function old new delta packed_usage 24750 24787 +37 run 658 655 -3 pick 40 34 -6 arp 186 177 -9 zcip_main 1402 1356 -46 ------------------------------------------------------------------------------ (add/remove: 0/0 grow/shrink: 1/4 up/down: 37/-64) Total: -27 bytes
		
			
				
	
	
		
			567 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* vi: set sw=4 ts=4: */
 | 
						|
/*
 | 
						|
 * RFC3927 ZeroConf IPv4 Link-Local addressing
 | 
						|
 * (see <http://www.zeroconf.org/>)
 | 
						|
 *
 | 
						|
 * Copyright (C) 2003 by Arthur van Hoff (avh@strangeberry.com)
 | 
						|
 * Copyright (C) 2004 by David Brownell
 | 
						|
 *
 | 
						|
 * Licensed under the GPL v2 or later, see the file LICENSE in this tarball.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * ZCIP just manages the 169.254.*.* addresses.  That network is not
 | 
						|
 * routed at the IP level, though various proxies or bridges can
 | 
						|
 * certainly be used.  Its naming is built over multicast DNS.
 | 
						|
 */
 | 
						|
 | 
						|
//#define DEBUG
 | 
						|
 | 
						|
// TODO:
 | 
						|
// - more real-world usage/testing, especially daemon mode
 | 
						|
// - kernel packet filters to reduce scheduling noise
 | 
						|
// - avoid silent script failures, especially under load...
 | 
						|
// - link status monitoring (restart on link-up; stop on link-down)
 | 
						|
 | 
						|
#include <netinet/ether.h>
 | 
						|
#include <net/ethernet.h>
 | 
						|
#include <net/if.h>
 | 
						|
#include <net/if_arp.h>
 | 
						|
#include <linux/if_packet.h>
 | 
						|
#include <linux/sockios.h>
 | 
						|
 | 
						|
#include "libbb.h"
 | 
						|
#include <syslog.h>
 | 
						|
 | 
						|
/* We don't need more than 32 bits of the counter */
 | 
						|
#define MONOTONIC_US() ((unsigned)monotonic_us())
 | 
						|
 | 
						|
struct arp_packet {
 | 
						|
	struct ether_header eth;
 | 
						|
	struct ether_arp arp;
 | 
						|
} PACKED;
 | 
						|
 | 
						|
enum {
 | 
						|
/* 169.254.0.0 */
 | 
						|
	LINKLOCAL_ADDR = 0xa9fe0000,
 | 
						|
 | 
						|
/* protocol timeout parameters, specified in seconds */
 | 
						|
	PROBE_WAIT = 1,
 | 
						|
	PROBE_MIN = 1,
 | 
						|
	PROBE_MAX = 2,
 | 
						|
	PROBE_NUM = 3,
 | 
						|
	MAX_CONFLICTS = 10,
 | 
						|
	RATE_LIMIT_INTERVAL = 60,
 | 
						|
	ANNOUNCE_WAIT = 2,
 | 
						|
	ANNOUNCE_NUM = 2,
 | 
						|
	ANNOUNCE_INTERVAL = 2,
 | 
						|
	DEFEND_INTERVAL = 10
 | 
						|
};
 | 
						|
 | 
						|
/* States during the configuration process. */
 | 
						|
enum {
 | 
						|
	PROBE = 0,
 | 
						|
	RATE_LIMIT_PROBE,
 | 
						|
	ANNOUNCE,
 | 
						|
	MONITOR,
 | 
						|
	DEFEND
 | 
						|
};
 | 
						|
 | 
						|
#define VDBG(...) do { } while (0)
 | 
						|
 | 
						|
 | 
						|
enum {
 | 
						|
	sock_fd = 3
 | 
						|
};
 | 
						|
 | 
						|
struct globals {
 | 
						|
	struct sockaddr saddr;
 | 
						|
	struct ether_addr eth_addr;
 | 
						|
};
 | 
						|
#define G (*(struct globals*)&bb_common_bufsiz1)
 | 
						|
#define saddr    (G.saddr   )
 | 
						|
#define eth_addr (G.eth_addr)
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * Pick a random link local IP address on 169.254/16, except that
 | 
						|
 * the first and last 256 addresses are reserved.
 | 
						|
 */
 | 
						|
static uint32_t pick(void)
 | 
						|
{
 | 
						|
	unsigned tmp;
 | 
						|
 | 
						|
	do {
 | 
						|
		tmp = rand() & IN_CLASSB_HOST;
 | 
						|
	} while (tmp > (IN_CLASSB_HOST - 0x0200));
 | 
						|
	return htonl((LINKLOCAL_ADDR + 0x0100) + tmp);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Broadcast an ARP packet.
 | 
						|
 */
 | 
						|
static void arp(
 | 
						|
	/* int op, - always ARPOP_REQUEST */
 | 
						|
	/* const struct ether_addr *source_eth, - always ð_addr */
 | 
						|
					struct in_addr source_ip,
 | 
						|
	const struct ether_addr *target_eth, struct in_addr target_ip)
 | 
						|
{
 | 
						|
	enum { op = ARPOP_REQUEST };
 | 
						|
#define source_eth (ð_addr)
 | 
						|
 | 
						|
	struct arp_packet p;
 | 
						|
	memset(&p, 0, sizeof(p));
 | 
						|
 | 
						|
	// ether header
 | 
						|
	p.eth.ether_type = htons(ETHERTYPE_ARP);
 | 
						|
	memcpy(p.eth.ether_shost, source_eth, ETH_ALEN);
 | 
						|
	memset(p.eth.ether_dhost, 0xff, ETH_ALEN);
 | 
						|
 | 
						|
	// arp request
 | 
						|
	p.arp.arp_hrd = htons(ARPHRD_ETHER);
 | 
						|
	p.arp.arp_pro = htons(ETHERTYPE_IP);
 | 
						|
	p.arp.arp_hln = ETH_ALEN;
 | 
						|
	p.arp.arp_pln = 4;
 | 
						|
	p.arp.arp_op = htons(op);
 | 
						|
	memcpy(&p.arp.arp_sha, source_eth, ETH_ALEN);
 | 
						|
	memcpy(&p.arp.arp_spa, &source_ip, sizeof(p.arp.arp_spa));
 | 
						|
	memcpy(&p.arp.arp_tha, target_eth, ETH_ALEN);
 | 
						|
	memcpy(&p.arp.arp_tpa, &target_ip, sizeof(p.arp.arp_tpa));
 | 
						|
 | 
						|
	// send it
 | 
						|
	// Even though sock_fd is already bound to saddr, just send()
 | 
						|
	// won't work, because "socket is not connected"
 | 
						|
	// (and connect() won't fix that, "operation not supported").
 | 
						|
	// Thus we sendto() to saddr. I wonder which sockaddr
 | 
						|
	// (from bind() or from sendto()?) kernel actually uses
 | 
						|
	// to determine iface to emit the packet from...
 | 
						|
	xsendto(sock_fd, &p, sizeof(p), &saddr, sizeof(saddr));
 | 
						|
#undef source_eth
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Run a script.
 | 
						|
 * argv[0]:intf argv[1]:script_name argv[2]:junk argv[3]:NULL
 | 
						|
 */
 | 
						|
static int run(char *argv[3], const char *param, struct in_addr *ip)
 | 
						|
{
 | 
						|
	int status;
 | 
						|
	char *addr = addr; /* for gcc */
 | 
						|
	const char *fmt = "%s %s %s" + 3;
 | 
						|
 | 
						|
	argv[2] = (char*)param;
 | 
						|
 | 
						|
	VDBG("%s run %s %s\n", argv[0], argv[1], argv[2]);
 | 
						|
 | 
						|
	if (ip) {
 | 
						|
		addr = inet_ntoa(*ip);
 | 
						|
		xsetenv("ip", addr);
 | 
						|
		fmt -= 3;
 | 
						|
	}
 | 
						|
	bb_info_msg(fmt, argv[2], argv[0], addr);
 | 
						|
 | 
						|
	status = wait4pid(spawn(argv + 1));
 | 
						|
	if (status < 0) {
 | 
						|
		bb_perror_msg("%s %s %s" + 3, argv[2], argv[0]);
 | 
						|
		return -errno;
 | 
						|
	}
 | 
						|
	if (status != 0)
 | 
						|
		bb_error_msg("script %s %s failed, exitcode=%d", argv[1], argv[2], status);
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Return milliseconds of random delay, up to "secs" seconds.
 | 
						|
 */
 | 
						|
static ALWAYS_INLINE unsigned random_delay_ms(unsigned secs)
 | 
						|
{
 | 
						|
	return rand() % (secs * 1000);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * main program
 | 
						|
 */
 | 
						|
int zcip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
 | 
						|
int zcip_main(int argc, char **argv)
 | 
						|
{
 | 
						|
	int state;
 | 
						|
	char *r_opt;
 | 
						|
	unsigned opts;
 | 
						|
 | 
						|
	// ugly trick, but I want these zeroed in one go
 | 
						|
	struct {
 | 
						|
		const struct in_addr null_ip;
 | 
						|
		const struct ether_addr null_addr;
 | 
						|
		struct in_addr ip;
 | 
						|
		struct ifreq ifr;
 | 
						|
		int timeout_ms; /* must be signed */
 | 
						|
		unsigned conflicts;
 | 
						|
		unsigned nprobes;
 | 
						|
		unsigned nclaims;
 | 
						|
		int ready;
 | 
						|
		int verbose;
 | 
						|
	} L;
 | 
						|
#define null_ip    (L.null_ip   )
 | 
						|
#define null_addr  (L.null_addr )
 | 
						|
#define ip         (L.ip        )
 | 
						|
#define ifr        (L.ifr       )
 | 
						|
#define timeout_ms (L.timeout_ms)
 | 
						|
#define conflicts  (L.conflicts )
 | 
						|
#define nprobes    (L.nprobes   )
 | 
						|
#define nclaims    (L.nclaims   )
 | 
						|
#define ready      (L.ready     )
 | 
						|
#define verbose    (L.verbose   )
 | 
						|
 | 
						|
	memset(&L, 0, sizeof(L));
 | 
						|
 | 
						|
#define FOREGROUND (opts & 1)
 | 
						|
#define QUIT       (opts & 2)
 | 
						|
	// parse commandline: prog [options] ifname script
 | 
						|
	// exactly 2 args; -v accumulates and implies -f
 | 
						|
	opt_complementary = "=2:vv:vf";
 | 
						|
	opts = getopt32(argv, "fqr:v", &r_opt, &verbose);
 | 
						|
#if !BB_MMU
 | 
						|
	// on NOMMU reexec early (or else we will rerun things twice)
 | 
						|
	if (!FOREGROUND)
 | 
						|
		bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
 | 
						|
#endif
 | 
						|
	// open an ARP socket
 | 
						|
	// (need to do it before openlog to prevent openlog from taking
 | 
						|
	// fd 3 (sock_fd==3))
 | 
						|
	xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
 | 
						|
	if (!FOREGROUND) {
 | 
						|
		// do it before all bb_xx_msg calls
 | 
						|
		openlog(applet_name, 0, LOG_DAEMON);
 | 
						|
		logmode |= LOGMODE_SYSLOG;
 | 
						|
	}
 | 
						|
	if (opts & 4) { // -r n.n.n.n
 | 
						|
		if (inet_aton(r_opt, &ip) == 0
 | 
						|
		 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != LINKLOCAL_ADDR
 | 
						|
		) {
 | 
						|
			bb_error_msg_and_die("invalid link address");
 | 
						|
		}
 | 
						|
	}
 | 
						|
	argc -= optind;
 | 
						|
	argv += optind - 1;
 | 
						|
 | 
						|
	/* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
 | 
						|
	/* We need to make space for script argument: */
 | 
						|
	argv[0] = argv[1];
 | 
						|
	argv[1] = argv[2];
 | 
						|
	/* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
 | 
						|
#define argv_intf (argv[0])
 | 
						|
 | 
						|
	xsetenv("interface", argv_intf);
 | 
						|
 | 
						|
	// initialize the interface (modprobe, ifup, etc)
 | 
						|
	if (run(argv, "init", NULL))
 | 
						|
		return EXIT_FAILURE;
 | 
						|
 | 
						|
	// initialize saddr
 | 
						|
	// saddr is: { u16 sa_family; u8 sa_data[14]; }
 | 
						|
	//memset(&saddr, 0, sizeof(saddr));
 | 
						|
	//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
 | 
						|
	safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data));
 | 
						|
 | 
						|
	// bind to the interface's ARP socket
 | 
						|
	xbind(sock_fd, &saddr, sizeof(saddr));
 | 
						|
 | 
						|
	// get the interface's ethernet address
 | 
						|
	//memset(&ifr, 0, sizeof(ifr));
 | 
						|
	strncpy(ifr.ifr_name, argv_intf, sizeof(ifr.ifr_name));
 | 
						|
	xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
 | 
						|
	memcpy(ð_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);
 | 
						|
 | 
						|
	// start with some stable ip address, either a function of
 | 
						|
	// the hardware address or else the last address we used.
 | 
						|
	// we are taking low-order four bytes, as top-order ones
 | 
						|
	// aren't random enough.
 | 
						|
	// NOTE: the sequence of addresses we try changes only
 | 
						|
	// depending on when we detect conflicts.
 | 
						|
	{
 | 
						|
		uint32_t t = get_unaligned_u32p((uint32_t *) ((char *)ð_addr + 2));
 | 
						|
		srand(t);
 | 
						|
	}
 | 
						|
	if (ip.s_addr == 0)
 | 
						|
		ip.s_addr = pick();
 | 
						|
 | 
						|
	// FIXME cases to handle:
 | 
						|
	//  - zcip already running!
 | 
						|
	//  - link already has local address... just defend/update
 | 
						|
 | 
						|
	// daemonize now; don't delay system startup
 | 
						|
	if (!FOREGROUND) {
 | 
						|
#if BB_MMU
 | 
						|
		bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
 | 
						|
#endif
 | 
						|
		bb_info_msg("start, interface %s", argv_intf);
 | 
						|
	}
 | 
						|
 | 
						|
	// run the dynamic address negotiation protocol,
 | 
						|
	// restarting after address conflicts:
 | 
						|
	//  - start with some address we want to try
 | 
						|
	//  - short random delay
 | 
						|
	//  - arp probes to see if another host uses it
 | 
						|
	//  - arp announcements that we're claiming it
 | 
						|
	//  - use it
 | 
						|
	//  - defend it, within limits
 | 
						|
	// exit if:
 | 
						|
	// - address is successfully obtained and -q was given:
 | 
						|
	//   run "<script> config", then exit with exitcode 0
 | 
						|
	// - poll error (when does this happen?)
 | 
						|
	// - read error (when does this happen?)
 | 
						|
	// - sendto error (in arp()) (when does this happen?)
 | 
						|
	// - revents & POLLERR (link down). run "<script> deconfig" first
 | 
						|
	state = PROBE;
 | 
						|
	while (1) {
 | 
						|
		struct pollfd fds[1];
 | 
						|
		unsigned deadline_us;
 | 
						|
		struct arp_packet p;
 | 
						|
		int source_ip_conflict;
 | 
						|
		int target_ip_conflict;
 | 
						|
 | 
						|
		fds[0].fd = sock_fd;
 | 
						|
		fds[0].events = POLLIN;
 | 
						|
		fds[0].revents = 0;
 | 
						|
 | 
						|
		// poll, being ready to adjust current timeout
 | 
						|
		if (!timeout_ms) {
 | 
						|
			timeout_ms = random_delay_ms(PROBE_WAIT);
 | 
						|
			// FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
 | 
						|
			// make the kernel filter out all packets except
 | 
						|
			// ones we'd care about.
 | 
						|
		}
 | 
						|
		// set deadline_us to the point in time when we timeout
 | 
						|
		deadline_us = MONOTONIC_US() + timeout_ms * 1000;
 | 
						|
 | 
						|
		VDBG("...wait %d %s nprobes=%u, nclaims=%u\n",
 | 
						|
				timeout_ms, argv_intf, nprobes, nclaims);
 | 
						|
 | 
						|
		switch (safe_poll(fds, 1, timeout_ms)) {
 | 
						|
 | 
						|
		default:
 | 
						|
			//bb_perror_msg("poll"); - done in safe_poll
 | 
						|
			return EXIT_FAILURE;
 | 
						|
 | 
						|
		// timeout
 | 
						|
		case 0:
 | 
						|
			VDBG("state = %d\n", state);
 | 
						|
			switch (state) {
 | 
						|
			case PROBE:
 | 
						|
				// timeouts in the PROBE state mean no conflicting ARP packets
 | 
						|
				// have been received, so we can progress through the states
 | 
						|
				if (nprobes < PROBE_NUM) {
 | 
						|
					nprobes++;
 | 
						|
					VDBG("probe/%u %s@%s\n",
 | 
						|
							nprobes, argv_intf, inet_ntoa(ip));
 | 
						|
					arp(/* ARPOP_REQUEST, */
 | 
						|
							/* ð_addr, */ null_ip,
 | 
						|
							&null_addr, ip);
 | 
						|
					timeout_ms = PROBE_MIN * 1000;
 | 
						|
					timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					// Switch to announce state.
 | 
						|
					state = ANNOUNCE;
 | 
						|
					nclaims = 0;
 | 
						|
					VDBG("announce/%u %s@%s\n",
 | 
						|
							nclaims, argv_intf, inet_ntoa(ip));
 | 
						|
					arp(/* ARPOP_REQUEST, */
 | 
						|
							/* ð_addr, */ ip,
 | 
						|
							ð_addr, ip);
 | 
						|
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case RATE_LIMIT_PROBE:
 | 
						|
				// timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
 | 
						|
				// have been received, so we can move immediately to the announce state
 | 
						|
				state = ANNOUNCE;
 | 
						|
				nclaims = 0;
 | 
						|
				VDBG("announce/%u %s@%s\n",
 | 
						|
						nclaims, argv_intf, inet_ntoa(ip));
 | 
						|
				arp(/* ARPOP_REQUEST, */
 | 
						|
						/* ð_addr, */ ip,
 | 
						|
						ð_addr, ip);
 | 
						|
				timeout_ms = ANNOUNCE_INTERVAL * 1000;
 | 
						|
				break;
 | 
						|
			case ANNOUNCE:
 | 
						|
				// timeouts in the ANNOUNCE state mean no conflicting ARP packets
 | 
						|
				// have been received, so we can progress through the states
 | 
						|
				if (nclaims < ANNOUNCE_NUM) {
 | 
						|
					nclaims++;
 | 
						|
					VDBG("announce/%u %s@%s\n",
 | 
						|
							nclaims, argv_intf, inet_ntoa(ip));
 | 
						|
					arp(/* ARPOP_REQUEST, */
 | 
						|
							/* ð_addr, */ ip,
 | 
						|
							ð_addr, ip);
 | 
						|
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					// Switch to monitor state.
 | 
						|
					state = MONITOR;
 | 
						|
					// link is ok to use earlier
 | 
						|
					// FIXME update filters
 | 
						|
					run(argv, "config", &ip);
 | 
						|
					ready = 1;
 | 
						|
					conflicts = 0;
 | 
						|
					timeout_ms = -1; // Never timeout in the monitor state.
 | 
						|
 | 
						|
					// NOTE: all other exit paths
 | 
						|
					// should deconfig ...
 | 
						|
					if (QUIT)
 | 
						|
						return EXIT_SUCCESS;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case DEFEND:
 | 
						|
				// We won!  No ARP replies, so just go back to monitor.
 | 
						|
				state = MONITOR;
 | 
						|
				timeout_ms = -1;
 | 
						|
				conflicts = 0;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				// Invalid, should never happen.  Restart the whole protocol.
 | 
						|
				state = PROBE;
 | 
						|
				ip.s_addr = pick();
 | 
						|
				timeout_ms = 0;
 | 
						|
				nprobes = 0;
 | 
						|
				nclaims = 0;
 | 
						|
				break;
 | 
						|
			} // switch (state)
 | 
						|
			break; // case 0 (timeout)
 | 
						|
 | 
						|
		// packets arriving, or link went down
 | 
						|
		case 1:
 | 
						|
			// We need to adjust the timeout in case we didn't receive
 | 
						|
			// a conflicting packet.
 | 
						|
			if (timeout_ms > 0) {
 | 
						|
				unsigned diff = deadline_us - MONOTONIC_US();
 | 
						|
				if ((int)(diff) < 0) {
 | 
						|
					// Current time is greater than the expected timeout time.
 | 
						|
					// Should never happen.
 | 
						|
					VDBG("missed an expected timeout\n");
 | 
						|
					timeout_ms = 0;
 | 
						|
				} else {
 | 
						|
					VDBG("adjusting timeout\n");
 | 
						|
					timeout_ms = (diff / 1000) | 1; /* never 0 */
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if ((fds[0].revents & POLLIN) == 0) {
 | 
						|
				if (fds[0].revents & POLLERR) {
 | 
						|
					// FIXME: links routinely go down;
 | 
						|
					// this shouldn't necessarily exit.
 | 
						|
					bb_error_msg("iface %s is down", argv_intf);
 | 
						|
					if (ready) {
 | 
						|
						run(argv, "deconfig", &ip);
 | 
						|
					}
 | 
						|
					return EXIT_FAILURE;
 | 
						|
				}
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			// read ARP packet
 | 
						|
			if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
 | 
						|
				bb_perror_msg_and_die(bb_msg_read_error);
 | 
						|
			}
 | 
						|
			if (p.eth.ether_type != htons(ETHERTYPE_ARP))
 | 
						|
				continue;
 | 
						|
#ifdef DEBUG
 | 
						|
			{
 | 
						|
				struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
 | 
						|
				struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
 | 
						|
				struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
 | 
						|
				struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
 | 
						|
				VDBG("%s recv arp type=%d, op=%d,\n",
 | 
						|
					argv_intf, ntohs(p.eth.ether_type),
 | 
						|
					ntohs(p.arp.arp_op));
 | 
						|
				VDBG("\tsource=%s %s\n",
 | 
						|
					ether_ntoa(sha),
 | 
						|
					inet_ntoa(*spa));
 | 
						|
				VDBG("\ttarget=%s %s\n",
 | 
						|
					ether_ntoa(tha),
 | 
						|
					inet_ntoa(*tpa));
 | 
						|
			}
 | 
						|
#endif
 | 
						|
			if (p.arp.arp_op != htons(ARPOP_REQUEST)
 | 
						|
			 && p.arp.arp_op != htons(ARPOP_REPLY))
 | 
						|
				continue;
 | 
						|
 | 
						|
			source_ip_conflict = 0;
 | 
						|
			target_ip_conflict = 0;
 | 
						|
 | 
						|
			if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0
 | 
						|
			 && memcmp(&p.arp.arp_sha, ð_addr, ETH_ALEN) != 0
 | 
						|
			) {
 | 
						|
				source_ip_conflict = 1;
 | 
						|
			}
 | 
						|
			if (p.arp.arp_op == htons(ARPOP_REQUEST)
 | 
						|
			 && memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0
 | 
						|
			 && memcmp(&p.arp.arp_tha, ð_addr, ETH_ALEN) != 0
 | 
						|
			) {
 | 
						|
				target_ip_conflict = 1;
 | 
						|
			}
 | 
						|
 | 
						|
			VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n",
 | 
						|
				state, source_ip_conflict, target_ip_conflict);
 | 
						|
			switch (state) {
 | 
						|
			case PROBE:
 | 
						|
			case ANNOUNCE:
 | 
						|
				// When probing or announcing, check for source IP conflicts
 | 
						|
				// and other hosts doing ARP probes (target IP conflicts).
 | 
						|
				if (source_ip_conflict || target_ip_conflict) {
 | 
						|
					conflicts++;
 | 
						|
					if (conflicts >= MAX_CONFLICTS) {
 | 
						|
						VDBG("%s ratelimit\n", argv_intf);
 | 
						|
						timeout_ms = RATE_LIMIT_INTERVAL * 1000;
 | 
						|
						state = RATE_LIMIT_PROBE;
 | 
						|
					}
 | 
						|
 | 
						|
					// restart the whole protocol
 | 
						|
					ip.s_addr = pick();
 | 
						|
					timeout_ms = 0;
 | 
						|
					nprobes = 0;
 | 
						|
					nclaims = 0;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case MONITOR:
 | 
						|
				// If a conflict, we try to defend with a single ARP probe.
 | 
						|
				if (source_ip_conflict) {
 | 
						|
					VDBG("monitor conflict -- defending\n");
 | 
						|
					state = DEFEND;
 | 
						|
					timeout_ms = DEFEND_INTERVAL * 1000;
 | 
						|
					arp(/* ARPOP_REQUEST, */
 | 
						|
						/* ð_addr, */ ip,
 | 
						|
						ð_addr, ip);
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			case DEFEND:
 | 
						|
				// Well, we tried.  Start over (on conflict).
 | 
						|
				if (source_ip_conflict) {
 | 
						|
					state = PROBE;
 | 
						|
					VDBG("defend conflict -- starting over\n");
 | 
						|
					ready = 0;
 | 
						|
					run(argv, "deconfig", &ip);
 | 
						|
 | 
						|
					// restart the whole protocol
 | 
						|
					ip.s_addr = pick();
 | 
						|
					timeout_ms = 0;
 | 
						|
					nprobes = 0;
 | 
						|
					nclaims = 0;
 | 
						|
				}
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				// Invalid, should never happen.  Restart the whole protocol.
 | 
						|
				VDBG("invalid state -- starting over\n");
 | 
						|
				state = PROBE;
 | 
						|
				ip.s_addr = pick();
 | 
						|
				timeout_ms = 0;
 | 
						|
				nprobes = 0;
 | 
						|
				nclaims = 0;
 | 
						|
				break;
 | 
						|
			} // switch state
 | 
						|
			break; // case 1 (packets arriving)
 | 
						|
		} // switch poll
 | 
						|
	} // while (1)
 | 
						|
#undef argv_intf
 | 
						|
}
 |