0e60a36c92
function old new delta mainSort 1119 1108 -11 Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
1080 lines
24 KiB
C
1080 lines
24 KiB
C
/*
|
|
* bzip2 is written by Julian Seward <jseward@bzip.org>.
|
|
* Adapted for busybox by Denys Vlasenko <vda.linux@googlemail.com>.
|
|
* See README and LICENSE files in this directory for more information.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- Block sorting machinery ---*/
|
|
/*--- blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* ------------------------------------------------------------------
|
|
This file is part of bzip2/libbzip2, a program and library for
|
|
lossless, block-sorting data compression.
|
|
|
|
bzip2/libbzip2 version 1.0.4 of 20 December 2006
|
|
Copyright (C) 1996-2006 Julian Seward <jseward@bzip.org>
|
|
|
|
Please read the WARNING, DISCLAIMER and PATENTS sections in the
|
|
README file.
|
|
|
|
This program is released under the terms of the license contained
|
|
in the file LICENSE.
|
|
------------------------------------------------------------------ */
|
|
|
|
/* #include "bzlib_private.h" */
|
|
|
|
#define mswap(zz1, zz2) \
|
|
{ \
|
|
int32_t zztmp = zz1; \
|
|
zz1 = zz2; \
|
|
zz2 = zztmp; \
|
|
}
|
|
|
|
static
|
|
/* No measurable speed gain with inlining */
|
|
/* ALWAYS_INLINE */
|
|
void mvswap(uint32_t* ptr, int32_t zzp1, int32_t zzp2, int32_t zzn)
|
|
{
|
|
while (zzn > 0) {
|
|
mswap(ptr[zzp1], ptr[zzp2]);
|
|
zzp1++;
|
|
zzp2++;
|
|
zzn--;
|
|
}
|
|
}
|
|
|
|
static
|
|
ALWAYS_INLINE
|
|
int32_t mmin(int32_t a, int32_t b)
|
|
{
|
|
return (a < b) ? a : b;
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--- Fallback O(N log(N)^2) sorting ---*/
|
|
/*--- algorithm, for repetitive blocks ---*/
|
|
/*---------------------------------------------*/
|
|
|
|
/*---------------------------------------------*/
|
|
static
|
|
inline
|
|
void fallbackSimpleSort(uint32_t* fmap,
|
|
uint32_t* eclass,
|
|
int32_t lo,
|
|
int32_t hi)
|
|
{
|
|
int32_t i, j, tmp;
|
|
uint32_t ec_tmp;
|
|
|
|
if (lo == hi) return;
|
|
|
|
if (hi - lo > 3) {
|
|
for (i = hi-4; i >= lo; i--) {
|
|
tmp = fmap[i];
|
|
ec_tmp = eclass[tmp];
|
|
for (j = i+4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4)
|
|
fmap[j-4] = fmap[j];
|
|
fmap[j-4] = tmp;
|
|
}
|
|
}
|
|
|
|
for (i = hi-1; i >= lo; i--) {
|
|
tmp = fmap[i];
|
|
ec_tmp = eclass[tmp];
|
|
for (j = i+1; j <= hi && ec_tmp > eclass[fmap[j]]; j++)
|
|
fmap[j-1] = fmap[j];
|
|
fmap[j-1] = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
#define fpush(lz,hz) { \
|
|
stackLo[sp] = lz; \
|
|
stackHi[sp] = hz; \
|
|
sp++; \
|
|
}
|
|
|
|
#define fpop(lz,hz) { \
|
|
sp--; \
|
|
lz = stackLo[sp]; \
|
|
hz = stackHi[sp]; \
|
|
}
|
|
|
|
#define FALLBACK_QSORT_SMALL_THRESH 10
|
|
#define FALLBACK_QSORT_STACK_SIZE 100
|
|
|
|
static
|
|
void fallbackQSort3(uint32_t* fmap,
|
|
uint32_t* eclass,
|
|
int32_t loSt,
|
|
int32_t hiSt)
|
|
{
|
|
int32_t sp;
|
|
uint32_t r;
|
|
int32_t stackLo[FALLBACK_QSORT_STACK_SIZE];
|
|
int32_t stackHi[FALLBACK_QSORT_STACK_SIZE];
|
|
|
|
r = 0;
|
|
|
|
sp = 0;
|
|
fpush(loSt, hiSt);
|
|
|
|
while (sp > 0) {
|
|
int32_t unLo, unHi, ltLo, gtHi, n, m;
|
|
int32_t lo, hi;
|
|
uint32_t med;
|
|
uint32_t r3;
|
|
|
|
AssertH(sp < FALLBACK_QSORT_STACK_SIZE - 1, 1004);
|
|
|
|
fpop(lo, hi);
|
|
if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
|
|
fallbackSimpleSort(fmap, eclass, lo, hi);
|
|
continue;
|
|
}
|
|
|
|
/* Random partitioning. Median of 3 sometimes fails to
|
|
* avoid bad cases. Median of 9 seems to help but
|
|
* looks rather expensive. This too seems to work but
|
|
* is cheaper. Guidance for the magic constants
|
|
* 7621 and 32768 is taken from Sedgewick's algorithms
|
|
* book, chapter 35.
|
|
*/
|
|
r = ((r * 7621) + 1) % 32768;
|
|
r3 = r % 3;
|
|
if (r3 == 0)
|
|
med = eclass[fmap[lo]];
|
|
else if (r3 == 1)
|
|
med = eclass[fmap[(lo+hi)>>1]];
|
|
else
|
|
med = eclass[fmap[hi]];
|
|
|
|
unLo = ltLo = lo;
|
|
unHi = gtHi = hi;
|
|
|
|
while (1) {
|
|
while (1) {
|
|
if (unLo > unHi) break;
|
|
n = (int32_t)eclass[fmap[unLo]] - (int32_t)med;
|
|
if (n == 0) {
|
|
mswap(fmap[unLo], fmap[ltLo]);
|
|
ltLo++;
|
|
unLo++;
|
|
continue;
|
|
}
|
|
if (n > 0) break;
|
|
unLo++;
|
|
}
|
|
while (1) {
|
|
if (unLo > unHi) break;
|
|
n = (int32_t)eclass[fmap[unHi]] - (int32_t)med;
|
|
if (n == 0) {
|
|
mswap(fmap[unHi], fmap[gtHi]);
|
|
gtHi--; unHi--;
|
|
continue;
|
|
}
|
|
if (n < 0) break;
|
|
unHi--;
|
|
}
|
|
if (unLo > unHi) break;
|
|
mswap(fmap[unLo], fmap[unHi]); unLo++; unHi--;
|
|
}
|
|
|
|
AssertD(unHi == unLo-1, "fallbackQSort3(2)");
|
|
|
|
if (gtHi < ltLo) continue;
|
|
|
|
n = mmin(ltLo-lo, unLo-ltLo); mvswap(fmap, lo, unLo-n, n);
|
|
m = mmin(hi-gtHi, gtHi-unHi); mvswap(fmap, unLo, hi-m+1, m);
|
|
|
|
n = lo + unLo - ltLo - 1;
|
|
m = hi - (gtHi - unHi) + 1;
|
|
|
|
if (n - lo > hi - m) {
|
|
fpush(lo, n);
|
|
fpush(m, hi);
|
|
} else {
|
|
fpush(m, hi);
|
|
fpush(lo, n);
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef fpush
|
|
#undef fpop
|
|
#undef FALLBACK_QSORT_SMALL_THRESH
|
|
#undef FALLBACK_QSORT_STACK_SIZE
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
* nblock > 0
|
|
* eclass exists for [0 .. nblock-1]
|
|
* ((uint8_t*)eclass) [0 .. nblock-1] holds block
|
|
* ptr exists for [0 .. nblock-1]
|
|
*
|
|
* Post:
|
|
* ((uint8_t*)eclass) [0 .. nblock-1] holds block
|
|
* All other areas of eclass destroyed
|
|
* fmap [0 .. nblock-1] holds sorted order
|
|
* bhtab[0 .. 2+(nblock/32)] destroyed
|
|
*/
|
|
|
|
#define SET_BH(zz) bhtab[(zz) >> 5] |= (1 << ((zz) & 31))
|
|
#define CLEAR_BH(zz) bhtab[(zz) >> 5] &= ~(1 << ((zz) & 31))
|
|
#define ISSET_BH(zz) (bhtab[(zz) >> 5] & (1 << ((zz) & 31)))
|
|
#define WORD_BH(zz) bhtab[(zz) >> 5]
|
|
#define UNALIGNED_BH(zz) ((zz) & 0x01f)
|
|
|
|
static
|
|
void fallbackSort(EState* state)
|
|
{
|
|
int32_t ftab[257];
|
|
int32_t ftabCopy[256];
|
|
int32_t H, i, j, k, l, r, cc, cc1;
|
|
int32_t nNotDone;
|
|
int32_t nBhtab;
|
|
/* params */
|
|
uint32_t *const fmap = state->arr1;
|
|
uint32_t *const eclass = state->arr2;
|
|
#define eclass8 ((uint8_t*)eclass)
|
|
uint32_t *const bhtab = state->ftab;
|
|
const int32_t nblock = state->nblock;
|
|
|
|
/*
|
|
* Initial 1-char radix sort to generate
|
|
* initial fmap and initial BH bits.
|
|
*/
|
|
for (i = 0; i < 257; i++) ftab[i] = 0;
|
|
for (i = 0; i < nblock; i++) ftab[eclass8[i]]++;
|
|
for (i = 0; i < 256; i++) ftabCopy[i] = ftab[i];
|
|
|
|
j = ftab[0]; /* bbox: optimized */
|
|
for (i = 1; i < 257; i++) {
|
|
j += ftab[i];
|
|
ftab[i] = j;
|
|
}
|
|
|
|
for (i = 0; i < nblock; i++) {
|
|
j = eclass8[i];
|
|
k = ftab[j] - 1;
|
|
ftab[j] = k;
|
|
fmap[k] = i;
|
|
}
|
|
|
|
nBhtab = 2 + ((uint32_t)nblock / 32); /* bbox: unsigned div is easier */
|
|
for (i = 0; i < nBhtab; i++) bhtab[i] = 0;
|
|
for (i = 0; i < 256; i++) SET_BH(ftab[i]);
|
|
|
|
/*
|
|
* Inductively refine the buckets. Kind-of an
|
|
* "exponential radix sort" (!), inspired by the
|
|
* Manber-Myers suffix array construction algorithm.
|
|
*/
|
|
|
|
/*-- set sentinel bits for block-end detection --*/
|
|
for (i = 0; i < 32; i++) {
|
|
SET_BH(nblock + 2*i);
|
|
CLEAR_BH(nblock + 2*i + 1);
|
|
}
|
|
|
|
/*-- the log(N) loop --*/
|
|
H = 1;
|
|
while (1) {
|
|
j = 0;
|
|
for (i = 0; i < nblock; i++) {
|
|
if (ISSET_BH(i))
|
|
j = i;
|
|
k = fmap[i] - H;
|
|
if (k < 0)
|
|
k += nblock;
|
|
eclass[k] = j;
|
|
}
|
|
|
|
nNotDone = 0;
|
|
r = -1;
|
|
while (1) {
|
|
|
|
/*-- find the next non-singleton bucket --*/
|
|
k = r + 1;
|
|
while (ISSET_BH(k) && UNALIGNED_BH(k))
|
|
k++;
|
|
if (ISSET_BH(k)) {
|
|
while (WORD_BH(k) == 0xffffffff) k += 32;
|
|
while (ISSET_BH(k)) k++;
|
|
}
|
|
l = k - 1;
|
|
if (l >= nblock)
|
|
break;
|
|
while (!ISSET_BH(k) && UNALIGNED_BH(k))
|
|
k++;
|
|
if (!ISSET_BH(k)) {
|
|
while (WORD_BH(k) == 0x00000000) k += 32;
|
|
while (!ISSET_BH(k)) k++;
|
|
}
|
|
r = k - 1;
|
|
if (r >= nblock)
|
|
break;
|
|
|
|
/*-- now [l, r] bracket current bucket --*/
|
|
if (r > l) {
|
|
nNotDone += (r - l + 1);
|
|
fallbackQSort3(fmap, eclass, l, r);
|
|
|
|
/*-- scan bucket and generate header bits-- */
|
|
cc = -1;
|
|
for (i = l; i <= r; i++) {
|
|
cc1 = eclass[fmap[i]];
|
|
if (cc != cc1) {
|
|
SET_BH(i);
|
|
cc = cc1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
H *= 2;
|
|
if (H > nblock || nNotDone == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Reconstruct the original block in
|
|
* eclass8 [0 .. nblock-1], since the
|
|
* previous phase destroyed it.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < nblock; i++) {
|
|
while (ftabCopy[j] == 0)
|
|
j++;
|
|
ftabCopy[j]--;
|
|
eclass8[fmap[i]] = (uint8_t)j;
|
|
}
|
|
AssertH(j < 256, 1005);
|
|
#undef eclass8
|
|
}
|
|
|
|
#undef SET_BH
|
|
#undef CLEAR_BH
|
|
#undef ISSET_BH
|
|
#undef WORD_BH
|
|
#undef UNALIGNED_BH
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--- The main, O(N^2 log(N)) sorting ---*/
|
|
/*--- algorithm. Faster for "normal" ---*/
|
|
/*--- non-repetitive blocks. ---*/
|
|
/*---------------------------------------------*/
|
|
|
|
/*---------------------------------------------*/
|
|
static
|
|
NOINLINE
|
|
int mainGtU(EState* state,
|
|
uint32_t i1,
|
|
uint32_t i2)
|
|
{
|
|
int32_t k;
|
|
uint8_t c1, c2;
|
|
uint16_t s1, s2;
|
|
|
|
uint8_t *const block = state->block;
|
|
uint16_t *const quadrant = state->quadrant;
|
|
const int32_t nblock = state->nblock;
|
|
|
|
/* Loop unrolling here is actually very useful
|
|
* (generated code is much simpler),
|
|
* code size increase is only 270 bytes (i386)
|
|
* but speeds up compression 10% overall
|
|
*/
|
|
|
|
#if CONFIG_BZIP2_FAST >= 1
|
|
|
|
#define TIMES_8(code) \
|
|
code; code; code; code; \
|
|
code; code; code; code;
|
|
#define TIMES_12(code) \
|
|
code; code; code; code; \
|
|
code; code; code; code; \
|
|
code; code; code; code;
|
|
|
|
#else
|
|
|
|
#define TIMES_8(code) \
|
|
{ \
|
|
int nn = 8; \
|
|
do { \
|
|
code; \
|
|
} while (--nn); \
|
|
}
|
|
#define TIMES_12(code) \
|
|
{ \
|
|
int nn = 12; \
|
|
do { \
|
|
code; \
|
|
} while (--nn); \
|
|
}
|
|
|
|
#endif
|
|
|
|
AssertD(i1 != i2, "mainGtU");
|
|
TIMES_12(
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
)
|
|
|
|
k = nblock + 8;
|
|
|
|
do {
|
|
TIMES_8(
|
|
c1 = block[i1]; c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1]; s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
)
|
|
|
|
if (i1 >= nblock) i1 -= nblock;
|
|
if (i2 >= nblock) i2 -= nblock;
|
|
|
|
state->budget--;
|
|
k -= 8;
|
|
} while (k >= 0);
|
|
|
|
return False;
|
|
}
|
|
#undef TIMES_8
|
|
#undef TIMES_12
|
|
|
|
/*---------------------------------------------*/
|
|
/*
|
|
* Knuth's increments seem to work better
|
|
* than Incerpi-Sedgewick here. Possibly
|
|
* because the number of elems to sort is
|
|
* usually small, typically <= 20.
|
|
*/
|
|
static
|
|
const uint32_t incs[14] = {
|
|
1, 4, 13, 40, 121, 364, 1093, 3280,
|
|
9841, 29524, 88573, 265720,
|
|
797161, 2391484
|
|
};
|
|
|
|
static
|
|
void mainSimpleSort(EState* state,
|
|
int32_t lo,
|
|
int32_t hi,
|
|
int32_t d)
|
|
{
|
|
uint32_t *const ptr = state->ptr;
|
|
|
|
/* At which increment to start? */
|
|
int hp = 0;
|
|
{
|
|
int bigN = hi - lo;
|
|
if (bigN <= 0)
|
|
return;
|
|
while (incs[hp] <= bigN)
|
|
hp++;
|
|
hp--;
|
|
}
|
|
|
|
for (; hp >= 0; hp--) {
|
|
int32_t i;
|
|
unsigned h;
|
|
|
|
h = incs[hp];
|
|
i = lo + h;
|
|
while (1) {
|
|
unsigned j;
|
|
unsigned v;
|
|
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while (mainGtU(state, ptr[j-h]+d, v+d)) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
|
|
/* 1.5% overall speedup, +290 bytes */
|
|
#if CONFIG_BZIP2_FAST >= 3
|
|
/*-- copy 2 --*/
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while (mainGtU(state, ptr[j-h]+d, v+d)) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
/*-- copy 3 --*/
|
|
if (i > hi) break;
|
|
v = ptr[i];
|
|
j = i;
|
|
while (mainGtU(state, ptr[j-h]+d, v+d)) {
|
|
ptr[j] = ptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
ptr[j] = v;
|
|
i++;
|
|
#endif
|
|
if (state->budget < 0) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*
|
|
* The following is an implementation of
|
|
* an elegant 3-way quicksort for strings,
|
|
* described in a paper "Fast Algorithms for
|
|
* Sorting and Searching Strings", by Robert
|
|
* Sedgewick and Jon L. Bentley.
|
|
*/
|
|
|
|
static
|
|
ALWAYS_INLINE
|
|
uint8_t mmed3(uint8_t a, uint8_t b, uint8_t c)
|
|
{
|
|
uint8_t t;
|
|
if (a > b) {
|
|
t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
/* here b >= a */
|
|
if (b > c) {
|
|
b = c;
|
|
if (a > b)
|
|
b = a;
|
|
}
|
|
return b;
|
|
}
|
|
|
|
#define mpush(lz,hz,dz) \
|
|
{ \
|
|
stackLo[sp] = lz; \
|
|
stackHi[sp] = hz; \
|
|
stackD [sp] = dz; \
|
|
sp++; \
|
|
}
|
|
|
|
#define mpop(lz,hz,dz) \
|
|
{ \
|
|
sp--; \
|
|
lz = stackLo[sp]; \
|
|
hz = stackHi[sp]; \
|
|
dz = stackD [sp]; \
|
|
}
|
|
|
|
#define mnextsize(az) (nextHi[az] - nextLo[az])
|
|
|
|
#define mnextswap(az,bz) \
|
|
{ \
|
|
int32_t tz; \
|
|
tz = nextLo[az]; nextLo[az] = nextLo[bz]; nextLo[bz] = tz; \
|
|
tz = nextHi[az]; nextHi[az] = nextHi[bz]; nextHi[bz] = tz; \
|
|
tz = nextD [az]; nextD [az] = nextD [bz]; nextD [bz] = tz; \
|
|
}
|
|
|
|
#define MAIN_QSORT_SMALL_THRESH 20
|
|
#define MAIN_QSORT_DEPTH_THRESH (BZ_N_RADIX + BZ_N_QSORT)
|
|
#define MAIN_QSORT_STACK_SIZE 100
|
|
|
|
static NOINLINE
|
|
void mainQSort3(EState* state,
|
|
int32_t loSt,
|
|
int32_t hiSt
|
|
/*int32_t dSt*/)
|
|
{
|
|
enum { dSt = BZ_N_RADIX };
|
|
int32_t unLo, unHi, ltLo, gtHi, n, m, med;
|
|
int32_t sp, lo, hi, d;
|
|
|
|
int32_t stackLo[MAIN_QSORT_STACK_SIZE];
|
|
int32_t stackHi[MAIN_QSORT_STACK_SIZE];
|
|
int32_t stackD [MAIN_QSORT_STACK_SIZE];
|
|
|
|
int32_t nextLo[3];
|
|
int32_t nextHi[3];
|
|
int32_t nextD [3];
|
|
|
|
uint32_t *const ptr = state->ptr;
|
|
uint8_t *const block = state->block;
|
|
|
|
sp = 0;
|
|
mpush(loSt, hiSt, dSt);
|
|
|
|
while (sp > 0) {
|
|
AssertH(sp < MAIN_QSORT_STACK_SIZE - 2, 1001);
|
|
|
|
mpop(lo, hi, d);
|
|
if (hi - lo < MAIN_QSORT_SMALL_THRESH
|
|
|| d > MAIN_QSORT_DEPTH_THRESH
|
|
) {
|
|
mainSimpleSort(state, lo, hi, d);
|
|
if (state->budget < 0)
|
|
return;
|
|
continue;
|
|
}
|
|
med = (int32_t) mmed3(block[ptr[lo ] + d],
|
|
block[ptr[hi ] + d],
|
|
block[ptr[(lo+hi) >> 1] + d]);
|
|
|
|
unLo = ltLo = lo;
|
|
unHi = gtHi = hi;
|
|
|
|
while (1) {
|
|
while (1) {
|
|
if (unLo > unHi)
|
|
break;
|
|
n = ((int32_t)block[ptr[unLo]+d]) - med;
|
|
if (n == 0) {
|
|
mswap(ptr[unLo], ptr[ltLo]);
|
|
ltLo++;
|
|
unLo++;
|
|
continue;
|
|
}
|
|
if (n > 0) break;
|
|
unLo++;
|
|
}
|
|
while (1) {
|
|
if (unLo > unHi)
|
|
break;
|
|
n = ((int32_t)block[ptr[unHi]+d]) - med;
|
|
if (n == 0) {
|
|
mswap(ptr[unHi], ptr[gtHi]);
|
|
gtHi--;
|
|
unHi--;
|
|
continue;
|
|
}
|
|
if (n < 0) break;
|
|
unHi--;
|
|
}
|
|
if (unLo > unHi)
|
|
break;
|
|
mswap(ptr[unLo], ptr[unHi]);
|
|
unLo++;
|
|
unHi--;
|
|
}
|
|
|
|
AssertD(unHi == unLo-1, "mainQSort3(2)");
|
|
|
|
if (gtHi < ltLo) {
|
|
mpush(lo, hi, d + 1);
|
|
continue;
|
|
}
|
|
|
|
n = mmin(ltLo-lo, unLo-ltLo); mvswap(ptr, lo, unLo-n, n);
|
|
m = mmin(hi-gtHi, gtHi-unHi); mvswap(ptr, unLo, hi-m+1, m);
|
|
|
|
n = lo + unLo - ltLo - 1;
|
|
m = hi - (gtHi - unHi) + 1;
|
|
|
|
nextLo[0] = lo; nextHi[0] = n; nextD[0] = d;
|
|
nextLo[1] = m; nextHi[1] = hi; nextD[1] = d;
|
|
nextLo[2] = n+1; nextHi[2] = m-1; nextD[2] = d+1;
|
|
|
|
if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
|
|
if (mnextsize(1) < mnextsize(2)) mnextswap(1, 2);
|
|
if (mnextsize(0) < mnextsize(1)) mnextswap(0, 1);
|
|
|
|
AssertD (mnextsize(0) >= mnextsize(1), "mainQSort3(8)");
|
|
AssertD (mnextsize(1) >= mnextsize(2), "mainQSort3(9)");
|
|
|
|
mpush(nextLo[0], nextHi[0], nextD[0]);
|
|
mpush(nextLo[1], nextHi[1], nextD[1]);
|
|
mpush(nextLo[2], nextHi[2], nextD[2]);
|
|
}
|
|
}
|
|
|
|
#undef mpush
|
|
#undef mpop
|
|
#undef mnextsize
|
|
#undef mnextswap
|
|
#undef MAIN_QSORT_SMALL_THRESH
|
|
#undef MAIN_QSORT_DEPTH_THRESH
|
|
#undef MAIN_QSORT_STACK_SIZE
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
* nblock > N_OVERSHOOT
|
|
* block32 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
|
* ((uint8_t*)block32) [0 .. nblock-1] holds block
|
|
* ptr exists for [0 .. nblock-1]
|
|
*
|
|
* Post:
|
|
* ((uint8_t*)block32) [0 .. nblock-1] holds block
|
|
* All other areas of block32 destroyed
|
|
* ftab[0 .. 65536] destroyed
|
|
* ptr [0 .. nblock-1] holds sorted order
|
|
* if (*budget < 0), sorting was abandoned
|
|
*/
|
|
|
|
#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
|
|
#define SETMASK (1 << 21)
|
|
#define CLEARMASK (~(SETMASK))
|
|
|
|
static NOINLINE
|
|
void mainSort(EState* state)
|
|
{
|
|
int32_t i, j;
|
|
Bool bigDone[256];
|
|
uint8_t runningOrder[256];
|
|
/* bbox: moved to EState to save stack
|
|
int32_t copyStart[256];
|
|
int32_t copyEnd [256];
|
|
*/
|
|
#define copyStart (state->mainSort__copyStart)
|
|
#define copyEnd (state->mainSort__copyEnd)
|
|
|
|
uint32_t *const ptr = state->ptr;
|
|
uint8_t *const block = state->block;
|
|
uint32_t *const ftab = state->ftab;
|
|
const int32_t nblock = state->nblock;
|
|
uint16_t *const quadrant = state->quadrant;
|
|
|
|
/*-- set up the 2-byte frequency table --*/
|
|
/* was: for (i = 65536; i >= 0; i--) ftab[i] = 0; */
|
|
memset(ftab, 0, 65537 * sizeof(ftab[0]));
|
|
|
|
j = block[0] << 8;
|
|
i = nblock - 1;
|
|
/* 3%, +300 bytes */
|
|
#if CONFIG_BZIP2_FAST >= 2
|
|
for (; i >= 3; i -= 4) {
|
|
quadrant[i] = 0;
|
|
j = (j >> 8) | (((unsigned)block[i]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-1] = 0;
|
|
j = (j >> 8) | (((unsigned)block[i-1]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-2] = 0;
|
|
j = (j >> 8) | (((unsigned)block[i-2]) << 8);
|
|
ftab[j]++;
|
|
quadrant[i-3] = 0;
|
|
j = (j >> 8) | (((unsigned)block[i-3]) << 8);
|
|
ftab[j]++;
|
|
}
|
|
#endif
|
|
for (; i >= 0; i--) {
|
|
quadrant[i] = 0;
|
|
j = (j >> 8) | (((unsigned)block[i]) << 8);
|
|
ftab[j]++;
|
|
}
|
|
|
|
/*-- (emphasises close relationship of block & quadrant) --*/
|
|
for (i = 0; i < BZ_N_OVERSHOOT; i++) {
|
|
block [nblock+i] = block[i];
|
|
quadrant[nblock+i] = 0;
|
|
}
|
|
|
|
/*-- Complete the initial radix sort --*/
|
|
j = ftab[0]; /* bbox: optimized */
|
|
for (i = 1; i <= 65536; i++) {
|
|
j += ftab[i];
|
|
ftab[i] = j;
|
|
}
|
|
|
|
{
|
|
unsigned s;
|
|
s = block[0] << 8;
|
|
i = nblock - 1;
|
|
#if CONFIG_BZIP2_FAST >= 2
|
|
for (; i >= 3; i -= 4) {
|
|
s = (s >> 8) | (block[i] << 8);
|
|
j = ftab[s] - 1;
|
|
ftab[s] = j;
|
|
ptr[j] = i;
|
|
s = (s >> 8) | (block[i-1] << 8);
|
|
j = ftab[s] - 1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-1;
|
|
s = (s >> 8) | (block[i-2] << 8);
|
|
j = ftab[s] - 1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-2;
|
|
s = (s >> 8) | (block[i-3] << 8);
|
|
j = ftab[s] - 1;
|
|
ftab[s] = j;
|
|
ptr[j] = i-3;
|
|
}
|
|
#endif
|
|
for (; i >= 0; i--) {
|
|
s = (s >> 8) | (block[i] << 8);
|
|
j = ftab[s] - 1;
|
|
ftab[s] = j;
|
|
ptr[j] = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now ftab contains the first loc of every small bucket.
|
|
* Calculate the running order, from smallest to largest
|
|
* big bucket.
|
|
*/
|
|
for (i = 0; i <= 255; i++) {
|
|
bigDone [i] = False;
|
|
runningOrder[i] = i;
|
|
}
|
|
|
|
{
|
|
/* bbox: was: int32_t h = 1; */
|
|
/* do h = 3 * h + 1; while (h <= 256); */
|
|
unsigned h = 364;
|
|
|
|
do {
|
|
/*h = h / 3;*/
|
|
h = (h * 171) >> 9; /* bbox: fast h/3 */
|
|
for (i = h; i <= 255; i++) {
|
|
unsigned vv, jh;
|
|
vv = runningOrder[i]; /* uint8[] */
|
|
j = i;
|
|
while (jh = j - h, BIGFREQ(runningOrder[jh]) > BIGFREQ(vv)) {
|
|
runningOrder[j] = runningOrder[jh];
|
|
j = jh;
|
|
if (j < h)
|
|
break;
|
|
}
|
|
runningOrder[j] = vv;
|
|
}
|
|
} while (h != 1);
|
|
}
|
|
|
|
/*
|
|
* The main sorting loop.
|
|
*/
|
|
|
|
for (i = 0; /*i <= 255*/; i++) {
|
|
unsigned ss;
|
|
|
|
/*
|
|
* Process big buckets, starting with the least full.
|
|
* Basically this is a 3-step process in which we call
|
|
* mainQSort3 to sort the small buckets [ss, j], but
|
|
* also make a big effort to avoid the calls if we can.
|
|
*/
|
|
ss = runningOrder[i];
|
|
|
|
/*
|
|
* Step 1:
|
|
* Complete the big bucket [ss] by quicksorting
|
|
* any unsorted small buckets [ss, j], for j != ss.
|
|
* Hopefully previous pointer-scanning phases have already
|
|
* completed many of the small buckets [ss, j], so
|
|
* we don't have to sort them at all.
|
|
*/
|
|
for (j = 0; j <= 255; j++) {
|
|
if (j != ss) {
|
|
unsigned sb;
|
|
sb = (ss << 8) + j;
|
|
if (!(ftab[sb] & SETMASK)) {
|
|
int32_t lo = ftab[sb] /*& CLEARMASK (redundant)*/;
|
|
int32_t hi = (ftab[sb+1] & CLEARMASK) - 1;
|
|
if (hi > lo) {
|
|
mainQSort3(state, lo, hi /*,BZ_N_RADIX*/);
|
|
if (state->budget < 0) return;
|
|
}
|
|
}
|
|
ftab[sb] |= SETMASK;
|
|
}
|
|
}
|
|
|
|
AssertH(!bigDone[ss], 1006);
|
|
|
|
/*
|
|
* Step 2:
|
|
* Now scan this big bucket [ss] so as to synthesise the
|
|
* sorted order for small buckets [t, ss] for all t,
|
|
* including, magically, the bucket [ss,ss] too.
|
|
* This will avoid doing Real Work in subsequent Step 1's.
|
|
*/
|
|
{
|
|
for (j = 0; j <= 255; j++) {
|
|
copyStart[j] = ftab[(j << 8) + ss] & CLEARMASK;
|
|
copyEnd [j] = (ftab[(j << 8) + ss + 1] & CLEARMASK) - 1;
|
|
}
|
|
for (j = ftab[ss << 8] & CLEARMASK; j < copyStart[ss]; j++) {
|
|
unsigned c1;
|
|
int32_t k;
|
|
k = ptr[j] - 1;
|
|
if (k < 0)
|
|
k += nblock;
|
|
c1 = block[k];
|
|
if (!bigDone[c1])
|
|
ptr[copyStart[c1]++] = k;
|
|
}
|
|
for (j = (ftab[(ss+1) << 8] & CLEARMASK) - 1; j > copyEnd[ss]; j--) {
|
|
unsigned c1;
|
|
int32_t k;
|
|
k = ptr[j]-1;
|
|
if (k < 0)
|
|
k += nblock;
|
|
c1 = block[k];
|
|
if (!bigDone[c1])
|
|
ptr[copyEnd[c1]--] = k;
|
|
}
|
|
}
|
|
|
|
/* Extremely rare case missing in bzip2-1.0.0 and 1.0.1.
|
|
* Necessity for this case is demonstrated by compressing
|
|
* a sequence of approximately 48.5 million of character
|
|
* 251; 1.0.0/1.0.1 will then die here. */
|
|
AssertH((copyStart[ss]-1 == copyEnd[ss]) \
|
|
|| (copyStart[ss] == 0 && copyEnd[ss] == nblock-1), 1007);
|
|
|
|
for (j = 0; j <= 255; j++)
|
|
ftab[(j << 8) + ss] |= SETMASK;
|
|
|
|
if (i == 255)
|
|
break;
|
|
|
|
/*
|
|
* Step 3:
|
|
* The [ss] big bucket is now done. Record this fact,
|
|
* and update the quadrant descriptors. Remember to
|
|
* update quadrants in the overshoot area too, if
|
|
* necessary. The "if (i < 255)" test merely skips
|
|
* this updating for the last bucket processed, since
|
|
* updating for the last bucket is pointless.
|
|
*
|
|
* The quadrant array provides a way to incrementally
|
|
* cache sort orderings, as they appear, so as to
|
|
* make subsequent comparisons in fullGtU() complete
|
|
* faster. For repetitive blocks this makes a big
|
|
* difference (but not big enough to be able to avoid
|
|
* the fallback sorting mechanism, exponential radix sort).
|
|
*
|
|
* The precise meaning is: at all times:
|
|
*
|
|
* for 0 <= i < nblock and 0 <= j <= nblock
|
|
*
|
|
* if block[i] != block[j],
|
|
*
|
|
* then the relative values of quadrant[i] and
|
|
* quadrant[j] are meaningless.
|
|
*
|
|
* else {
|
|
* if quadrant[i] < quadrant[j]
|
|
* then the string starting at i lexicographically
|
|
* precedes the string starting at j
|
|
*
|
|
* else if quadrant[i] > quadrant[j]
|
|
* then the string starting at j lexicographically
|
|
* precedes the string starting at i
|
|
*
|
|
* else
|
|
* the relative ordering of the strings starting
|
|
* at i and j has not yet been determined.
|
|
* }
|
|
*/
|
|
bigDone[ss] = True;
|
|
|
|
{
|
|
unsigned bbStart = ftab[ss << 8] & CLEARMASK;
|
|
unsigned bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
|
|
unsigned shifts = 0;
|
|
|
|
while ((bbSize >> shifts) > 65534) shifts++;
|
|
|
|
for (j = bbSize-1; j >= 0; j--) {
|
|
unsigned a2update = ptr[bbStart + j]; /* uint32[] */
|
|
uint16_t qVal = (uint16_t)(j >> shifts);
|
|
quadrant[a2update] = qVal;
|
|
if (a2update < BZ_N_OVERSHOOT)
|
|
quadrant[a2update + nblock] = qVal;
|
|
}
|
|
AssertH(((bbSize-1) >> shifts) <= 65535, 1002);
|
|
}
|
|
}
|
|
#undef runningOrder
|
|
#undef copyStart
|
|
#undef copyEnd
|
|
}
|
|
|
|
#undef BIGFREQ
|
|
#undef SETMASK
|
|
#undef CLEARMASK
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/* Pre:
|
|
* nblock > 0
|
|
* arr2 exists for [0 .. nblock-1 +N_OVERSHOOT]
|
|
* ((uint8_t*)arr2)[0 .. nblock-1] holds block
|
|
* arr1 exists for [0 .. nblock-1]
|
|
*
|
|
* Post:
|
|
* ((uint8_t*)arr2) [0 .. nblock-1] holds block
|
|
* All other areas of block destroyed
|
|
* ftab[0 .. 65536] destroyed
|
|
* arr1[0 .. nblock-1] holds sorted order
|
|
*/
|
|
static NOINLINE
|
|
int32_t BZ2_blockSort(EState* state)
|
|
{
|
|
/* In original bzip2 1.0.4, it's a parameter, but 30
|
|
* (which was the default) should work ok. */
|
|
enum { wfact = 30 };
|
|
unsigned i;
|
|
int32_t origPtr = origPtr;
|
|
|
|
if (state->nblock >= 10000) {
|
|
/* Calculate the location for quadrant, remembering to get
|
|
* the alignment right. Assumes that &(block[0]) is at least
|
|
* 2-byte aligned -- this should be ok since block is really
|
|
* the first section of arr2.
|
|
*/
|
|
i = state->nblock + BZ_N_OVERSHOOT;
|
|
if (i & 1)
|
|
i++;
|
|
state->quadrant = (uint16_t*) &(state->block[i]);
|
|
|
|
/* (wfact-1) / 3 puts the default-factor-30
|
|
* transition point at very roughly the same place as
|
|
* with v0.1 and v0.9.0.
|
|
* Not that it particularly matters any more, since the
|
|
* resulting compressed stream is now the same regardless
|
|
* of whether or not we use the main sort or fallback sort.
|
|
*/
|
|
state->budget = state->nblock * ((wfact-1) / 3);
|
|
mainSort(state);
|
|
if (state->budget >= 0)
|
|
goto good;
|
|
}
|
|
fallbackSort(state);
|
|
good:
|
|
|
|
#if BZ_LIGHT_DEBUG
|
|
origPtr = -1;
|
|
#endif
|
|
for (i = 0; i < state->nblock; i++) {
|
|
if (state->ptr[i] == 0) {
|
|
origPtr = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
AssertH(origPtr != -1, 1003);
|
|
return origPtr;
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- end blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|