;
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	uint8_t padding_length;
 | 
						|
 | 
						|
	xhdr = (void*)(buf - RECHDR_LEN);
 | 
						|
	if (!ALLOW_RSA_NULL_SHA256 /* if "no encryption" can't be selected */
 | 
						|
	 || tls->cipher_id != TLS_RSA_WITH_NULL_SHA256 /* or if it wasn't selected */
 | 
						|
	) {
 | 
						|
		xhdr = (void*)(buf - RECHDR_LEN - AES_BLOCK_SIZE); /* place for IV */
 | 
						|
	}
 | 
						|
 | 
						|
	xhdr->type = type;
 | 
						|
	xhdr->proto_maj = TLS_MAJ;
 | 
						|
	xhdr->proto_min = TLS_MIN;
 | 
						|
	/* fake unencrypted record len for MAC calculation */
 | 
						|
	xhdr->len16_hi = size >> 8;
 | 
						|
	xhdr->len16_lo = size & 0xff;
 | 
						|
 | 
						|
	/* Calculate MAC signature */
 | 
						|
	hmac(tls, buf + size, /* result */
 | 
						|
		tls->client_write_MAC_key, TLS_MAC_SIZE(tls),
 | 
						|
		&tls->write_seq64_be, sizeof(tls->write_seq64_be),
 | 
						|
		xhdr, RECHDR_LEN,
 | 
						|
		buf, size,
 | 
						|
		NULL
 | 
						|
	);
 | 
						|
	tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(tls->write_seq64_be));
 | 
						|
 | 
						|
	size += TLS_MAC_SIZE(tls);
 | 
						|
 | 
						|
	// RFC 5246:
 | 
						|
	// 6.2.3.1.  Null or Standard Stream Cipher
 | 
						|
	//
 | 
						|
	// Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.6)
 | 
						|
	// convert TLSCompressed.fragment structures to and from stream
 | 
						|
	// TLSCiphertext.fragment structures.
 | 
						|
	//
 | 
						|
	//    stream-ciphered struct {
 | 
						|
	//        opaque content[TLSCompressed.length];
 | 
						|
	//        opaque MAC[SecurityParameters.mac_length];
 | 
						|
	//    } GenericStreamCipher;
 | 
						|
	//
 | 
						|
	// The MAC is generated as:
 | 
						|
	//    MAC(MAC_write_key, seq_num +
 | 
						|
	//                          TLSCompressed.type +
 | 
						|
	//                          TLSCompressed.version +
 | 
						|
	//                          TLSCompressed.length +
 | 
						|
	//                          TLSCompressed.fragment);
 | 
						|
	// where "+" denotes concatenation.
 | 
						|
	// seq_num
 | 
						|
	//    The sequence number for this record.
 | 
						|
	// MAC
 | 
						|
	//    The MAC algorithm specified by SecurityParameters.mac_algorithm.
 | 
						|
	//
 | 
						|
	// Note that the MAC is computed before encryption.  The stream cipher
 | 
						|
	// encrypts the entire block, including the MAC.
 | 
						|
	//...
 | 
						|
	// Appendix C.  Cipher Suite Definitions
 | 
						|
	//...
 | 
						|
	// MAC       Algorithm    mac_length  mac_key_length
 | 
						|
	// --------  -----------  ----------  --------------
 | 
						|
	// SHA       HMAC-SHA1       20            20
 | 
						|
	// SHA256    HMAC-SHA256     32            32
 | 
						|
	if (ALLOW_RSA_NULL_SHA256
 | 
						|
	 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
 | 
						|
	) {
 | 
						|
		/* No encryption, only signing */
 | 
						|
		xhdr->len16_hi = size >> 8;
 | 
						|
		xhdr->len16_lo = size & 0xff;
 | 
						|
		dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
 | 
						|
		xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
 | 
						|
		dbg("wrote %u bytes (NULL crypt, SHA256 hash)\n", size);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	// 6.2.3.2.  CBC Block Cipher
 | 
						|
	// For block ciphers (such as 3DES or AES), the encryption and MAC
 | 
						|
	// functions convert TLSCompressed.fragment structures to and from block
 | 
						|
	// TLSCiphertext.fragment structures.
 | 
						|
	//    struct {
 | 
						|
	//        opaque IV[SecurityParameters.record_iv_length];
 | 
						|
	//        block-ciphered struct {
 | 
						|
	//            opaque content[TLSCompressed.length];
 | 
						|
	//            opaque MAC[SecurityParameters.mac_length];
 | 
						|
	//            uint8 padding[GenericBlockCipher.padding_length];
 | 
						|
	//            uint8 padding_length;
 | 
						|
	//        };
 | 
						|
	//    } GenericBlockCipher;
 | 
						|
	//...
 | 
						|
	// IV
 | 
						|
	//    The Initialization Vector (IV) SHOULD be chosen at random, and
 | 
						|
	//    MUST be unpredictable.  Note that in versions of TLS prior to 1.1,
 | 
						|
	//    there was no IV field (...).  For block ciphers, the IV length is
 | 
						|
	//    of length SecurityParameters.record_iv_length, which is equal to the
 | 
						|
	//    SecurityParameters.block_size.
 | 
						|
	// padding
 | 
						|
	//    Padding that is added to force the length of the plaintext to be
 | 
						|
	//    an integral multiple of the block cipher's block length.
 | 
						|
	// padding_length
 | 
						|
	//    The padding length MUST be such that the total size of the
 | 
						|
	//    GenericBlockCipher structure is a multiple of the cipher's block
 | 
						|
	//    length.  Legal values range from zero to 255, inclusive.
 | 
						|
	//...
 | 
						|
	// Appendix C.  Cipher Suite Definitions
 | 
						|
	//...
 | 
						|
	//                         Key      IV   Block
 | 
						|
	// Cipher        Type    Material  Size  Size
 | 
						|
	// ------------  ------  --------  ----  -----
 | 
						|
	// AES_128_CBC   Block      16      16     16
 | 
						|
	// AES_256_CBC   Block      32      16     16
 | 
						|
 | 
						|
	tls_get_random(buf - AES_BLOCK_SIZE, AES_BLOCK_SIZE); /* IV */
 | 
						|
	dbg("before crypt: 5 hdr + %u data + %u hash bytes\n",
 | 
						|
			size - TLS_MAC_SIZE(tls), TLS_MAC_SIZE(tls));
 | 
						|
 | 
						|
	/* Fill IV and padding in outbuf */
 | 
						|
	// RFC is talking nonsense:
 | 
						|
	//    "Padding that is added to force the length of the plaintext to be
 | 
						|
	//    an integral multiple of the block cipher's block length."
 | 
						|
	// WRONG. _padding+padding_length_, not just _padding_,
 | 
						|
	// pads the data.
 | 
						|
	// IOW: padding_length is the last byte of padding[] array,
 | 
						|
	// contrary to what RFC depicts.
 | 
						|
	//
 | 
						|
	// What actually happens is that there is always padding.
 | 
						|
	// If you need one byte to reach BLOCKSIZE, this byte is 0x00.
 | 
						|
	// If you need two bytes, they are both 0x01.
 | 
						|
	// If you need three, they are 0x02,0x02,0x02. And so on.
 | 
						|
	// If you need no bytes to reach BLOCKSIZE, you have to pad a full
 | 
						|
	// BLOCKSIZE with bytes of value (BLOCKSIZE-1).
 | 
						|
	// It's ok to have more than minimum padding, but we do minimum.
 | 
						|
	padding_length = (~size) & (AES_BLOCK_SIZE - 1);
 | 
						|
	do {
 | 
						|
		buf[size++] = padding_length; /* padding */
 | 
						|
	} while ((size & (AES_BLOCK_SIZE - 1)) != 0);
 | 
						|
 | 
						|
	/* Encrypt content+MAC+padding in place */
 | 
						|
	aes_cbc_encrypt(
 | 
						|
		&tls->aes_encrypt, /* selects 128/256 */
 | 
						|
		buf - AES_BLOCK_SIZE, /* IV */
 | 
						|
		buf, size, /* plaintext */
 | 
						|
		buf /* ciphertext */
 | 
						|
	);
 | 
						|
 | 
						|
	/* Write out */
 | 
						|
	dbg("writing 5 + %u IV + %u encrypted bytes, padding_length:0x%02x\n",
 | 
						|
			AES_BLOCK_SIZE, size, padding_length);
 | 
						|
	size += AES_BLOCK_SIZE;     /* + IV */
 | 
						|
	xhdr->len16_hi = size >> 8;
 | 
						|
	xhdr->len16_lo = size & 0xff;
 | 
						|
	dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
 | 
						|
	xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
 | 
						|
	dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
 | 
						|
}
 | 
						|
 | 
						|
/* Example how GCM encryption combines nonce, aad, input and generates
 | 
						|
 * "header | exp_nonce | encrypted output | tag":
 | 
						|
 * nonce:0d 6a 26 31 00 00 00 00 00 00 00 01 (implicit 4 bytes (derived from master secret), then explicit 8 bytes)
 | 
						|
 * aad:  00 00 00 00 00 00 00 01 17 03 03 00 1c
 | 
						|
 * in:   47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c 20 48 54 54 50 2f 31 2e 30 0d 0a 0d 0a "GET /index.html HTTP/1.0\r\n\r\n" (0x1c bytes)
 | 
						|
 * out:  f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be
 | 
						|
 * tag:  c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
 | 
						|
 * sent: 17 03 03 00 34|00 00 00 00 00 00 00 01|f7 8a b2 8f 78 0e f6 d5 76 17 2e b5 6d 46 59 56 8b 46 9f 0b d9 2c 35 28 13 66 19 be|c2 86 ce 4a 50 4a d0 aa 50 b3 76 5c 49 2a 3f 33
 | 
						|
 * .............................................^^ buf points here
 | 
						|
 */
 | 
						|
static void xwrite_encrypted_aesgcm(tls_state_t *tls, unsigned size, unsigned type)
 | 
						|
{
 | 
						|
#define COUNTER(v) (*(uint32_t*)(v + 12))
 | 
						|
 | 
						|
	uint8_t aad[13 + 3] ALIGNED_long;   /* +3 creates [16] buffer, simplifying GHASH() */
 | 
						|
	uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
 | 
						|
	uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
 | 
						|
	uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
 | 
						|
	uint8_t *buf;
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	unsigned remaining;
 | 
						|
	unsigned cnt;
 | 
						|
	uint64_t t64;
 | 
						|
 | 
						|
	buf = tls->outbuf + OUTBUF_PFX; /* see above for the byte it points to */
 | 
						|
	dump_hex("xwrite_encrypted_aesgcm plaintext:%s\n", buf, size);
 | 
						|
 | 
						|
	xhdr = (void*)(buf - 8 - RECHDR_LEN);
 | 
						|
	xhdr->type = type; /* do it here so that "type" param no longer used */
 | 
						|
 | 
						|
	aad[8] = type;
 | 
						|
	aad[9] = TLS_MAJ;
 | 
						|
	aad[10] = TLS_MIN;
 | 
						|
	aad[11] = size >> 8;
 | 
						|
	/* set aad[12], and clear aad[13..15] */
 | 
						|
	COUNTER(aad) = SWAP_LE32(size & 0xff);
 | 
						|
 | 
						|
	memcpy(nonce, tls->client_write_IV, 4);
 | 
						|
	t64 = tls->write_seq64_be;
 | 
						|
	move_to_unaligned64(nonce + 4, t64);
 | 
						|
	move_to_unaligned64(aad,       t64);
 | 
						|
	move_to_unaligned64(buf - 8,   t64);
 | 
						|
	/* seq64 is not used later in this func, can increment here */
 | 
						|
	tls->write_seq64_be = SWAP_BE64(1 + SWAP_BE64(t64));
 | 
						|
 | 
						|
	cnt = 1;
 | 
						|
	remaining = size;
 | 
						|
	while (remaining != 0) {
 | 
						|
		unsigned n;
 | 
						|
 | 
						|
		cnt++;
 | 
						|
		COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
 | 
						|
		aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
 | 
						|
		n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
 | 
						|
		xorbuf(buf, scratch, n);
 | 
						|
		buf += n;
 | 
						|
		remaining -= n;
 | 
						|
	}
 | 
						|
 | 
						|
	aesgcm_GHASH(tls->H, aad, /*sizeof(aad),*/ tls->outbuf + OUTBUF_PFX, size, authtag /*, sizeof(authtag)*/);
 | 
						|
	COUNTER(nonce) = htonl(1);
 | 
						|
	aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
 | 
						|
	xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
 | 
						|
 | 
						|
	memcpy(buf, authtag, sizeof(authtag));
 | 
						|
 | 
						|
	/* Write out */
 | 
						|
	xhdr = (void*)(tls->outbuf + OUTBUF_PFX - 8 - RECHDR_LEN);
 | 
						|
	size += 8 + sizeof(authtag);
 | 
						|
	/*xhdr->type = type; - already is */
 | 
						|
	xhdr->proto_maj = TLS_MAJ;
 | 
						|
	xhdr->proto_min = TLS_MIN;
 | 
						|
	xhdr->len16_hi = size >> 8;
 | 
						|
	xhdr->len16_lo = size & 0xff;
 | 
						|
	size += RECHDR_LEN;
 | 
						|
	dump_raw_out(">> %s\n", xhdr, size);
 | 
						|
	xwrite(tls->ofd, xhdr, size);
 | 
						|
	dbg("wrote %u bytes\n", size);
 | 
						|
#undef COUNTER
 | 
						|
}
 | 
						|
 | 
						|
static void xwrite_encrypted(tls_state_t *tls, unsigned size, unsigned type)
 | 
						|
{
 | 
						|
	if (!(tls->flags & ENCRYPTION_AESGCM)) {
 | 
						|
		xwrite_encrypted_and_hmac_signed(tls, size, type);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	xwrite_encrypted_aesgcm(tls, size, type);
 | 
						|
}
 | 
						|
 | 
						|
static void xwrite_handshake_record(tls_state_t *tls, unsigned size)
 | 
						|
{
 | 
						|
	uint8_t *buf = tls->outbuf + OUTBUF_PFX;
 | 
						|
	struct record_hdr *xhdr = (void*)(buf - RECHDR_LEN);
 | 
						|
 | 
						|
	xhdr->type = RECORD_TYPE_HANDSHAKE;
 | 
						|
	xhdr->proto_maj = TLS_MAJ;
 | 
						|
	xhdr->proto_min = TLS_MIN;
 | 
						|
	xhdr->len16_hi = size >> 8;
 | 
						|
	xhdr->len16_lo = size & 0xff;
 | 
						|
	dump_raw_out(">> %s\n", xhdr, RECHDR_LEN + size);
 | 
						|
	xwrite(tls->ofd, xhdr, RECHDR_LEN + size);
 | 
						|
	dbg("wrote %u bytes\n", (int)RECHDR_LEN + size);
 | 
						|
}
 | 
						|
 | 
						|
static void xwrite_and_update_handshake_hash(tls_state_t *tls, unsigned size)
 | 
						|
{
 | 
						|
	if (!(tls->flags & ENCRYPT_ON_WRITE)) {
 | 
						|
		uint8_t *buf;
 | 
						|
 | 
						|
		xwrite_handshake_record(tls, size);
 | 
						|
		/* Handshake hash does not include record headers */
 | 
						|
		buf = tls->outbuf + OUTBUF_PFX;
 | 
						|
		hash_handshake(tls, ">> hash:%s", buf, size);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	xwrite_encrypted(tls, size, RECORD_TYPE_HANDSHAKE);
 | 
						|
}
 | 
						|
 | 
						|
static int tls_has_buffered_record(tls_state_t *tls)
 | 
						|
{
 | 
						|
	int buffered = tls->buffered_size;
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	int rec_size;
 | 
						|
 | 
						|
	if (buffered < RECHDR_LEN)
 | 
						|
		return 0;
 | 
						|
	xhdr = (void*)(tls->inbuf + tls->ofs_to_buffered);
 | 
						|
	rec_size = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
 | 
						|
	if (buffered < rec_size)
 | 
						|
		return 0;
 | 
						|
	return rec_size;
 | 
						|
}
 | 
						|
 | 
						|
static const char *alert_text(int code)
 | 
						|
{
 | 
						|
	switch (code) {
 | 
						|
	case 20:  return "bad MAC";
 | 
						|
	case 50:  return "decode error";
 | 
						|
	case 51:  return "decrypt error";
 | 
						|
	case 40:  return "handshake failure";
 | 
						|
	case 112: return "unrecognized name";
 | 
						|
	}
 | 
						|
	return itoa(code);
 | 
						|
}
 | 
						|
 | 
						|
static void tls_aesgcm_decrypt(tls_state_t *tls, uint8_t *buf, int size)
 | 
						|
{
 | 
						|
#define COUNTER(v) (*(uint32_t*)(v + 12))
 | 
						|
 | 
						|
	//uint8_t aad[13 + 3] ALIGNED_long; /* +3 creates [16] buffer, simplifying GHASH() */
 | 
						|
	uint8_t nonce[12 + 4] ALIGNED_long; /* +4 creates space for AES block counter */
 | 
						|
	uint8_t scratch[AES_BLOCK_SIZE] ALIGNED_long; //[16]
 | 
						|
	//uint8_t authtag[AES_BLOCK_SIZE] ALIGNED_long; //[16]
 | 
						|
	unsigned remaining;
 | 
						|
	unsigned cnt;
 | 
						|
 | 
						|
	//memcpy(aad, buf, 8);
 | 
						|
	//aad[8] = type;
 | 
						|
	//aad[9] = TLS_MAJ;
 | 
						|
	//aad[10] = TLS_MIN;
 | 
						|
	//aad[11] = size >> 8;
 | 
						|
	///* set aad[12], and clear aad[13..15] */
 | 
						|
	//COUNTER(aad) = SWAP_LE32(size & 0xff);
 | 
						|
 | 
						|
	memcpy(nonce,     tls->server_write_IV, 4);
 | 
						|
	memcpy(nonce + 4, buf, 8);
 | 
						|
 | 
						|
	cnt = 1;
 | 
						|
	remaining = size;
 | 
						|
	while (remaining != 0) {
 | 
						|
		unsigned n;
 | 
						|
 | 
						|
		cnt++;
 | 
						|
		COUNTER(nonce) = htonl(cnt); /* yes, first cnt here is 2 (!) */
 | 
						|
		aes_encrypt_one_block(&tls->aes_decrypt, nonce, scratch);
 | 
						|
		n = remaining > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : remaining;
 | 
						|
		xorbuf3(buf, scratch, buf + 8, n);
 | 
						|
		buf += n;
 | 
						|
		remaining -= n;
 | 
						|
	}
 | 
						|
 | 
						|
	//aesgcm_GHASH(tls->H, aad, tls->inbuf + RECHDR_LEN, size, authtag);
 | 
						|
	//COUNTER(nonce) = htonl(1);
 | 
						|
	//aes_encrypt_one_block(&tls->aes_encrypt, nonce, scratch);
 | 
						|
	//xorbuf_aligned_AES_BLOCK_SIZE(authtag, scratch);
 | 
						|
 | 
						|
	//memcmp(buf, authtag, sizeof(authtag)) || DIE("HASH DOES NOT MATCH!");
 | 
						|
#undef COUNTER
 | 
						|
}
 | 
						|
 | 
						|
static int tls_xread_record(tls_state_t *tls, const char *expected)
 | 
						|
{
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	int sz;
 | 
						|
	int total;
 | 
						|
	int target;
 | 
						|
 | 
						|
 again:
 | 
						|
	dbg("ofs_to_buffered:%u buffered_size:%u\n", tls->ofs_to_buffered, tls->buffered_size);
 | 
						|
	total = tls->buffered_size;
 | 
						|
	if (total != 0) {
 | 
						|
		memmove(tls->inbuf, tls->inbuf + tls->ofs_to_buffered, total);
 | 
						|
		//dbg("<< remaining at %d [%d] ", tls->ofs_to_buffered, total);
 | 
						|
		//dump_raw_in("<< %s\n", tls->inbuf, total);
 | 
						|
	}
 | 
						|
	errno = 0;
 | 
						|
	target = MAX_INBUF;
 | 
						|
	for (;;) {
 | 
						|
		int rem;
 | 
						|
 | 
						|
		if (total >= RECHDR_LEN && target == MAX_INBUF) {
 | 
						|
			xhdr = (void*)tls->inbuf;
 | 
						|
			target = RECHDR_LEN + (0x100 * xhdr->len16_hi + xhdr->len16_lo);
 | 
						|
 | 
						|
			if (target > MAX_INBUF /* malformed input (too long) */
 | 
						|
			 || xhdr->proto_maj != TLS_MAJ
 | 
						|
			 || xhdr->proto_min != TLS_MIN
 | 
						|
			) {
 | 
						|
				sz = total < target ? total : target;
 | 
						|
				bad_record_die(tls, expected, sz);
 | 
						|
			}
 | 
						|
			dbg("xhdr type:%d ver:%d.%d len:%d\n",
 | 
						|
				xhdr->type, xhdr->proto_maj, xhdr->proto_min,
 | 
						|
				0x100 * xhdr->len16_hi + xhdr->len16_lo
 | 
						|
			);
 | 
						|
		}
 | 
						|
		/* if total >= target, we have a full packet (and possibly more)... */
 | 
						|
		if (total - target >= 0)
 | 
						|
			break;
 | 
						|
		/* input buffer is grown only as needed */
 | 
						|
		rem = tls->inbuf_size - total;
 | 
						|
		if (rem == 0) {
 | 
						|
			tls->inbuf_size += MAX_INBUF / 8;
 | 
						|
			if (tls->inbuf_size > MAX_INBUF)
 | 
						|
				tls->inbuf_size = MAX_INBUF;
 | 
						|
			dbg("inbuf_size:%d\n", tls->inbuf_size);
 | 
						|
			rem = tls->inbuf_size - total;
 | 
						|
			tls->inbuf = xrealloc(tls->inbuf, tls->inbuf_size);
 | 
						|
		}
 | 
						|
		sz = safe_read(tls->ifd, tls->inbuf + total, rem);
 | 
						|
		if (sz <= 0) {
 | 
						|
			if (sz == 0 && total == 0) {
 | 
						|
				/* "Abrupt" EOF, no TLS shutdown (seen from kernel.org) */
 | 
						|
				dbg("EOF (without TLS shutdown) from peer\n");
 | 
						|
				tls->buffered_size = 0;
 | 
						|
				goto end;
 | 
						|
			}
 | 
						|
			bb_perror_msg_and_die("short read, have only %d", total);
 | 
						|
		}
 | 
						|
		dump_raw_in("<< %s\n", tls->inbuf + total, sz);
 | 
						|
		total += sz;
 | 
						|
	}
 | 
						|
	tls->buffered_size = total - target;
 | 
						|
	tls->ofs_to_buffered = target;
 | 
						|
	//dbg("<< stashing at %d [%d] ", tls->ofs_to_buffered, tls->buffered_size);
 | 
						|
	//dump_hex("<< %s\n", tls->inbuf + tls->ofs_to_buffered, tls->buffered_size);
 | 
						|
 | 
						|
	sz = target - RECHDR_LEN;
 | 
						|
 | 
						|
	/* Needs to be decrypted? */
 | 
						|
	if (tls->min_encrypted_len_on_read != 0) {
 | 
						|
		if (sz < (int)tls->min_encrypted_len_on_read)
 | 
						|
			bb_error_msg_and_die("bad encrypted len:%u", sz);
 | 
						|
 | 
						|
		if (tls->flags & ENCRYPTION_AESGCM) {
 | 
						|
			/* AESGCM */
 | 
						|
			uint8_t *p = tls->inbuf + RECHDR_LEN;
 | 
						|
 | 
						|
			sz -= 8 + AES_BLOCK_SIZE; /* we will overwrite nonce, drop hash */
 | 
						|
			tls_aesgcm_decrypt(tls, p, sz);
 | 
						|
			dbg("encrypted size:%u\n", sz);
 | 
						|
		} else
 | 
						|
		if (tls->min_encrypted_len_on_read > TLS_MAC_SIZE(tls)) {
 | 
						|
			/* AES+SHA */
 | 
						|
			uint8_t *p = tls->inbuf + RECHDR_LEN;
 | 
						|
			int padding_len;
 | 
						|
 | 
						|
			if (sz & (AES_BLOCK_SIZE-1))
 | 
						|
				bb_error_msg_and_die("bad encrypted len:%u", sz);
 | 
						|
 | 
						|
			/* Decrypt content+MAC+padding, moving it over IV in the process */
 | 
						|
			sz -= AES_BLOCK_SIZE; /* we will overwrite IV now */
 | 
						|
			aes_cbc_decrypt(
 | 
						|
				&tls->aes_decrypt, /* selects 128/256 */
 | 
						|
				p, /* IV */
 | 
						|
				p + AES_BLOCK_SIZE, sz, /* ciphertext */
 | 
						|
				p /* plaintext */
 | 
						|
			);
 | 
						|
			padding_len = p[sz - 1];
 | 
						|
			dbg("encrypted size:%u type:0x%02x padding_length:0x%02x\n", sz, p[0], padding_len);
 | 
						|
			padding_len++;
 | 
						|
			sz -= TLS_MAC_SIZE(tls) + padding_len; /* drop MAC and padding */
 | 
						|
		} else {
 | 
						|
			/* if nonzero, then it's TLS_RSA_WITH_NULL_SHA256: drop MAC */
 | 
						|
			/* else: no encryption yet on input, subtract zero = NOP */
 | 
						|
			sz -= tls->min_encrypted_len_on_read;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (sz < 0)
 | 
						|
		bb_simple_error_msg_and_die("encrypted data too short");
 | 
						|
 | 
						|
	//dump_hex("<< %s\n", tls->inbuf, RECHDR_LEN + sz);
 | 
						|
 | 
						|
	xhdr = (void*)tls->inbuf;
 | 
						|
	if (xhdr->type == RECORD_TYPE_ALERT && sz >= 2) {
 | 
						|
		uint8_t *p = tls->inbuf + RECHDR_LEN;
 | 
						|
		dbg("ALERT size:%d level:%d description:%d\n", sz, p[0], p[1]);
 | 
						|
		if (p[0] == 2) { /* fatal */
 | 
						|
			bb_error_msg_and_die("TLS %s from peer (alert code %d): %s",
 | 
						|
				"error",
 | 
						|
				p[1], alert_text(p[1])
 | 
						|
			);
 | 
						|
		}
 | 
						|
		if (p[0] == 1) { /* warning */
 | 
						|
			if (p[1] == 0) { /* "close_notify" warning: it's EOF */
 | 
						|
				dbg("EOF (TLS encoded) from peer\n");
 | 
						|
				sz = 0;
 | 
						|
				goto end;
 | 
						|
			}
 | 
						|
//This possibly needs to be cached and shown only if
 | 
						|
//a fatal alert follows
 | 
						|
//			bb_error_msg("TLS %s from peer (alert code %d): %s",
 | 
						|
//				"warning",
 | 
						|
//				p[1], alert_text(p[1])
 | 
						|
//			);
 | 
						|
			/* discard it, get next record */
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		/* p[0] not 1 or 2: not defined in protocol */
 | 
						|
		sz = 0;
 | 
						|
		goto end;
 | 
						|
	}
 | 
						|
 | 
						|
	/* RFC 5246 is not saying it explicitly, but sha256 hash
 | 
						|
	 * in our FINISHED record must include data of incoming packets too!
 | 
						|
	 */
 | 
						|
	if (tls->inbuf[0] == RECORD_TYPE_HANDSHAKE
 | 
						|
/* HANDSHAKE HASH: */
 | 
						|
	// && do_we_know_which_hash_to_use /* server_hello() might not know it in the future! */
 | 
						|
	) {
 | 
						|
		hash_handshake(tls, "<< hash:%s", tls->inbuf + RECHDR_LEN, sz);
 | 
						|
	}
 | 
						|
 end:
 | 
						|
	dbg("got block len:%u\n", sz);
 | 
						|
	return sz;
 | 
						|
}
 | 
						|
 | 
						|
static void binary_to_pstm(pstm_int *pstm_n, uint8_t *bin_ptr, unsigned len)
 | 
						|
{
 | 
						|
	pstm_init_for_read_unsigned_bin(/*pool:*/ NULL, pstm_n, len);
 | 
						|
	pstm_read_unsigned_bin(pstm_n, bin_ptr, len);
 | 
						|
	//return bin_ptr + len;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * DER parsing routines
 | 
						|
 */
 | 
						|
static unsigned get_der_len(uint8_t **bodyp, uint8_t *der, uint8_t *end)
 | 
						|
{
 | 
						|
	unsigned len, len1;
 | 
						|
 | 
						|
	if (end - der < 2)
 | 
						|
		xfunc_die();
 | 
						|
//	if ((der[0] & 0x1f) == 0x1f) /* not single-byte item code? */
 | 
						|
//		xfunc_die();
 | 
						|
 | 
						|
	len = der[1]; /* maybe it's short len */
 | 
						|
	if (len >= 0x80) {
 | 
						|
		/* no, it's long */
 | 
						|
 | 
						|
		if (len == 0x80 || end - der < (int)(len - 0x7e)) {
 | 
						|
			/* 0x80 is "0 bytes of len", invalid DER: must use short len if can */
 | 
						|
			/* need 3 or 4 bytes for 81, 82 */
 | 
						|
			xfunc_die();
 | 
						|
		}
 | 
						|
 | 
						|
		len1 = der[2]; /* if (len == 0x81) it's "ii 81 xx", fetch xx */
 | 
						|
		if (len > 0x82) {
 | 
						|
			/* >0x82 is "3+ bytes of len", should not happen realistically */
 | 
						|
			xfunc_die();
 | 
						|
		}
 | 
						|
		if (len == 0x82) { /* it's "ii 82 xx yy" */
 | 
						|
			len1 = 0x100*len1 + der[3];
 | 
						|
			der += 1; /* skip [yy] */
 | 
						|
		}
 | 
						|
		der += 1; /* skip [xx] */
 | 
						|
		len = len1;
 | 
						|
//		if (len < 0x80)
 | 
						|
//			xfunc_die(); /* invalid DER: must use short len if can */
 | 
						|
	}
 | 
						|
	der += 2; /* skip [code]+[1byte] */
 | 
						|
 | 
						|
	if (end - der < (int)len)
 | 
						|
		xfunc_die();
 | 
						|
	*bodyp = der;
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t *enter_der_item(uint8_t *der, uint8_t **endp)
 | 
						|
{
 | 
						|
	uint8_t *new_der;
 | 
						|
	unsigned len = get_der_len(&new_der, der, *endp);
 | 
						|
	dbg_der("entered der @%p:0x%02x len:%u inner_byte @%p:0x%02x\n", der, der[0], len, new_der, new_der[0]);
 | 
						|
	/* Move "end" position to cover only this item */
 | 
						|
	*endp = new_der + len;
 | 
						|
	return new_der;
 | 
						|
}
 | 
						|
 | 
						|
static uint8_t *skip_der_item(uint8_t *der, uint8_t *end)
 | 
						|
{
 | 
						|
	uint8_t *new_der;
 | 
						|
	unsigned len = get_der_len(&new_der, der, end);
 | 
						|
	/* Skip body */
 | 
						|
	new_der += len;
 | 
						|
	dbg_der("skipped der 0x%02x, next byte 0x%02x\n", der[0], new_der[0]);
 | 
						|
	return new_der;
 | 
						|
}
 | 
						|
 | 
						|
static void der_binary_to_pstm(pstm_int *pstm_n, uint8_t *der, uint8_t *end)
 | 
						|
{
 | 
						|
	uint8_t *bin_ptr;
 | 
						|
	unsigned len = get_der_len(&bin_ptr, der, end);
 | 
						|
 | 
						|
	dbg_der("binary bytes:%u, first:0x%02x\n", len, bin_ptr[0]);
 | 
						|
	binary_to_pstm(pstm_n, bin_ptr, len);
 | 
						|
}
 | 
						|
 | 
						|
static void find_key_in_der_cert(tls_state_t *tls, uint8_t *der, int len)
 | 
						|
{
 | 
						|
/* Certificate is a DER-encoded data structure. Each DER element has a length,
 | 
						|
 * which makes it easy to skip over large compound elements of any complexity
 | 
						|
 * without parsing them. Example: partial decode of kernel.org certificate:
 | 
						|
 *  SEQ 0x05ac/1452 bytes (Certificate): 308205ac
 | 
						|
 *    SEQ 0x0494/1172 bytes (tbsCertificate): 30820494
 | 
						|
 *      [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0] 3 bytes: a003
 | 
						|
 *        INTEGER (version): 0201 02
 | 
						|
 *      INTEGER 0x11 bytes (serialNumber): 0211 00 9f85bf664b0cddafca508679501b2be4
 | 
						|
 *      //^^^^^^note: matrixSSL also allows [ASN_CONTEXT_SPECIFIC | ASN_PRIMITIVE | 2] = 0x82 type
 | 
						|
 *      SEQ 0x0d bytes (signatureAlgo): 300d
 | 
						|
 *        OID 9 bytes: 0609 2a864886f70d01010b (OID_SHA256_RSA_SIG 42.134.72.134.247.13.1.1.11)
 | 
						|
 *        NULL: 0500
 | 
						|
 *      SEQ 0x5f bytes (issuer): 305f
 | 
						|
 *        SET 11 bytes: 310b
 | 
						|
 *          SEQ 9 bytes: 3009
 | 
						|
 *            OID 3 bytes: 0603 550406
 | 
						|
 *            Printable string "FR": 1302 4652
 | 
						|
 *        SET 14 bytes: 310e
 | 
						|
 *          SEQ 12 bytes: 300c
 | 
						|
 *            OID 3 bytes: 0603 550408
 | 
						|
 *            Printable string "Paris": 1305 5061726973
 | 
						|
 *        SET 14 bytes: 310e
 | 
						|
 *          SEQ 12 bytes: 300c
 | 
						|
 *            OID 3 bytes: 0603 550407
 | 
						|
 *            Printable string "Paris": 1305 5061726973
 | 
						|
 *        SET 14 bytes: 310e
 | 
						|
 *          SEQ 12 bytes: 300c
 | 
						|
 *            OID 3 bytes: 0603 55040a
 | 
						|
 *            Printable string "Gandi": 1305 47616e6469
 | 
						|
 *        SET 32 bytes: 3120
 | 
						|
 *          SEQ 30 bytes: 301e
 | 
						|
 *            OID 3 bytes: 0603 550403
 | 
						|
 *            Printable string "Gandi Standard SSL CA 2": 1317 47616e6469205374616e646172642053534c2043412032
 | 
						|
 *      SEQ 30 bytes (validity): 301e
 | 
						|
 *        TIME "161011000000Z": 170d 3136313031313030303030305a
 | 
						|
 *        TIME "191011235959Z": 170d 3139313031313233353935395a
 | 
						|
 *      SEQ 0x5b/91 bytes (subject): 305b //I did not decode this
 | 
						|
 *          3121301f060355040b1318446f6d61696e20436f
 | 
						|
 *          6e74726f6c2056616c6964617465643121301f06
 | 
						|
 *          0355040b1318506f73697469766553534c204d75
 | 
						|
 *          6c74692d446f6d61696e31133011060355040313
 | 
						|
 *          0a6b65726e656c2e6f7267
 | 
						|
 *      SEQ 0x01a2/418 bytes (subjectPublicKeyInfo): 308201a2
 | 
						|
 *        SEQ 13 bytes (algorithm): 300d
 | 
						|
 *          OID 9 bytes: 0609 2a864886f70d010101 (OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1)
 | 
						|
 *          NULL: 0500
 | 
						|
 *        BITSTRING 0x018f/399 bytes (publicKey): 0382018f
 | 
						|
 *          ????: 00
 | 
						|
 *          //after the zero byte, it appears key itself uses DER encoding:
 | 
						|
 *          SEQ 0x018a/394 bytes: 3082018a
 | 
						|
 *            INTEGER 0x0181/385 bytes (modulus): 02820181
 | 
						|
 *                  00b1ab2fc727a3bef76780c9349bf3
 | 
						|
 *                  ...24 more blocks of 15 bytes each...
 | 
						|
 *                  90e895291c6bc8693b65
 | 
						|
 *            INTEGER 3 bytes (exponent): 0203 010001
 | 
						|
 *      [ASN_CONTEXT_SPECIFIC | ASN_CONSTRUCTED | 0x3] 0x01e5 bytes (X509v3 extensions): a38201e5
 | 
						|
 *        SEQ 0x01e1 bytes: 308201e1
 | 
						|
 *        ...
 | 
						|
 * Certificate is a sequence of three elements:
 | 
						|
 *	tbsCertificate (SEQ)
 | 
						|
 *	signatureAlgorithm (AlgorithmIdentifier)
 | 
						|
 *	signatureValue (BIT STRING)
 | 
						|
 *
 | 
						|
 * In turn, tbsCertificate is a sequence of:
 | 
						|
 *	version
 | 
						|
 *	serialNumber
 | 
						|
 *	signatureAlgo (AlgorithmIdentifier)
 | 
						|
 *	issuer (Name, has complex structure)
 | 
						|
 *	validity (Validity, SEQ of two Times)
 | 
						|
 *	subject (Name)
 | 
						|
 *	subjectPublicKeyInfo (SEQ)
 | 
						|
 *	...
 | 
						|
 *
 | 
						|
 * subjectPublicKeyInfo is a sequence of:
 | 
						|
 *	algorithm (AlgorithmIdentifier)
 | 
						|
 *	publicKey (BIT STRING)
 | 
						|
 *
 | 
						|
 * We need Certificate.tbsCertificate.subjectPublicKeyInfo.publicKey
 | 
						|
 *
 | 
						|
 * Example of an ECDSA key:
 | 
						|
 *      SEQ 0x59 bytes (subjectPublicKeyInfo): 3059
 | 
						|
 *        SEQ 0x13 bytes (algorithm): 3013
 | 
						|
 *          OID 7 bytes: 0607 2a8648ce3d0201   (OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1)
 | 
						|
 *          OID 8 bytes: 0608 2a8648ce3d030107 (OID_EC_prime256v1 42.134.72.206.61.3.1.7)
 | 
						|
 *        BITSTRING 0x42 bytes (publicKey): 0342
 | 
						|
 *          0004 53af f65e 50cc 7959 7e29 0171 c75c
 | 
						|
 *          7335 e07d f45b 9750 b797 3a38 aebb 2ac6
 | 
						|
 *          8329 2748 e77e 41cb d482 2ce6 05ec a058
 | 
						|
 *          f3ab d561 2f4c d845 9ad3 7252 e3de bd3b
 | 
						|
 *          9012
 | 
						|
 */
 | 
						|
	uint8_t *end = der + len;
 | 
						|
 | 
						|
	/* enter "Certificate" item: [der, end) will be only Cert */
 | 
						|
	der = enter_der_item(der, &end);
 | 
						|
 | 
						|
	/* enter "tbsCertificate" item: [der, end) will be only tbsCert */
 | 
						|
	der = enter_der_item(der, &end);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Skip version field only if it is present. For a v1 certificate, the
 | 
						|
	 * version field won't be present since v1 is the default value for the
 | 
						|
	 * version field and fields with default values should be omitted (see
 | 
						|
	 * RFC 5280 sections 4.1 and 4.1.2.1). If the version field is present
 | 
						|
	 * it will have a tag class of 2 (context-specific), bit 6 as 1
 | 
						|
	 * (constructed), and a tag number of 0 (see ITU-T X.690 sections 8.1.2
 | 
						|
	 * and 8.14).
 | 
						|
	 */
 | 
						|
	/* bits 7-6: 10 */
 | 
						|
	/* bit 5: 1 */
 | 
						|
	/* bits 4-0: 00000 */
 | 
						|
	if (der[0] == 0xa0)
 | 
						|
		der = skip_der_item(der, end); /* version */
 | 
						|
 | 
						|
	/* skip up to subjectPublicKeyInfo */
 | 
						|
	der = skip_der_item(der, end); /* serialNumber */
 | 
						|
	der = skip_der_item(der, end); /* signatureAlgo */
 | 
						|
	der = skip_der_item(der, end); /* issuer */
 | 
						|
	der = skip_der_item(der, end); /* validity */
 | 
						|
	der = skip_der_item(der, end); /* subject */
 | 
						|
 | 
						|
	/* enter subjectPublicKeyInfo */
 | 
						|
	der = enter_der_item(der, &end);
 | 
						|
	{ /* check subjectPublicKeyInfo.algorithm */
 | 
						|
		static const uint8_t OID_RSA_KEY_ALG[] ALIGN1 = {
 | 
						|
			0x30,0x0d, // SEQ 13 bytes
 | 
						|
			0x06,0x09, 0x2a,0x86,0x48,0x86,0xf7,0x0d,0x01,0x01,0x01, //OID_RSA_KEY_ALG 42.134.72.134.247.13.1.1.1
 | 
						|
			//0x05,0x00, // NULL
 | 
						|
		};
 | 
						|
		static const uint8_t OID_ECDSA_KEY_ALG[] ALIGN1 = {
 | 
						|
			0x30,0x13, // SEQ 0x13 bytes
 | 
						|
			0x06,0x07, 0x2a,0x86,0x48,0xce,0x3d,0x02,0x01,      //OID_ECDSA_KEY_ALG 42.134.72.206.61.2.1
 | 
						|
		//allow any curve code for now...
 | 
						|
		//	0x06,0x08, 0x2a,0x86,0x48,0xce,0x3d,0x03,0x01,0x07, //OID_EC_prime256v1 42.134.72.206.61.3.1.7
 | 
						|
			//RFC 3279:
 | 
						|
			//42.134.72.206.61.3     is ellipticCurve
 | 
						|
			//42.134.72.206.61.3.0   is c-TwoCurve
 | 
						|
			//42.134.72.206.61.3.1   is primeCurve
 | 
						|
			//42.134.72.206.61.3.1.7 is curve_secp256r1
 | 
						|
		};
 | 
						|
		if (memcmp(der, OID_RSA_KEY_ALG, sizeof(OID_RSA_KEY_ALG)) == 0) {
 | 
						|
			dbg("RSA key\n");
 | 
						|
			tls->flags |= GOT_CERT_RSA_KEY_ALG;
 | 
						|
		} else
 | 
						|
		if (memcmp(der, OID_ECDSA_KEY_ALG, sizeof(OID_ECDSA_KEY_ALG)) == 0) {
 | 
						|
			dbg("ECDSA key\n");
 | 
						|
			//UNUSED: tls->flags |= GOT_CERT_ECDSA_KEY_ALG;
 | 
						|
		} else
 | 
						|
			bb_simple_error_msg_and_die("not RSA or ECDSA cert");
 | 
						|
	}
 | 
						|
 | 
						|
	if (tls->flags & GOT_CERT_RSA_KEY_ALG) {
 | 
						|
		/* parse RSA key: */
 | 
						|
	//based on getAsnRsaPubKey(), pkcs1ParsePrivBin() is also of note
 | 
						|
		/* skip subjectPublicKeyInfo.algorithm */
 | 
						|
		der = skip_der_item(der, end);
 | 
						|
		/* enter subjectPublicKeyInfo.publicKey */
 | 
						|
		//die_if_not_this_der_type(der, end, 0x03); /* must be BITSTRING */
 | 
						|
		der = enter_der_item(der, &end);
 | 
						|
 | 
						|
		dbg("key bytes:%u, first:0x%02x\n", (int)(end - der), der[0]);
 | 
						|
		if (end - der < 14)
 | 
						|
			xfunc_die();
 | 
						|
		/* example format:
 | 
						|
		 * ignore bits: 00
 | 
						|
		 * SEQ 0x018a/394 bytes: 3082018a
 | 
						|
		 *   INTEGER 0x0181/385 bytes (modulus): 02820181 XX...XXX
 | 
						|
		 *   INTEGER 3 bytes (exponent): 0203 010001
 | 
						|
		 */
 | 
						|
		if (*der != 0) /* "ignore bits", should be 0 */
 | 
						|
			xfunc_die();
 | 
						|
		der++;
 | 
						|
		der = enter_der_item(der, &end); /* enter SEQ */
 | 
						|
		/* memset(tls->hsd->server_rsa_pub_key, 0, sizeof(tls->hsd->server_rsa_pub_key)); - already is */
 | 
						|
		der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.N, der, end); /* modulus */
 | 
						|
		der = skip_der_item(der, end);
 | 
						|
		der_binary_to_pstm(&tls->hsd->server_rsa_pub_key.e, der, end); /* exponent */
 | 
						|
		tls->hsd->server_rsa_pub_key.size = pstm_unsigned_bin_size(&tls->hsd->server_rsa_pub_key.N);
 | 
						|
		dbg("server_rsa_pub_key.size:%d\n", tls->hsd->server_rsa_pub_key.size);
 | 
						|
	}
 | 
						|
	/* else: ECDSA key. It is not used for generating encryption keys,
 | 
						|
	 * it is used only to sign the EC public key (which comes in ServerKey message).
 | 
						|
	 * Since we do not verify cert validity, verifying signature on EC public key
 | 
						|
	 * wouldn't add any security. Thus, we do nothing here.
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * TLS Handshake routines
 | 
						|
 */
 | 
						|
static int tls_xread_handshake_block(tls_state_t *tls, int min_len)
 | 
						|
{
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	int len = tls_xread_record(tls, "handshake record");
 | 
						|
 | 
						|
	xhdr = (void*)tls->inbuf;
 | 
						|
	if (len < min_len
 | 
						|
	 || xhdr->type != RECORD_TYPE_HANDSHAKE
 | 
						|
	) {
 | 
						|
		bad_record_die(tls, "handshake record", len);
 | 
						|
	}
 | 
						|
	dbg("got HANDSHAKE\n");
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static ALWAYS_INLINE void fill_handshake_record_hdr(void *buf, unsigned type, unsigned len)
 | 
						|
{
 | 
						|
	struct handshake_hdr {
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
	} *h = buf;
 | 
						|
 | 
						|
	len -= 4;
 | 
						|
	h->type = type;
 | 
						|
	h->len24_hi  = len >> 16;
 | 
						|
	h->len24_mid = len >> 8;
 | 
						|
	h->len24_lo  = len & 0xff;
 | 
						|
}
 | 
						|
 | 
						|
static void send_client_hello_and_alloc_hsd(tls_state_t *tls, const char *sni)
 | 
						|
{
 | 
						|
#define NUM_CIPHERS (0 \
 | 
						|
	+ 4 * ENABLE_FEATURE_TLS_SHA1 \
 | 
						|
	+ ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 \
 | 
						|
	+ ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256 \
 | 
						|
	+ ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 \
 | 
						|
	+ ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256 \
 | 
						|
	+ 2 * ENABLE_FEATURE_TLS_SHA1 \
 | 
						|
	+ ALLOW_RSA_WITH_AES_128_CBC_SHA256 \
 | 
						|
	+ ALLOW_RSA_WITH_AES_256_CBC_SHA256 \
 | 
						|
	+ ALLOW_RSA_WITH_AES_128_GCM_SHA256 \
 | 
						|
	+ ALLOW_RSA_NULL_SHA256 \
 | 
						|
	)
 | 
						|
	static const uint8_t ciphers[] = {
 | 
						|
		0x00,2 * (1 + NUM_CIPHERS), //len16_be
 | 
						|
		0x00,0xFF, //not a cipher - TLS_EMPTY_RENEGOTIATION_INFO_SCSV
 | 
						|
		/* ^^^^^^ RFC 5746 Renegotiation Indication Extension - some servers will refuse to work with us otherwise */
 | 
						|
#if ENABLE_FEATURE_TLS_SHA1
 | 
						|
		0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
 | 
						|
		0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
 | 
						|
		0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
 | 
						|
		0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
 | 
						|
	//	0xC0,0x18, //   TLS_ECDH_anon_WITH_AES_128_CBC_SHA
 | 
						|
	//	0xC0,0x19, //   TLS_ECDH_anon_WITH_AES_256_CBC_SHA
 | 
						|
#endif
 | 
						|
#if ALLOW_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
 | 
						|
		0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
 | 
						|
#endif
 | 
						|
	//	0xC0,0x24, //   TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
#if ALLOW_ECDHE_RSA_WITH_AES_128_CBC_SHA256
 | 
						|
		0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
 | 
						|
#endif
 | 
						|
	//	0xC0,0x28, //   TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
#if ALLOW_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
 | 
						|
		0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
 | 
						|
#endif
 | 
						|
	//	0xC0,0x2C, //   TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
 | 
						|
//TODO: GCM_SHA384 ciphers can be supported, only need sha384-based PRF?
 | 
						|
#if ALLOW_ECDHE_RSA_WITH_AES_128_GCM_SHA256
 | 
						|
		0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
 | 
						|
#endif
 | 
						|
	//	0xC0,0x30, //   TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
 | 
						|
	//possibly these too:
 | 
						|
#if ENABLE_FEATURE_TLS_SHA1
 | 
						|
	//	0xC0,0x35, //   TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
 | 
						|
	//	0xC0,0x36, //   TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
 | 
						|
#endif
 | 
						|
	//	0xC0,0x37, //   TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
 | 
						|
	//	0xC0,0x38, //   TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
#if ENABLE_FEATURE_TLS_SHA1
 | 
						|
		0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
 | 
						|
		0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
 | 
						|
#endif
 | 
						|
#if ALLOW_RSA_WITH_AES_128_CBC_SHA256
 | 
						|
		0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
 | 
						|
#endif
 | 
						|
#if ALLOW_RSA_WITH_AES_256_CBC_SHA256
 | 
						|
		0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
 | 
						|
#endif
 | 
						|
#if ALLOW_RSA_WITH_AES_128_GCM_SHA256
 | 
						|
		0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
 | 
						|
#endif
 | 
						|
	//	0x00,0x9D, //   TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
 | 
						|
#if ALLOW_RSA_NULL_SHA256
 | 
						|
		0x00,0x3B, //   TLS_RSA_WITH_NULL_SHA256
 | 
						|
#endif
 | 
						|
		0x01,0x00, //not a cipher - comprtypes_len, comprtype
 | 
						|
	};
 | 
						|
	static const uint8_t supported_groups[] = {
 | 
						|
		0x00,0x0a, //extension_type: "supported_groups"
 | 
						|
		0x00,2 * (1 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //ext len
 | 
						|
		0x00,2 * (0 + ALLOW_CURVE_P256 + ALLOW_CURVE_X25519), //list len
 | 
						|
#if ALLOW_CURVE_P256
 | 
						|
		0x00,0x17, //curve_secp256r1 (aka P256, aka prime256v1)
 | 
						|
#endif
 | 
						|
		//0x00,0x18, //curve_secp384r1
 | 
						|
		//0x00,0x19, //curve_secp521r1
 | 
						|
#if ALLOW_CURVE_X25519
 | 
						|
		0x00,0x1d, //curve_x25519 (RFC 7748)
 | 
						|
#endif
 | 
						|
		//0x00,0x1e, //curve_x448 (RFC 7748)
 | 
						|
	};
 | 
						|
	//static const uint8_t signature_algorithms[] = {
 | 
						|
	//	000d
 | 
						|
	//	0020
 | 
						|
	//	001e
 | 
						|
	//	0601 0602 0603 0501 0502 0503 0401 0402 0403 0301 0302 0303 0201 0202 0203
 | 
						|
	//};
 | 
						|
 | 
						|
	struct client_hello {
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
		uint8_t proto_maj, proto_min;
 | 
						|
		uint8_t rand32[32];
 | 
						|
		uint8_t session_id_len;
 | 
						|
		/* uint8_t session_id[]; */
 | 
						|
		uint8_t cipherid_len16_hi, cipherid_len16_lo;
 | 
						|
		uint8_t cipherid[2 * (1 + NUM_CIPHERS)]; /* actually variable */
 | 
						|
		uint8_t comprtypes_len;
 | 
						|
		uint8_t comprtypes[1]; /* actually variable */
 | 
						|
		/* Extensions (SNI shown):
 | 
						|
		 * hi,lo // len of all extensions
 | 
						|
		 *   00,00 // extension_type: "Server Name"
 | 
						|
		 *   00,0e // list len (there can be more than one SNI)
 | 
						|
		 *     00,0c // len of 1st Server Name Indication
 | 
						|
		 *       00    // name type: host_name
 | 
						|
		 *       00,09   // name len
 | 
						|
		 *       "localhost" // name
 | 
						|
		 */
 | 
						|
// GNU Wget 1.18 to cdn.kernel.org sends these extensions:
 | 
						|
// 0055
 | 
						|
//   0005 0005 0100000000 - status_request
 | 
						|
//   0000 0013 0011 00 000e 63646e 2e 6b65726e656c 2e 6f7267 - server_name
 | 
						|
//   ff01 0001 00 - renegotiation_info
 | 
						|
//   0023 0000 - session_ticket
 | 
						|
//   000a 0008 0006001700180019 - supported_groups
 | 
						|
//   000b 0002 0100 - ec_point_formats
 | 
						|
//   000d 0016 0014 0401 0403 0501 0503 0601 0603 0301 0303 0201 0203 - signature_algorithms
 | 
						|
// wolfssl library sends this option, RFC 7627 (closes a security weakness, some servers may require it. TODO?):
 | 
						|
//   0017 0000 - extended master secret
 | 
						|
	};
 | 
						|
	struct client_hello *record;
 | 
						|
	uint8_t *ptr;
 | 
						|
	int len;
 | 
						|
	int ext_len;
 | 
						|
	int sni_len = sni ? strnlen(sni, 127 - 5) : 0;
 | 
						|
 | 
						|
	ext_len = 0;
 | 
						|
	/* is.gd responds with "handshake failure" to our hello if there's no supported_groups element */
 | 
						|
	ext_len += sizeof(supported_groups);
 | 
						|
	if (sni_len)
 | 
						|
		ext_len += 9 + sni_len;
 | 
						|
 | 
						|
	/* +2 is for "len of all extensions" 2-byte field */
 | 
						|
	len = sizeof(*record) + 2 + ext_len;
 | 
						|
	record = tls_get_zeroed_outbuf(tls, len);
 | 
						|
 | 
						|
	fill_handshake_record_hdr(record, HANDSHAKE_CLIENT_HELLO, len);
 | 
						|
	record->proto_maj = TLS_MAJ;	/* the "requested" version of the protocol, */
 | 
						|
	record->proto_min = TLS_MIN;	/* can be higher than one in record headers */
 | 
						|
	tls_get_random(record->rand32, sizeof(record->rand32));
 | 
						|
	if (TLS_DEBUG_FIXED_SECRETS)
 | 
						|
		memset(record->rand32, 0x11, sizeof(record->rand32));
 | 
						|
	/* record->session_id_len = 0; - already is */
 | 
						|
 | 
						|
	BUILD_BUG_ON(sizeof(ciphers) != 2 * (1 + 1 + NUM_CIPHERS + 1));
 | 
						|
	memcpy(&record->cipherid_len16_hi, ciphers, sizeof(ciphers));
 | 
						|
 | 
						|
	ptr = (void*)(record + 1);
 | 
						|
	*ptr++ = ext_len >> 8;
 | 
						|
	*ptr++ = ext_len;
 | 
						|
	if (sni_len) {
 | 
						|
		//ptr[0] = 0;             //
 | 
						|
		//ptr[1] = 0;             //extension_type
 | 
						|
		//ptr[2] = 0;         //
 | 
						|
		ptr[3] = sni_len + 5; //list len
 | 
						|
		//ptr[4] = 0;             //
 | 
						|
		ptr[5] = sni_len + 3;     //len of 1st SNI
 | 
						|
		//ptr[6] = 0;         //name type
 | 
						|
		//ptr[7] = 0;             //
 | 
						|
		ptr[8] = sni_len;         //name len
 | 
						|
		ptr = mempcpy(&ptr[9], sni, sni_len);
 | 
						|
	}
 | 
						|
	memcpy(ptr, supported_groups, sizeof(supported_groups));
 | 
						|
 | 
						|
	tls->hsd = xzalloc(sizeof(*tls->hsd));
 | 
						|
	/* HANDSHAKE HASH: ^^^ + len if need to save saved_client_hello */
 | 
						|
	memcpy(tls->hsd->client_and_server_rand32, record->rand32, sizeof(record->rand32));
 | 
						|
/* HANDSHAKE HASH:
 | 
						|
	tls->hsd->saved_client_hello_size = len;
 | 
						|
	memcpy(tls->hsd->saved_client_hello, record, len);
 | 
						|
 */
 | 
						|
	dbg(">> CLIENT_HELLO\n");
 | 
						|
	/* Can hash immediately only if we know which MAC hash to use.
 | 
						|
	 * So far we do know: it's sha256:
 | 
						|
	 */
 | 
						|
	sha256_begin(&tls->hsd->handshake_hash_ctx);
 | 
						|
	xwrite_and_update_handshake_hash(tls, len);
 | 
						|
	/* if this would become infeasible: save tls->hsd->saved_client_hello,
 | 
						|
	 * use "xwrite_handshake_record(tls, len)" here,
 | 
						|
	 * and hash saved_client_hello later.
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
static void get_server_hello(tls_state_t *tls)
 | 
						|
{
 | 
						|
	struct server_hello {
 | 
						|
		struct record_hdr xhdr;
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
		uint8_t proto_maj, proto_min;
 | 
						|
		uint8_t rand32[32]; /* first 4 bytes are unix time in BE format */
 | 
						|
		uint8_t session_id_len;
 | 
						|
		uint8_t session_id[32];
 | 
						|
		uint8_t cipherid_hi, cipherid_lo;
 | 
						|
		uint8_t comprtype;
 | 
						|
		/* extensions may follow, but only those which client offered in its Hello */
 | 
						|
	};
 | 
						|
 | 
						|
	struct server_hello *hp;
 | 
						|
	uint8_t *cipherid;
 | 
						|
	uint8_t cipherid1;
 | 
						|
	int len, len24;
 | 
						|
 | 
						|
	len = tls_xread_handshake_block(tls, 74 - 32);
 | 
						|
 | 
						|
	hp = (void*)tls->inbuf;
 | 
						|
	// 74 bytes:
 | 
						|
	// 02  000046 03|03   58|78|cf|c1 50|a5|49|ee|7e|29|48|71|fe|97|fa|e8|2d|19|87|72|90|84|9d|37|a3|f0|cb|6f|5f|e3|3c|2f |20  |d8|1a|78|96|52|d6|91|01|24|b3|d6|5b|b7|d0|6c|b3|e1|78|4e|3c|95|de|74|a0|ba|eb|a7|3a|ff|bd|a2|bf |00|9c |00|
 | 
						|
	//SvHl len=70 maj.min unixtime^^^ 28randbytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^_^^^ slen sid32bytes^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cipSel comprSel
 | 
						|
	if (hp->type != HANDSHAKE_SERVER_HELLO
 | 
						|
	 || hp->len24_hi  != 0
 | 
						|
	 || hp->len24_mid != 0
 | 
						|
	 /* hp->len24_lo checked later */
 | 
						|
	 || hp->proto_maj != TLS_MAJ
 | 
						|
	 || hp->proto_min != TLS_MIN
 | 
						|
	) {
 | 
						|
		bad_record_die(tls, "'server hello'", len);
 | 
						|
	}
 | 
						|
 | 
						|
	cipherid = &hp->cipherid_hi;
 | 
						|
	len24 = hp->len24_lo;
 | 
						|
	if (hp->session_id_len != 32) {
 | 
						|
		if (hp->session_id_len != 0)
 | 
						|
			bad_record_die(tls, "'server hello'", len);
 | 
						|
 | 
						|
		// session_id_len == 0: no session id
 | 
						|
		// "The server
 | 
						|
		// may return an empty session_id to indicate that the session will
 | 
						|
		// not be cached and therefore cannot be resumed."
 | 
						|
		cipherid -= 32;
 | 
						|
		len24 += 32; /* what len would be if session id would be present */
 | 
						|
	}
 | 
						|
 | 
						|
	if (len24 < 70)
 | 
						|
		bad_record_die(tls, "'server hello'", len);
 | 
						|
	dbg("<< SERVER_HELLO\n");
 | 
						|
 | 
						|
	memcpy(tls->hsd->client_and_server_rand32 + 32, hp->rand32, sizeof(hp->rand32));
 | 
						|
 | 
						|
	/* Set up encryption params based on selected cipher */
 | 
						|
#if 0
 | 
						|
		0xC0,0x09, // 1 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA - ok: wget https://is.gd/
 | 
						|
		0xC0,0x0A, // 2 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA - ok: wget https://is.gd/
 | 
						|
		0xC0,0x13, // 3 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA
 | 
						|
		0xC0,0x14, // 4 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher ECDHE-RSA-AES256-SHA (might fail with older openssl)
 | 
						|
	//	0xC0,0x18, //   TLS_ECDH_anon_WITH_AES_128_CBC_SHA
 | 
						|
	//	0xC0,0x19, //   TLS_ECDH_anon_WITH_AES_256_CBC_SHA
 | 
						|
		0xC0,0x23, // 5 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 - ok: wget https://is.gd/
 | 
						|
	//	0xC0,0x24, //   TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
		0xC0,0x27, // 6 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-SHA256
 | 
						|
	//	0xC0,0x28, //   TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
		0xC0,0x2B, // 7 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 - ok: wget https://is.gd/
 | 
						|
	//	0xC0,0x2C, //   TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 - wget https://is.gd/: "TLS error from peer (alert code 20): bad MAC"
 | 
						|
		0xC0,0x2F, // 8 TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher ECDHE-RSA-AES128-GCM-SHA256
 | 
						|
	//	0xC0,0x30, //   TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher ECDHE-RSA-AES256-GCM-SHA384: "decryption failed or bad record mac"
 | 
						|
	//possibly these too:
 | 
						|
	//	0xC0,0x35, //   TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA
 | 
						|
	//	0xC0,0x36, //   TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA
 | 
						|
	//	0xC0,0x37, //   TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256
 | 
						|
	//	0xC0,0x38, //   TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384 - can't do SHA384 yet
 | 
						|
		0x00,0x2F, // 9 TLS_RSA_WITH_AES_128_CBC_SHA - ok: openssl s_server ... -cipher AES128-SHA
 | 
						|
		0x00,0x35, //10 TLS_RSA_WITH_AES_256_CBC_SHA - ok: openssl s_server ... -cipher AES256-SHA
 | 
						|
		0x00,0x3C, //11 TLS_RSA_WITH_AES_128_CBC_SHA256 - ok: openssl s_server ... -cipher AES128-SHA256
 | 
						|
		0x00,0x3D, //12 TLS_RSA_WITH_AES_256_CBC_SHA256 - ok: openssl s_server ... -cipher AES256-SHA256
 | 
						|
		0x00,0x9C, //13 TLS_RSA_WITH_AES_128_GCM_SHA256 - ok: openssl s_server ... -cipher AES128-GCM-SHA256
 | 
						|
	//	0x00,0x9D, //   TLS_RSA_WITH_AES_256_GCM_SHA384 - openssl s_server ... -cipher AES256-GCM-SHA384: "decryption failed or bad record mac"
 | 
						|
		0x00,0x3B, //   TLS_RSA_WITH_NULL_SHA256
 | 
						|
#endif
 | 
						|
	cipherid1 = cipherid[1];
 | 
						|
	tls->cipher_id = 0x100 * cipherid[0] + cipherid1;
 | 
						|
	tls->key_size = AES256_KEYSIZE;
 | 
						|
	tls->MAC_size = SHA256_OUTSIZE;
 | 
						|
	/*tls->IV_size = 0; - already is */
 | 
						|
	if (cipherid[0] == 0xC0) {
 | 
						|
		/* All C0xx are ECDHE */
 | 
						|
		tls->flags |= NEED_EC_KEY;
 | 
						|
		if (cipherid1 & 1) {
 | 
						|
			/* Odd numbered C0xx use AES128 (even ones use AES256) */
 | 
						|
			tls->key_size = AES128_KEYSIZE;
 | 
						|
		}
 | 
						|
		if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x19) {
 | 
						|
			tls->MAC_size = SHA1_OUTSIZE;
 | 
						|
		} else
 | 
						|
		if (cipherid1 >= 0x2B && cipherid1 <= 0x30) {
 | 
						|
			/* C02B,2C,2F,30 are AES-GCM */
 | 
						|
			tls->flags |= ENCRYPTION_AESGCM;
 | 
						|
			tls->MAC_size = 0;
 | 
						|
			tls->IV_size = 4;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/* All 00xx are RSA */
 | 
						|
		if ((ENABLE_FEATURE_TLS_SHA1 && cipherid1 == 0x2F)
 | 
						|
		 || cipherid1 == 0x3C
 | 
						|
		 || cipherid1 == 0x9C
 | 
						|
		) {
 | 
						|
			tls->key_size = AES128_KEYSIZE;
 | 
						|
		}
 | 
						|
		if (ENABLE_FEATURE_TLS_SHA1 && cipherid1 <= 0x35) {
 | 
						|
			tls->MAC_size = SHA1_OUTSIZE;
 | 
						|
		} else
 | 
						|
		if (cipherid1 == 0x9C /*|| cipherid1 == 0x9D*/) {
 | 
						|
			/* 009C,9D are AES-GCM */
 | 
						|
			tls->flags |= ENCRYPTION_AESGCM;
 | 
						|
			tls->MAC_size = 0;
 | 
						|
			tls->IV_size = 4;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	dbg("server chose cipher %04x\n", tls->cipher_id);
 | 
						|
	dbg("key_size:%u MAC_size:%u IV_size:%u\n", tls->key_size, tls->MAC_size, tls->IV_size);
 | 
						|
 | 
						|
	/* Handshake hash eventually destined to FINISHED record
 | 
						|
	 * is sha256 regardless of cipher
 | 
						|
	 * (at least for all ciphers defined by RFC5246).
 | 
						|
	 * It's not sha1 for AES_128_CBC_SHA - only MAC is sha1, not this hash.
 | 
						|
	 */
 | 
						|
/* HANDSHAKE HASH:
 | 
						|
	sha256_begin(&tls->hsd->handshake_hash_ctx);
 | 
						|
	hash_handshake(tls, ">> client hello hash:%s",
 | 
						|
		tls->hsd->saved_client_hello, tls->hsd->saved_client_hello_size
 | 
						|
	);
 | 
						|
	hash_handshake(tls, "<< server hello hash:%s",
 | 
						|
		tls->inbuf + RECHDR_LEN, len
 | 
						|
	);
 | 
						|
 */
 | 
						|
}
 | 
						|
 | 
						|
static void get_server_cert(tls_state_t *tls)
 | 
						|
{
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	uint8_t *certbuf;
 | 
						|
	int len, len1;
 | 
						|
 | 
						|
	len = tls_xread_handshake_block(tls, 10);
 | 
						|
 | 
						|
	xhdr = (void*)tls->inbuf;
 | 
						|
	certbuf = (void*)(xhdr + 1);
 | 
						|
	if (certbuf[0] != HANDSHAKE_CERTIFICATE)
 | 
						|
		bad_record_die(tls, "certificate", len);
 | 
						|
	dbg("<< CERTIFICATE\n");
 | 
						|
	// 4392 bytes:
 | 
						|
	// 0b  00|11|24 00|11|21 00|05|b0 30|82|05|ac|30|82|04|94|a0|03|02|01|02|02|11|00|9f|85|bf|66|4b|0c|dd|af|ca|50|86|79|50|1b|2b|e4|30|0d...
 | 
						|
	//Cert len=4388 ChainLen CertLen^ DER encoded X509 starts here. openssl x509 -in FILE -inform DER -noout -text
 | 
						|
	len1 = get24be(certbuf + 1);
 | 
						|
	if (len1 > len - 4) tls_error_die(tls);
 | 
						|
	len = len1;
 | 
						|
	len1 = get24be(certbuf + 4);
 | 
						|
	if (len1 > len - 3) tls_error_die(tls);
 | 
						|
	len = len1;
 | 
						|
	len1 = get24be(certbuf + 7);
 | 
						|
	if (len1 > len - 3) tls_error_die(tls);
 | 
						|
	len = len1;
 | 
						|
 | 
						|
	if (len)
 | 
						|
		find_key_in_der_cert(tls, certbuf + 10, len);
 | 
						|
}
 | 
						|
 | 
						|
/* On input, len is known to be >= 4.
 | 
						|
 * The record is known to be SERVER_KEY_EXCHANGE.
 | 
						|
 */
 | 
						|
static void process_server_key(tls_state_t *tls, int len)
 | 
						|
{
 | 
						|
	struct record_hdr *xhdr;
 | 
						|
	uint8_t *keybuf;
 | 
						|
	int len1;
 | 
						|
	uint32_t t32;
 | 
						|
 | 
						|
	xhdr = (void*)tls->inbuf;
 | 
						|
	keybuf = (void*)(xhdr + 1);
 | 
						|
//seen from is.gd: it selects curve_x25519:
 | 
						|
//  0c 00006e //SERVER_KEY_EXCHANGE, len
 | 
						|
//    03 //curve_type: named curve
 | 
						|
//    001d //curve_x25519
 | 
						|
//server-chosen EC point, and then signed_params
 | 
						|
//      (RFC 8422: "A hash of the params, with the signature
 | 
						|
//      appropriate to that hash applied.  The private key corresponding
 | 
						|
//      to the certified public key in the server's Certificate message is
 | 
						|
//      used for signing.")
 | 
						|
//follow. Format unclear/guessed:
 | 
						|
//    20 //eccPubKeyLen
 | 
						|
//      25511923d73b70dd2f60e66ba2f3fda31a9c25170963c7a3a972e481dbb2835d //eccPubKey (32bytes)
 | 
						|
//    0203 //hashSigAlg: 2:SHA1 (4:SHA256 5:SHA384 6:SHA512), 3:ECDSA (1:RSA)
 | 
						|
//    0046 //len (16bit)
 | 
						|
//      30 44 //SEQ, len
 | 
						|
//        02 20 //INTEGER, len
 | 
						|
//          2e18e7c2a9badd0a70cd3059a6ab114539b9f5163568911147386cd77ed7c412 //32bytes
 | 
						|
//this item ^^^^^ is sometimes 33 bytes (with all container sizes also +1)
 | 
						|
//        02 20 //INTEGER, len
 | 
						|
//          64523d6216cb94c43c9b20e377d8c52c55be6703fd6730a155930c705eaf3af6 //32bytes
 | 
						|
//same about this item ^^^^^
 | 
						|
 | 
						|
//seen from ftp.openbsd.org
 | 
						|
//(which only accepts ECDHE-RSA-AESnnn-GCM-SHAnnn and ECDHE-RSA-CHACHA20-POLY1305 ciphers):
 | 
						|
//  0c 000228 //SERVER_KEY_EXCHANGE, len
 | 
						|
//    03 //curve_type: named curve
 | 
						|
//    001d //curve_x25519
 | 
						|
//    20 //eccPubKeyLen
 | 
						|
//      eef7a15c43b71a4c7eaa48a39369399cc4332e569ec90a83274cc92596705c1a //eccPubKey
 | 
						|
//    0401 //hashSigAlg: 4:SHA256, 1:RSA
 | 
						|
//    0200 //len
 | 
						|
//      //0x200 bytes follow
 | 
						|
 | 
						|
	/* Get and verify length */
 | 
						|
	len1 = get24be(keybuf + 1);
 | 
						|
	if (len1 > len - 4) tls_error_die(tls);
 | 
						|
	len = len1;
 | 
						|
	if (len < (1+2+1+32)) tls_error_die(tls);
 | 
						|
	keybuf += 4;
 | 
						|
 | 
						|
#if BB_BIG_ENDIAN
 | 
						|
# define _0x03001741 0x03001741
 | 
						|
# define _0x03001d20 0x03001d20
 | 
						|
#else
 | 
						|
# define _0x03001741 0x41170003
 | 
						|
# define _0x03001d20 0x201d0003
 | 
						|
#endif
 | 
						|
	move_from_unaligned32(t32, keybuf);
 | 
						|
	keybuf += 4;
 | 
						|
	switch (t32) {
 | 
						|
	case _0x03001d20: //curve_x25519
 | 
						|
		dbg("got x25519 eccPubKey\n");
 | 
						|
		tls->flags |= GOT_EC_CURVE_X25519;
 | 
						|
		memcpy(tls->hsd->ecc_pub_key32, keybuf, 32);
 | 
						|
		break;
 | 
						|
	case _0x03001741: //curve_secp256r1 (aka P256)
 | 
						|
		dbg("got P256 eccPubKey\n");
 | 
						|
		/* P256 point can be transmitted odd- or even-compressed
 | 
						|
		 * (first byte is 3 or 2) or uncompressed (4).
 | 
						|
		 */
 | 
						|
		if (*keybuf++ != 4)
 | 
						|
			bb_simple_error_msg_and_die("compressed EC points not supported");
 | 
						|
		memcpy(tls->hsd->ecc_pub_key32, keybuf, 2 * 32);
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		bb_error_msg_and_die("elliptic curve is not x25519 or P256: 0x%08x", t32);
 | 
						|
	}
 | 
						|
 | 
						|
	tls->flags |= GOT_EC_KEY;
 | 
						|
}
 | 
						|
 | 
						|
static void send_empty_client_cert(tls_state_t *tls)
 | 
						|
{
 | 
						|
	struct client_empty_cert {
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
		uint8_t cert_chain_len24_hi, cert_chain_len24_mid, cert_chain_len24_lo;
 | 
						|
	};
 | 
						|
	struct client_empty_cert *record;
 | 
						|
 | 
						|
	record = tls_get_zeroed_outbuf(tls, sizeof(*record));
 | 
						|
	//fill_handshake_record_hdr(record, HANDSHAKE_CERTIFICATE, sizeof(*record));
 | 
						|
	//record->cert_chain_len24_hi = 0;
 | 
						|
	//record->cert_chain_len24_mid = 0;
 | 
						|
	//record->cert_chain_len24_lo = 0;
 | 
						|
	// same as above:
 | 
						|
	record->type = HANDSHAKE_CERTIFICATE;
 | 
						|
	record->len24_lo = 3;
 | 
						|
 | 
						|
	dbg(">> CERTIFICATE\n");
 | 
						|
	xwrite_and_update_handshake_hash(tls, sizeof(*record));
 | 
						|
}
 | 
						|
 | 
						|
static void send_client_key_exchange(tls_state_t *tls)
 | 
						|
{
 | 
						|
	struct client_key_exchange {
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
		uint8_t key[2 + 4 * 1024]; // size??
 | 
						|
	};
 | 
						|
//FIXME: better size estimate
 | 
						|
	struct client_key_exchange *record = tls_get_zeroed_outbuf(tls, sizeof(*record));
 | 
						|
	uint8_t premaster[RSA_PREMASTER_SIZE > EC_CURVE_KEYSIZE ? RSA_PREMASTER_SIZE : EC_CURVE_KEYSIZE];
 | 
						|
	int premaster_size;
 | 
						|
	int len;
 | 
						|
 | 
						|
	if (!(tls->flags & NEED_EC_KEY)) {
 | 
						|
		/* RSA */
 | 
						|
		if (!(tls->flags & GOT_CERT_RSA_KEY_ALG))
 | 
						|
			bb_simple_error_msg_and_die("server cert is not RSA");
 | 
						|
 | 
						|
		tls_get_random(premaster, RSA_PREMASTER_SIZE);
 | 
						|
		if (TLS_DEBUG_FIXED_SECRETS)
 | 
						|
			memset(premaster, 0x44, RSA_PREMASTER_SIZE);
 | 
						|
		// RFC 5246
 | 
						|
		// "Note: The version number in the PreMasterSecret is the version
 | 
						|
		// offered by the client in the ClientHello.client_version, not the
 | 
						|
		// version negotiated for the connection."
 | 
						|
		premaster[0] = TLS_MAJ;
 | 
						|
		premaster[1] = TLS_MIN;
 | 
						|
		dump_hex("premaster:%s\n", premaster, sizeof(premaster));
 | 
						|
		len = psRsaEncryptPub(/*pool:*/ NULL,
 | 
						|
			/* psRsaKey_t* */ &tls->hsd->server_rsa_pub_key,
 | 
						|
			premaster, /*inlen:*/ RSA_PREMASTER_SIZE,
 | 
						|
			record->key + 2, sizeof(record->key) - 2,
 | 
						|
			data_param_ignored
 | 
						|
		);
 | 
						|
		/* keylen16 exists for RSA (in TLS, not in SSL), but not for some other key types */
 | 
						|
		record->key[0] = len >> 8;
 | 
						|
		record->key[1] = len & 0xff;
 | 
						|
		len += 2;
 | 
						|
		premaster_size = RSA_PREMASTER_SIZE;
 | 
						|
	} else {
 | 
						|
		/* ECDHE */
 | 
						|
		if (!(tls->flags & GOT_EC_KEY))
 | 
						|
			bb_simple_error_msg_and_die("server did not provide EC key");
 | 
						|
 | 
						|
		if (tls->flags & GOT_EC_CURVE_X25519) {
 | 
						|
			/* ECDHE, curve x25519 */
 | 
						|
			dbg("computing x25519_premaster\n");
 | 
						|
			curve_x25519_compute_pubkey_and_premaster(
 | 
						|
					record->key + 1, premaster,
 | 
						|
					/*point:*/ tls->hsd->ecc_pub_key32
 | 
						|
			);
 | 
						|
			len = CURVE25519_KEYSIZE;
 | 
						|
			//record->key[0] = len;
 | 
						|
			//len++;
 | 
						|
			//premaster_size = CURVE25519_KEYSIZE;
 | 
						|
		} else {
 | 
						|
			/* ECDHE, curve P256 */
 | 
						|
			dbg("computing P256_premaster\n");
 | 
						|
			curve_P256_compute_pubkey_and_premaster(
 | 
						|
					record->key + 2, premaster,
 | 
						|
					/*point:*/ tls->hsd->ecc_pub_key32
 | 
						|
			);
 | 
						|
			record->key[1] = 4; /* "uncompressed point" */
 | 
						|
			len = 1 + P256_KEYSIZE * 2;
 | 
						|
		}
 | 
						|
		record->key[0] = len;
 | 
						|
		len++;
 | 
						|
		premaster_size = P256_KEYSIZE; // = CURVE25519_KEYSIZE = 32
 | 
						|
	}
 | 
						|
 | 
						|
	record->type = HANDSHAKE_CLIENT_KEY_EXCHANGE;
 | 
						|
	/* record->len24_hi = 0; - already is */
 | 
						|
	record->len24_mid = len >> 8;
 | 
						|
	record->len24_lo  = len & 0xff;
 | 
						|
	len += 4;
 | 
						|
 | 
						|
	dbg(">> CLIENT_KEY_EXCHANGE\n");
 | 
						|
	xwrite_and_update_handshake_hash(tls, len);
 | 
						|
 | 
						|
	// RFC 5246
 | 
						|
	// For all key exchange methods, the same algorithm is used to convert
 | 
						|
	// the pre_master_secret into the master_secret.  The pre_master_secret
 | 
						|
	// should be deleted from memory once the master_secret has been
 | 
						|
	// computed.
 | 
						|
	//      master_secret = PRF(pre_master_secret, "master secret",
 | 
						|
	//                          ClientHello.random + ServerHello.random)
 | 
						|
	//                          [0..47];
 | 
						|
	// The master secret is always exactly 48 bytes in length.  The length
 | 
						|
	// of the premaster secret will vary depending on key exchange method.
 | 
						|
	prf_hmac_sha256(/*tls,*/
 | 
						|
		tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
 | 
						|
		premaster, premaster_size,
 | 
						|
		"master secret",
 | 
						|
		tls->hsd->client_and_server_rand32, sizeof(tls->hsd->client_and_server_rand32)
 | 
						|
	);
 | 
						|
	dump_hex("master secret:%s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
 | 
						|
 | 
						|
	// RFC 5246
 | 
						|
	// 6.3.  Key Calculation
 | 
						|
	//
 | 
						|
	// The Record Protocol requires an algorithm to generate keys required
 | 
						|
	// by the current connection state (see Appendix A.6) from the security
 | 
						|
	// parameters provided by the handshake protocol.
 | 
						|
	//
 | 
						|
	// The master secret is expanded into a sequence of secure bytes, which
 | 
						|
	// is then split to a client write MAC key, a server write MAC key, a
 | 
						|
	// client write encryption key, and a server write encryption key.  Each
 | 
						|
	// of these is generated from the byte sequence in that order.  Unused
 | 
						|
	// values are empty.  Some AEAD ciphers may additionally require a
 | 
						|
	// client write IV and a server write IV (see Section 6.2.3.3).
 | 
						|
	//
 | 
						|
	// When keys and MAC keys are generated, the master secret is used as an
 | 
						|
	// entropy source.
 | 
						|
	//
 | 
						|
	// To generate the key material, compute
 | 
						|
	//
 | 
						|
	//    key_block = PRF(SecurityParameters.master_secret,
 | 
						|
	//                    "key expansion",
 | 
						|
	//                    SecurityParameters.server_random +
 | 
						|
	//                    SecurityParameters.client_random);
 | 
						|
	//
 | 
						|
	// until enough output has been generated.  Then, the key_block is
 | 
						|
	// partitioned as follows:
 | 
						|
	//
 | 
						|
	//    client_write_MAC_key[SecurityParameters.mac_key_length]
 | 
						|
	//    server_write_MAC_key[SecurityParameters.mac_key_length]
 | 
						|
	//    client_write_key[SecurityParameters.enc_key_length]
 | 
						|
	//    server_write_key[SecurityParameters.enc_key_length]
 | 
						|
	//    client_write_IV[SecurityParameters.fixed_iv_length]
 | 
						|
	//    server_write_IV[SecurityParameters.fixed_iv_length]
 | 
						|
	{
 | 
						|
		uint8_t tmp64[64];
 | 
						|
 | 
						|
		/* make "server_rand32 + client_rand32" */
 | 
						|
		memcpy(&tmp64[0] , &tls->hsd->client_and_server_rand32[32], 32);
 | 
						|
		memcpy(&tmp64[32], &tls->hsd->client_and_server_rand32[0] , 32);
 | 
						|
 | 
						|
		prf_hmac_sha256(/*tls,*/
 | 
						|
			tls->client_write_MAC_key, 2 * (tls->MAC_size + tls->key_size + tls->IV_size),
 | 
						|
			// also fills:
 | 
						|
			// server_write_MAC_key[]
 | 
						|
			// client_write_key[]
 | 
						|
			// server_write_key[]
 | 
						|
			// client_write_IV[]
 | 
						|
			// server_write_IV[]
 | 
						|
			tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
 | 
						|
			"key expansion",
 | 
						|
			tmp64, 64
 | 
						|
		);
 | 
						|
		tls->client_write_key = tls->client_write_MAC_key + (2 * tls->MAC_size);
 | 
						|
		tls->server_write_key = tls->client_write_key + tls->key_size;
 | 
						|
		tls->client_write_IV = tls->server_write_key + tls->key_size;
 | 
						|
		tls->server_write_IV = tls->client_write_IV + tls->IV_size;
 | 
						|
		dump_hex("client_write_MAC_key:%s\n",
 | 
						|
			tls->client_write_MAC_key, tls->MAC_size
 | 
						|
		);
 | 
						|
		dump_hex("client_write_key:%s\n",
 | 
						|
			tls->client_write_key, tls->key_size
 | 
						|
		);
 | 
						|
		dump_hex("client_write_IV:%s\n",
 | 
						|
			tls->client_write_IV, tls->IV_size
 | 
						|
		);
 | 
						|
 | 
						|
		aes_setkey(&tls->aes_decrypt, tls->server_write_key, tls->key_size);
 | 
						|
		aes_setkey(&tls->aes_encrypt, tls->client_write_key, tls->key_size);
 | 
						|
		{
 | 
						|
			uint8_t iv[AES_BLOCK_SIZE];
 | 
						|
			memset(iv, 0, AES_BLOCK_SIZE);
 | 
						|
			aes_encrypt_one_block(&tls->aes_encrypt, iv, tls->H);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static const uint8_t rec_CHANGE_CIPHER_SPEC[] ALIGN1 = {
 | 
						|
	RECORD_TYPE_CHANGE_CIPHER_SPEC, TLS_MAJ, TLS_MIN, 00, 01,
 | 
						|
	01
 | 
						|
};
 | 
						|
 | 
						|
static void send_change_cipher_spec(tls_state_t *tls)
 | 
						|
{
 | 
						|
	dbg(">> CHANGE_CIPHER_SPEC\n");
 | 
						|
	xwrite(tls->ofd, rec_CHANGE_CIPHER_SPEC, sizeof(rec_CHANGE_CIPHER_SPEC));
 | 
						|
}
 | 
						|
 | 
						|
// 7.4.9.  Finished
 | 
						|
// A Finished message is always sent immediately after a change
 | 
						|
// cipher spec message to verify that the key exchange and
 | 
						|
// authentication processes were successful.  It is essential that a
 | 
						|
// change cipher spec message be received between the other handshake
 | 
						|
// messages and the Finished message.
 | 
						|
//...
 | 
						|
// The Finished message is the first one protected with the just
 | 
						|
// negotiated algorithms, keys, and secrets.  Recipients of Finished
 | 
						|
// messages MUST verify that the contents are correct.  Once a side
 | 
						|
// has sent its Finished message and received and validated the
 | 
						|
// Finished message from its peer, it may begin to send and receive
 | 
						|
// application data over the connection.
 | 
						|
//...
 | 
						|
// struct {
 | 
						|
//     opaque verify_data[verify_data_length];
 | 
						|
// } Finished;
 | 
						|
//
 | 
						|
// verify_data
 | 
						|
//    PRF(master_secret, finished_label, Hash(handshake_messages))
 | 
						|
//       [0..verify_data_length-1];
 | 
						|
//
 | 
						|
// finished_label
 | 
						|
//    For Finished messages sent by the client, the string
 | 
						|
//    "client finished".  For Finished messages sent by the server,
 | 
						|
//    the string "server finished".
 | 
						|
//
 | 
						|
// Hash denotes a Hash of the handshake messages.  For the PRF
 | 
						|
// defined in Section 5, the Hash MUST be the Hash used as the basis
 | 
						|
// for the PRF.  Any cipher suite which defines a different PRF MUST
 | 
						|
// also define the Hash to use in the Finished computation.
 | 
						|
//
 | 
						|
// In previous versions of TLS, the verify_data was always 12 octets
 | 
						|
// long.  In the current version of TLS, it depends on the cipher
 | 
						|
// suite.  Any cipher suite which does not explicitly specify
 | 
						|
// verify_data_length has a verify_data_length equal to 12.  This
 | 
						|
// includes all existing cipher suites.
 | 
						|
static void send_client_finished(tls_state_t *tls)
 | 
						|
{
 | 
						|
	struct finished {
 | 
						|
		uint8_t type;
 | 
						|
		uint8_t len24_hi, len24_mid, len24_lo;
 | 
						|
		uint8_t prf_result[12];
 | 
						|
	};
 | 
						|
	struct finished *record = tls_get_outbuf(tls, sizeof(*record));
 | 
						|
	uint8_t handshake_hash[TLS_MAX_MAC_SIZE];
 | 
						|
	unsigned len;
 | 
						|
 | 
						|
	fill_handshake_record_hdr(record, HANDSHAKE_FINISHED, sizeof(*record));
 | 
						|
 | 
						|
	len = sha_end(&tls->hsd->handshake_hash_ctx, handshake_hash);
 | 
						|
 | 
						|
	prf_hmac_sha256(/*tls,*/
 | 
						|
		record->prf_result, sizeof(record->prf_result),
 | 
						|
		tls->hsd->master_secret, sizeof(tls->hsd->master_secret),
 | 
						|
		"client finished",
 | 
						|
		handshake_hash, len
 | 
						|
	);
 | 
						|
	dump_hex("from secret: %s\n", tls->hsd->master_secret, sizeof(tls->hsd->master_secret));
 | 
						|
	dump_hex("from labelSeed: %s", "client finished", sizeof("client finished")-1);
 | 
						|
	dump_hex("%s\n", handshake_hash, sizeof(handshake_hash));
 | 
						|
	dump_hex("=> digest: %s\n", record->prf_result, sizeof(record->prf_result));
 | 
						|
 | 
						|
	dbg(">> FINISHED\n");
 | 
						|
	xwrite_encrypted(tls, sizeof(*record), RECORD_TYPE_HANDSHAKE);
 | 
						|
}
 | 
						|
 | 
						|
void FAST_FUNC tls_handshake(tls_state_t *tls, const char *sni)
 | 
						|
{
 | 
						|
	// Client              RFC 5246                Server
 | 
						|
	// (*) - optional messages, not always sent
 | 
						|
	//
 | 
						|
	// ClientHello          ------->
 | 
						|
	//                                        ServerHello
 | 
						|
	//                                       Certificate*
 | 
						|
	//                                 ServerKeyExchange*
 | 
						|
	//                                CertificateRequest*
 | 
						|
	//                      <-------      ServerHelloDone
 | 
						|
	// Certificate*
 | 
						|
	// ClientKeyExchange
 | 
						|
	// CertificateVerify*
 | 
						|
	// [ChangeCipherSpec]
 | 
						|
	// Finished             ------->
 | 
						|
	//                                 [ChangeCipherSpec]
 | 
						|
	//                      <-------             Finished
 | 
						|
	// Application Data     <------>     Application Data
 | 
						|
	int len;
 | 
						|
	int got_cert_req;
 | 
						|
 | 
						|
	send_client_hello_and_alloc_hsd(tls, sni);
 | 
						|
	get_server_hello(tls);
 | 
						|
 | 
						|
	// RFC 5246
 | 
						|
	// The server MUST send a Certificate message whenever the agreed-
 | 
						|
	// upon key exchange method uses certificates for authentication
 | 
						|
	// (this includes all key exchange methods defined in this document
 | 
						|
	// except DH_anon).  This message will always immediately follow the
 | 
						|
	// ServerHello message.
 | 
						|
	//
 | 
						|
	// IOW: in practice, Certificate *always* follows.
 | 
						|
	// (for example, kernel.org does not even accept DH_anon cipher id)
 | 
						|
	get_server_cert(tls);
 | 
						|
 | 
						|
	len = tls_xread_handshake_block(tls, 4);
 | 
						|
	if (tls->inbuf[RECHDR_LEN] == HANDSHAKE_SERVER_KEY_EXCHANGE) {
 | 
						|
		// 459 bytes:
 | 
						|
		// 0c   00|01|c7 03|00|17|41|04|87|94|2e|2f|68|d0|c9|f4|97|a8|2d|ef|ed|67|ea|c6|f3|b3|56|47|5d|27|b6|bd|ee|70|25|30|5e|b0|8e|f6|21|5a...
 | 
						|
		//SvKey len=455^
 | 
						|
		// with TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: 461 bytes:
 | 
						|
		// 0c   00|01|c9 03|00|17|41|04|cd|9b|b4|29|1f|f6|b0|c2|84|82|7f|29|6a|47|4e|ec|87|0b|c1|9c|69|e1|f8|c6|d0|53|e9|27|90|a5|c8|02|15|75...
 | 
						|
		//
 | 
						|
		// RFC 8422 5.4. Server Key Exchange
 | 
						|
		// This message is sent when using the ECDHE_ECDSA, ECDHE_RSA, and
 | 
						|
		// ECDH_anon key exchange algorithms.
 | 
						|
		// This message is used to convey the server's ephemeral ECDH public key
 | 
						|
		// (and the corresponding elliptic curve domain parameters) to the
 | 
						|
		// client.
 | 
						|
		dbg("<< SERVER_KEY_EXCHANGE len:%u\n", len);
 | 
						|
		dump_raw_in("<< %s\n", tls->inbuf, RECHDR_LEN + len);
 | 
						|
		if (tls->flags & NEED_EC_KEY)
 | 
						|
			process_server_key(tls, len);
 | 
						|
 | 
						|
		// read next handshake block
 | 
						|
		len = tls_xread_handshake_block(tls, 4);
 | 
						|
	}
 | 
						|
 | 
						|
	got_cert_req = (tls->inbuf[RECHDR_LEN] == HANDSHAKE_CERTIFICATE_REQUEST);
 | 
						|
	if (got_cert_req) {
 | 
						|
		dbg("<< CERTIFICATE_REQUEST\n");
 | 
						|
		// RFC 5246: "If no suitable certificate is available,
 | 
						|
		// the client MUST send a certificate message containing no
 | 
						|
		// certificates.  That is, the certificate_list structure has a
 | 
						|
		// length of zero. ...
 | 
						|
		// Client certificates are sent using the Certificate structure
 | 
						|
		// defined in Section 7.4.2."
 | 
						|
		// (i.e. the same format as server certs)
 | 
						|
 | 
						|
		/*send_empty_client_cert(tls); - WRONG (breaks handshake hash calc) */
 | 
						|
		/* need to hash _all_ server replies first, up to ServerHelloDone */
 | 
						|
		len = tls_xread_handshake_block(tls, 4);
 | 
						|
	}
 | 
						|
 | 
						|
	if (tls->inbuf[RECHDR_LEN] != HANDSHAKE_SERVER_HELLO_DONE) {
 | 
						|
		bad_record_die(tls, "'server hello done'", len);
 | 
						|
	}
 | 
						|
	// 0e 000000 (len:0)
 | 
						|
	dbg("<< SERVER_HELLO_DONE\n");
 | 
						|
 | 
						|
	if (got_cert_req)
 | 
						|
		send_empty_client_cert(tls);
 | 
						|
 | 
						|
	send_client_key_exchange(tls);
 | 
						|
 | 
						|
	send_change_cipher_spec(tls);
 | 
						|
	/* from now on we should send encrypted */
 | 
						|
	/* tls->write_seq64_be = 0; - already is */
 | 
						|
	tls->flags |= ENCRYPT_ON_WRITE;
 | 
						|
 | 
						|
	send_client_finished(tls);
 | 
						|
 | 
						|
	/* Get CHANGE_CIPHER_SPEC */
 | 
						|
	len = tls_xread_record(tls, "switch to encrypted traffic");
 | 
						|
	if (len != 1 || memcmp(tls->inbuf, rec_CHANGE_CIPHER_SPEC, 6) != 0)
 | 
						|
		bad_record_die(tls, "switch to encrypted traffic", len);
 | 
						|
	dbg("<< CHANGE_CIPHER_SPEC\n");
 | 
						|
 | 
						|
	if (ALLOW_RSA_NULL_SHA256
 | 
						|
	 && tls->cipher_id == TLS_RSA_WITH_NULL_SHA256
 | 
						|
	) {
 | 
						|
		tls->min_encrypted_len_on_read = tls->MAC_size;
 | 
						|
	} else
 | 
						|
	if (!(tls->flags & ENCRYPTION_AESGCM)) {
 | 
						|
		unsigned mac_blocks = (unsigned)(TLS_MAC_SIZE(tls) + AES_BLOCK_SIZE-1) / AES_BLOCK_SIZE;
 | 
						|
		/* all incoming packets now should be encrypted and have
 | 
						|
		 * at least IV + (MAC padded to blocksize):
 | 
						|
		 */
 | 
						|
		tls->min_encrypted_len_on_read = AES_BLOCK_SIZE + (mac_blocks * AES_BLOCK_SIZE);
 | 
						|
	} else {
 | 
						|
		tls->min_encrypted_len_on_read = 8 + AES_BLOCK_SIZE;
 | 
						|
	}
 | 
						|
	dbg("min_encrypted_len_on_read: %u\n", tls->min_encrypted_len_on_read);
 | 
						|
 | 
						|
	/* Get (encrypted) FINISHED from the server */
 | 
						|
	len = tls_xread_record(tls, "'server finished'");
 | 
						|
	if (len < 4 || tls->inbuf[RECHDR_LEN] != HANDSHAKE_FINISHED)
 | 
						|
		bad_record_die(tls, "'server finished'", len);
 | 
						|
	dbg("<< FINISHED\n");
 | 
						|
	/* application data can be sent/received */
 | 
						|
 | 
						|
	/* free handshake data */
 | 
						|
	psRsaKey_clear(&tls->hsd->server_rsa_pub_key);
 | 
						|
//	if (PARANOIA)
 | 
						|
//		memset(tls->hsd, 0, tls->hsd->hsd_size);
 | 
						|
	free(tls->hsd);
 | 
						|
	tls->hsd = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void tls_xwrite(tls_state_t *tls, int len)
 | 
						|
{
 | 
						|
	dbg(">> DATA\n");
 | 
						|
	xwrite_encrypted(tls, len, RECORD_TYPE_APPLICATION_DATA);
 | 
						|
}
 | 
						|
 | 
						|
// To run a test server using openssl:
 | 
						|
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
 | 
						|
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2
 | 
						|
//
 | 
						|
// Unencryped SHA256 example:
 | 
						|
// openssl req -x509 -newkey rsa:$((4096/4*3)) -keyout key.pem -out server.pem -nodes -days 99999 -subj '/CN=localhost'
 | 
						|
// openssl s_server -key key.pem -cert server.pem -debug -tls1_2 -cipher NULL
 | 
						|
// openssl s_client -connect 127.0.0.1:4433 -debug -tls1_2 -cipher NULL-SHA256
 | 
						|
 | 
						|
void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags)
 | 
						|
{
 | 
						|
	int inbuf_size;
 | 
						|
	const int INBUF_STEP = 4 * 1024;
 | 
						|
	struct pollfd pfds[2];
 | 
						|
 | 
						|
#if 0
 | 
						|
// Debug aid for comparing P256 implementations.
 | 
						|
// Enable this, set SP_DEBUG and FIXED_SECRET to 1,
 | 
						|
// and add
 | 
						|
//	tls_run_copy_loop(NULL, 0);
 | 
						|
// e.g. at the very beginning of wget_main()
 | 
						|
//
 | 
						|
{
 | 
						|
	uint8_t ecc_pub_key32[2 * 32];
 | 
						|
	uint8_t pubkey2x32[2 * 32];
 | 
						|
	uint8_t premaster32[32];
 | 
						|
 | 
						|
//Fixed input key:
 | 
						|
//	memset(ecc_pub_key32, 0xee, sizeof(ecc_pub_key32));
 | 
						|
//Fixed 000000000000000000000000000000000000ab000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
 | 
						|
//	memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
 | 
						|
//	ecc_pub_key32[18] = 0xab;
 | 
						|
//Random key:
 | 
						|
//	tls_get_random(ecc_pub_key32, sizeof(ecc_pub_key32));
 | 
						|
//Biased random (almost all zeros or almost all ones):
 | 
						|
	srand(time(NULL) ^ getpid());
 | 
						|
	if (rand() & 1)
 | 
						|
		memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
 | 
						|
	else
 | 
						|
		memset(ecc_pub_key32, 0xff, sizeof(ecc_pub_key32));
 | 
						|
	ecc_pub_key32[rand() & 0x3f] = rand();
 | 
						|
 | 
						|
	xmove_fd(xopen("p256.OLD", O_WRONLY | O_CREAT | O_TRUNC), 2);
 | 
						|
	curve_P256_compute_pubkey_and_premaster(
 | 
						|
			pubkey2x32, premaster32,
 | 
						|
			/*point:*/ ecc_pub_key32
 | 
						|
	);
 | 
						|
	xmove_fd(xopen("p256.NEW", O_WRONLY | O_CREAT | O_TRUNC), 2);
 | 
						|
	curve_P256_compute_pubkey_and_premaster_NEW(
 | 
						|
			pubkey2x32, premaster32,
 | 
						|
			/*point:*/ ecc_pub_key32
 | 
						|
	);
 | 
						|
	exit(1);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
	pfds[0].fd = STDIN_FILENO;
 | 
						|
	pfds[0].events = POLLIN;
 | 
						|
	pfds[1].fd = tls->ifd;
 | 
						|
	pfds[1].events = POLLIN;
 | 
						|
 | 
						|
	inbuf_size = INBUF_STEP;
 | 
						|
	for (;;) {
 | 
						|
		int nread;
 | 
						|
 | 
						|
		if (safe_poll(pfds, 2, -1) < 0)
 | 
						|
			bb_simple_perror_msg_and_die("poll");
 | 
						|
 | 
						|
		if (pfds[0].revents) {
 | 
						|
			void *buf;
 | 
						|
 | 
						|
			dbg("STDIN HAS DATA\n");
 | 
						|
			buf = tls_get_outbuf(tls, inbuf_size);
 | 
						|
			nread = safe_read(STDIN_FILENO, buf, inbuf_size);
 | 
						|
			if (nread < 1) {
 | 
						|
				/* We'd want to do this: */
 | 
						|
				/* Close outgoing half-connection so they get EOF,
 | 
						|
				 * but leave incoming alone so we can see response
 | 
						|
				 */
 | 
						|
				//shutdown(tls->ofd, SHUT_WR);
 | 
						|
				/* But TLS has no way to encode this,
 | 
						|
				 * doubt it's ok to do it "raw"
 | 
						|
				 */
 | 
						|
				pfds[0].fd = -1;
 | 
						|
				tls_free_outbuf(tls); /* mem usage optimization */
 | 
						|
				if (flags & TLSLOOP_EXIT_ON_LOCAL_EOF)
 | 
						|
					break;
 | 
						|
			} else {
 | 
						|
				if (nread == inbuf_size) {
 | 
						|
					/* TLS has per record overhead, if input comes fast,
 | 
						|
					 * read, encrypt and send bigger chunks
 | 
						|
					 */
 | 
						|
					inbuf_size += INBUF_STEP;
 | 
						|
					if (inbuf_size > TLS_MAX_OUTBUF)
 | 
						|
						inbuf_size = TLS_MAX_OUTBUF;
 | 
						|
				}
 | 
						|
				tls_xwrite(tls, nread);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (pfds[1].revents) {
 | 
						|
			dbg("NETWORK HAS DATA\n");
 | 
						|
 read_record:
 | 
						|
			nread = tls_xread_record(tls, "encrypted data");
 | 
						|
			if (nread < 1) {
 | 
						|
				/* TLS protocol has no real concept of one-sided shutdowns:
 | 
						|
				 * if we get "TLS EOF" from the peer, writes will fail too
 | 
						|
				 */
 | 
						|
				//pfds[1].fd = -1;
 | 
						|
				//close(STDOUT_FILENO);
 | 
						|
				//tls_free_inbuf(tls); /* mem usage optimization */
 | 
						|
				//continue;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (tls->inbuf[0] != RECORD_TYPE_APPLICATION_DATA)
 | 
						|
				bad_record_die(tls, "encrypted data", nread);
 | 
						|
			xwrite(STDOUT_FILENO, tls->inbuf + RECHDR_LEN, nread);
 | 
						|
			/* We may already have a complete next record buffered,
 | 
						|
			 * can process it without network reads (and possible blocking)
 | 
						|
			 */
 | 
						|
			if (tls_has_buffered_record(tls))
 | 
						|
				goto read_record;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 |