98c87f7575
function old new delta sha512_process_block128 - 1444 +1444 sha1_process_block64 - 542 +542 sha256_process_block64 - 529 +529 K512_lo - 320 +320 K256 - 320 +320 init512_lo - 32 +32 init256 - 32 +32 sha1_hash 99 128 +29 sha256_end 160 135 -25 sha1_end 189 160 -29 sha512_end 237 204 -33 sha256_begin 77 44 -33 sha512_begin 154 88 -66 sha256_hash 338 259 -79 sha512_hash 358 262 -96 sha1_compile 542 - -542 sha256_process_block 594 - -594 static.K 896 - -896 sha512_process_block 1861 - -1861 ------------------------------------------------------------------------------ (add/remove: 7/4 grow/shrink: 1/7 up/down: 3248/-4254) Total: -1006 bytes text data bss dec hex filename 808013 468 7856 816337 c74d1 busybox_old 807007 468 7856 815331 c70e3 busybox_unstripped
635 lines
17 KiB
C
635 lines
17 KiB
C
/* vi: set sw=4 ts=4: */
|
|
/*
|
|
* Based on shasum from http://www.netsw.org/crypto/hash/
|
|
* Majorly hacked up to use Dr Brian Gladman's sha1 code
|
|
*
|
|
* Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
|
|
* Copyright (C) 2003 Glenn L. McGrath
|
|
* Copyright (C) 2003 Erik Andersen
|
|
*
|
|
* Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
* Issue Date: 10/11/2002
|
|
*
|
|
* This is a byte oriented version of SHA1 that operates on arrays of bytes
|
|
* stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
*
|
|
* SHA256 and SHA512 parts are:
|
|
* Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
|
|
* TODO: shrink them.
|
|
*/
|
|
|
|
#include "libbb.h"
|
|
|
|
#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
|
|
#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
|
|
/* for sha512: */
|
|
#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
|
|
#if BB_LITTLE_ENDIAN
|
|
static inline uint64_t hton64(uint64_t v)
|
|
{
|
|
return (((uint64_t)htonl(v)) << 32) | htonl(v >> 32);
|
|
}
|
|
#else
|
|
#define hton64(v) (v)
|
|
#endif
|
|
#define ntoh64(v) hton64(v)
|
|
|
|
/* To check alignment gcc has an appropriate operator. Other
|
|
compilers don't. */
|
|
#if defined(__GNUC__) && __GNUC__ >= 2
|
|
# define UNALIGNED_P(p,type) (((uintptr_t) p) % __alignof__(type) != 0)
|
|
#else
|
|
# define UNALIGNED_P(p,type) (((uintptr_t) p) % sizeof(type) != 0)
|
|
#endif
|
|
|
|
|
|
#define SHA1_BLOCK_SIZE 64
|
|
#define SHA1_DIGEST_SIZE 20
|
|
#define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
|
|
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
|
|
|
|
static void sha1_process_block64(sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t w[80], i, a, b, c, d, e, t;
|
|
|
|
/* note that words are compiled from the buffer into 32-bit */
|
|
/* words in big-endian order so an order reversal is needed */
|
|
/* here on little endian machines */
|
|
for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
|
|
w[i] = ntohl(ctx->wbuffer[i]);
|
|
|
|
for (/*i = SHA1_BLOCK_SIZE / 4*/; i < 80; ++i) {
|
|
t = w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16];
|
|
w[i] = rotl32(t, 1);
|
|
}
|
|
|
|
a = ctx->hash[0];
|
|
b = ctx->hash[1];
|
|
c = ctx->hash[2];
|
|
d = ctx->hash[3];
|
|
e = ctx->hash[4];
|
|
|
|
/* Reverse byte order in 32-bit words */
|
|
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define parity(x,y,z) ((x) ^ (y) ^ (z))
|
|
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
|
|
/* A normal version as set out in the FIPS. This version uses */
|
|
/* partial loop unrolling and is optimised for the Pentium 4 */
|
|
#define rnd(f,k) \
|
|
do { \
|
|
t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
|
|
e = d; d = c; c = rotl32(b, 30); b = t; \
|
|
} while (0)
|
|
|
|
for (i = 0; i < 20; ++i)
|
|
rnd(ch, 0x5a827999);
|
|
|
|
for (i = 20; i < 40; ++i)
|
|
rnd(parity, 0x6ed9eba1);
|
|
|
|
for (i = 40; i < 60; ++i)
|
|
rnd(maj, 0x8f1bbcdc);
|
|
|
|
for (i = 60; i < 80; ++i)
|
|
rnd(parity, 0xca62c1d6);
|
|
#undef ch
|
|
#undef parity
|
|
#undef maj
|
|
#undef rnd
|
|
|
|
ctx->hash[0] += a;
|
|
ctx->hash[1] += b;
|
|
ctx->hash[2] += c;
|
|
ctx->hash[3] += d;
|
|
ctx->hash[4] += e;
|
|
}
|
|
|
|
/* Constants for SHA256 from FIPS 180-2:4.2.2. */
|
|
static const uint32_t K256[80] = {
|
|
0x428a2f98, 0x71374491,
|
|
0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1,
|
|
0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01,
|
|
0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe,
|
|
0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786,
|
|
0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa,
|
|
0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d,
|
|
0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147,
|
|
0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138,
|
|
0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb,
|
|
0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b,
|
|
0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624,
|
|
0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08,
|
|
0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a,
|
|
0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f,
|
|
0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb,
|
|
0xbef9a3f7, 0xc67178f2,
|
|
0xca273ece, 0xd186b8c7, /* [64]+ are used for sha512 only */
|
|
0xeada7dd6, 0xf57d4f7f,
|
|
0x06f067aa, 0x0a637dc5,
|
|
0x113f9804, 0x1b710b35,
|
|
0x28db77f5, 0x32caab7b,
|
|
0x3c9ebe0a, 0x431d67c4,
|
|
0x4cc5d4be, 0x597f299c,
|
|
0x5fcb6fab, 0x6c44198c
|
|
};
|
|
/* Constants for SHA512 from FIPS 180-2:4.2.3. */
|
|
static const uint32_t K512_lo[80] = {
|
|
0xd728ae22, 0x23ef65cd,
|
|
0xec4d3b2f, 0x8189dbbc,
|
|
0xf348b538, 0xb605d019,
|
|
0xaf194f9b, 0xda6d8118,
|
|
0xa3030242, 0x45706fbe,
|
|
0x4ee4b28c, 0xd5ffb4e2,
|
|
0xf27b896f, 0x3b1696b1,
|
|
0x25c71235, 0xcf692694,
|
|
0x9ef14ad2, 0x384f25e3,
|
|
0x8b8cd5b5, 0x77ac9c65,
|
|
0x592b0275, 0x6ea6e483,
|
|
0xbd41fbd4, 0x831153b5,
|
|
0xee66dfab, 0x2db43210,
|
|
0x98fb213f, 0xbeef0ee4,
|
|
0x3da88fc2, 0x930aa725,
|
|
0xe003826f, 0x0a0e6e70,
|
|
0x46d22ffc, 0x5c26c926,
|
|
0x5ac42aed, 0x9d95b3df,
|
|
0x8baf63de, 0x3c77b2a8,
|
|
0x47edaee6, 0x1482353b,
|
|
0x4cf10364, 0xbc423001,
|
|
0xd0f89791, 0x0654be30,
|
|
0xd6ef5218, 0x5565a910,
|
|
0x5771202a, 0x32bbd1b8,
|
|
0xb8d2d0c8, 0x5141ab53,
|
|
0xdf8eeb99, 0xe19b48a8,
|
|
0xc5c95a63, 0xe3418acb,
|
|
0x7763e373, 0xd6b2b8a3,
|
|
0x5defb2fc, 0x43172f60,
|
|
0xa1f0ab72, 0x1a6439ec,
|
|
0x23631e28, 0xde82bde9,
|
|
0xb2c67915, 0xe372532b,
|
|
0xea26619c, 0x21c0c207,
|
|
0xcde0eb1e, 0xee6ed178,
|
|
0x72176fba, 0xa2c898a6,
|
|
0xbef90dae, 0x131c471b,
|
|
0x23047d84, 0x40c72493,
|
|
0x15c9bebc, 0x9c100d4c,
|
|
0xcb3e42b6, 0xfc657e2a,
|
|
0x3ad6faec, 0x4a475817
|
|
};
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
LEN is rounded _down_ to 64. */
|
|
static void sha256_process_block64(const void *buffer, size_t len, sha256_ctx_t *ctx)
|
|
{
|
|
const uint32_t *words = buffer;
|
|
uint32_t a = ctx->H[0];
|
|
uint32_t b = ctx->H[1];
|
|
uint32_t c = ctx->H[2];
|
|
uint32_t d = ctx->H[3];
|
|
uint32_t e = ctx->H[4];
|
|
uint32_t f = ctx->H[5];
|
|
uint32_t g = ctx->H[6];
|
|
uint32_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^64 _bits_.
|
|
We compute the number of _bytes_ and convert to bits later. */
|
|
len &= ~(size_t)(sizeof(uint32_t) * 16 - 1);
|
|
ctx->total64 += len;
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
|
the loop. */
|
|
len /= (sizeof(uint32_t) * 16);
|
|
while (len) {
|
|
unsigned t;
|
|
uint32_t W[64];
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
|
|
#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
|
|
#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
|
|
#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
|
|
for (t = 0; t < 16; ++t) {
|
|
W[t] = ntohl(*words);
|
|
++words;
|
|
}
|
|
|
|
for (/*t = 16*/; t < 64; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.2.2 step 3. */
|
|
for (t = 0; t < 64; ++t) {
|
|
uint32_t T1 = h + S1(e) + Ch(e, f, g) + K256[t] + W[t];
|
|
uint32_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.2.2
|
|
step 4. */
|
|
ctx->H[0] = a += ctx->H[0];
|
|
ctx->H[1] = b += ctx->H[1];
|
|
ctx->H[2] = c += ctx->H[2];
|
|
ctx->H[3] = d += ctx->H[3];
|
|
ctx->H[4] = e += ctx->H[4];
|
|
ctx->H[5] = f += ctx->H[5];
|
|
ctx->H[6] = g += ctx->H[6];
|
|
ctx->H[7] = h += ctx->H[7];
|
|
|
|
/* Prepare for the next round. */
|
|
len--;
|
|
}
|
|
}
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
LEN is rounded _down_ to 128. */
|
|
static void sha512_process_block128(const void *buffer, size_t len, sha512_ctx_t *ctx)
|
|
{
|
|
const uint64_t *words = buffer;
|
|
uint64_t a = ctx->H[0];
|
|
uint64_t b = ctx->H[1];
|
|
uint64_t c = ctx->H[2];
|
|
uint64_t d = ctx->H[3];
|
|
uint64_t e = ctx->H[4];
|
|
uint64_t f = ctx->H[5];
|
|
uint64_t g = ctx->H[6];
|
|
uint64_t h = ctx->H[7];
|
|
|
|
/* First increment the byte count. FIPS 180-2 specifies the possible
|
|
length of the file up to 2^128 _bits_.
|
|
We compute the number of _bytes_ and convert to bits later. */
|
|
len &= ~(size_t)(sizeof(uint64_t) * 16 - 1);
|
|
ctx->total64[0] += len;
|
|
if (ctx->total64[0] < len)
|
|
ctx->total64[1]++;
|
|
|
|
len /= (sizeof(uint64_t) * 16);
|
|
while (len) {
|
|
unsigned t;
|
|
uint64_t W[80];
|
|
|
|
/* Operators defined in FIPS 180-2:4.1.2. */
|
|
#define Ch(x, y, z) ((x & y) ^ (~x & z))
|
|
#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
|
|
#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
|
|
#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
|
|
#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
|
|
#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
|
|
|
|
/* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
|
|
for (t = 0; t < 16; ++t) {
|
|
W[t] = ntoh64(*words);
|
|
++words;
|
|
}
|
|
for (/*t = 16*/; t < 80; ++t)
|
|
W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
|
|
|
|
/* The actual computation according to FIPS 180-2:6.3.2 step 3. */
|
|
for (t = 0; t < 80; ++t) {
|
|
uint64_t K512_t = ((uint64_t)(K256[t]) << 32) + K512_lo[t];
|
|
uint64_t T1 = h + S1(e) + Ch(e, f, g) + K512_t + W[t];
|
|
uint64_t T2 = S0(a) + Maj(a, b, c);
|
|
h = g;
|
|
g = f;
|
|
f = e;
|
|
e = d + T1;
|
|
d = c;
|
|
c = b;
|
|
b = a;
|
|
a = T1 + T2;
|
|
}
|
|
#undef Ch
|
|
#undef Maj
|
|
#undef S0
|
|
#undef S1
|
|
#undef R0
|
|
#undef R1
|
|
/* Add the starting values of the context according to FIPS 180-2:6.3.2
|
|
step 4. */
|
|
ctx->H[0] = a += ctx->H[0];
|
|
ctx->H[1] = b += ctx->H[1];
|
|
ctx->H[2] = c += ctx->H[2];
|
|
ctx->H[3] = d += ctx->H[3];
|
|
ctx->H[4] = e += ctx->H[4];
|
|
ctx->H[5] = f += ctx->H[5];
|
|
ctx->H[6] = g += ctx->H[6];
|
|
ctx->H[7] = h += ctx->H[7];
|
|
|
|
len--;
|
|
}
|
|
}
|
|
|
|
|
|
void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
|
|
{
|
|
ctx->total64 = 0;
|
|
ctx->hash[0] = 0x67452301;
|
|
ctx->hash[1] = 0xefcdab89;
|
|
ctx->hash[2] = 0x98badcfe;
|
|
ctx->hash[3] = 0x10325476;
|
|
ctx->hash[4] = 0xc3d2e1f0;
|
|
}
|
|
|
|
static const uint32_t init256[] = {
|
|
0x6a09e667,
|
|
0xbb67ae85,
|
|
0x3c6ef372,
|
|
0xa54ff53a,
|
|
0x510e527f,
|
|
0x9b05688c,
|
|
0x1f83d9ab,
|
|
0x5be0cd19
|
|
};
|
|
static const uint32_t init512_lo[] = {
|
|
0xf3bcc908,
|
|
0x84caa73b,
|
|
0xfe94f82b,
|
|
0x5f1d36f1,
|
|
0xade682d1,
|
|
0x2b3e6c1f,
|
|
0xfb41bd6b,
|
|
0x137e2179
|
|
};
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.2) */
|
|
void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
|
|
{
|
|
memcpy(ctx->H, init256, sizeof(init256));
|
|
ctx->total64 = 0;
|
|
ctx->wbuflen = 0;
|
|
}
|
|
/* Initialize structure containing state of computation.
|
|
(FIPS 180-2:5.3.3) */
|
|
void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 8; i++)
|
|
ctx->H[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
|
|
ctx->total64[0] = ctx->total64[1] = 0;
|
|
ctx->wbuflen = 0;
|
|
}
|
|
|
|
|
|
/* SHA1 hash data in an array of bytes into hash buffer and call the */
|
|
/* hash_compile function as required. */
|
|
void FAST_FUNC sha1_hash(const void *buffer, size_t len, sha1_ctx_t *ctx)
|
|
{
|
|
uint32_t pos = (uint32_t) (ctx->total64 & SHA1_MASK);
|
|
uint32_t freeb = SHA1_BLOCK_SIZE - pos;
|
|
const unsigned char *sp = buffer;
|
|
|
|
ctx->total64 += len;
|
|
|
|
while (len >= freeb) { /* transfer whole blocks while possible */
|
|
memcpy(((unsigned char *) ctx->wbuffer) + pos, sp, freeb);
|
|
sp += freeb;
|
|
len -= freeb;
|
|
freeb = SHA1_BLOCK_SIZE;
|
|
pos = 0;
|
|
sha1_process_block64(ctx);
|
|
}
|
|
|
|
memcpy(((unsigned char *) ctx->wbuffer) + pos, sp, len);
|
|
}
|
|
|
|
void FAST_FUNC sha256_hash(const void *buffer, size_t len, sha256_ctx_t *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->wbuflen != 0) {
|
|
unsigned add;
|
|
|
|
/* NB: 1/2 of wbuffer is used only in sha256_end
|
|
* when length field is added and hashed.
|
|
* With buffer twice as small, it may happen that
|
|
* we have it almost full and can't add length field. */
|
|
|
|
add = sizeof(ctx->wbuffer)/2 - ctx->wbuflen;
|
|
if (add > len)
|
|
add = len;
|
|
memcpy(&ctx->wbuffer[ctx->wbuflen], buffer, add);
|
|
ctx->wbuflen += add;
|
|
|
|
/* If we still didn't collect full wbuffer, bail out */
|
|
if (ctx->wbuflen < sizeof(ctx->wbuffer)/2)
|
|
return;
|
|
|
|
sha256_process_block64(ctx->wbuffer, 64, ctx);
|
|
ctx->wbuflen = 0;
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 64) {
|
|
if (UNALIGNED_P(buffer, uint32_t)) {
|
|
while (len > 64) {
|
|
sha256_process_block64(memcpy(ctx->wbuffer, buffer, 64), 64, ctx);
|
|
buffer = (const char *)buffer + 64;
|
|
len -= 64;
|
|
}
|
|
} else {
|
|
sha256_process_block64(buffer, len /*& ~63*/, ctx);
|
|
buffer = (const char *)buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes into internal buffer. */
|
|
if (len > 0) {
|
|
memcpy(ctx->wbuffer, buffer, len);
|
|
ctx->wbuflen = len;
|
|
}
|
|
}
|
|
|
|
void FAST_FUNC sha512_hash(const void *buffer, size_t len, sha512_ctx_t *ctx)
|
|
{
|
|
if (ctx->wbuflen != 0) {
|
|
unsigned add;
|
|
|
|
add = sizeof(ctx->wbuffer)/2 - ctx->wbuflen;
|
|
if (add > len)
|
|
add = len;
|
|
memcpy(&ctx->wbuffer[ctx->wbuflen], buffer, add);
|
|
ctx->wbuflen += add;
|
|
|
|
if (ctx->wbuflen < sizeof(ctx->wbuffer)/2)
|
|
return;
|
|
|
|
sha512_process_block128(ctx->wbuffer, 128, ctx);
|
|
ctx->wbuflen = 0;
|
|
buffer = (const char *)buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
if (len >= 128) {
|
|
if (UNALIGNED_P(buffer, uint64_t)) {
|
|
while (len > 128) {
|
|
sha512_process_block128(memcpy(ctx->wbuffer, buffer, 128), 128, ctx);
|
|
buffer = (const char *)buffer + 128;
|
|
len -= 128;
|
|
}
|
|
} else {
|
|
sha512_process_block128(buffer, len /*& ~127*/, ctx);
|
|
buffer = (const char *)buffer + (len & ~127);
|
|
len &= 127;
|
|
}
|
|
}
|
|
|
|
if (len > 0) {
|
|
memcpy(ctx->wbuffer, buffer, len);
|
|
ctx->wbuflen = len;
|
|
}
|
|
}
|
|
|
|
|
|
void FAST_FUNC sha1_end(void *resbuf, sha1_ctx_t *ctx)
|
|
{
|
|
/* SHA1 Final padding and digest calculation */
|
|
#if BB_BIG_ENDIAN
|
|
static const uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
|
|
static const uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
|
|
#else
|
|
static const uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
|
|
static const uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
|
|
#endif
|
|
|
|
uint8_t *hval = resbuf;
|
|
uint32_t i, cnt = (uint32_t) (ctx->total64 & SHA1_MASK);
|
|
|
|
/* mask out the rest of any partial 32-bit word and then set */
|
|
/* the next byte to 0x80. On big-endian machines any bytes in */
|
|
/* the buffer will be at the top end of 32 bit words, on little */
|
|
/* endian machines they will be at the bottom. Hence the AND */
|
|
/* and OR masks above are reversed for little endian systems */
|
|
ctx->wbuffer[cnt >> 2] =
|
|
(ctx->wbuffer[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
|
|
|
|
/* we need 9 or more empty positions, one for the padding byte */
|
|
/* (above) and eight for the length count. If there is not */
|
|
/* enough space pad and empty the buffer */
|
|
if (cnt > SHA1_BLOCK_SIZE - 9) {
|
|
if (cnt < 60)
|
|
ctx->wbuffer[15] = 0;
|
|
sha1_process_block64(ctx);
|
|
cnt = 0;
|
|
} else /* compute a word index for the empty buffer positions */
|
|
cnt = (cnt >> 2) + 1;
|
|
|
|
while (cnt < 14) /* and zero pad all but last two positions */
|
|
ctx->wbuffer[cnt++] = 0;
|
|
|
|
/* assemble the 64-bit counter of bits in the buffer in BE */
|
|
/* format */
|
|
{
|
|
uint64_t t = ctx->total64 << 3;
|
|
t = hton64(t);
|
|
/* wbuffer is suitably aligned for this */
|
|
*(uint64_t *) &ctx->wbuffer[14] = t;
|
|
}
|
|
|
|
sha1_process_block64(ctx);
|
|
|
|
/* extract the hash value as bytes in case the hash buffer is */
|
|
/* misaligned for 32-bit words */
|
|
for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
|
|
hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
|
|
}
|
|
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
void FAST_FUNC sha256_end(void *resbuf, sha256_ctx_t *ctx)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
unsigned bytes = ctx->wbuflen;
|
|
unsigned pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total64 += bytes;
|
|
|
|
/* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0...
|
|
(FIPS 180-2:5.1.1) */
|
|
pad = (bytes >= 56 ? 64 + 56 - bytes : 56 - bytes);
|
|
memset(&ctx->wbuffer[bytes], 0, pad);
|
|
ctx->wbuffer[bytes] = 0x80;
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
{
|
|
uint64_t t = ctx->total64 << 3;
|
|
t = hton64(t);
|
|
/* wbuffer is suitably aligned for this */
|
|
*(uint64_t *) &ctx->wbuffer[bytes + pad] = t;
|
|
}
|
|
|
|
/* Process last bytes. */
|
|
sha256_process_block64(ctx->wbuffer, bytes + pad + 8, ctx);
|
|
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
((uint32_t *) resbuf)[i] = ntohl(ctx->H[i]);
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 64 bits value. */
|
|
void FAST_FUNC sha512_end(void *resbuf, sha512_ctx_t *ctx)
|
|
{
|
|
unsigned bytes = ctx->wbuflen;
|
|
unsigned pad;
|
|
|
|
ctx->total64[0] += bytes;
|
|
if (ctx->total64[0] < bytes)
|
|
ctx->total64[1]++;
|
|
|
|
/* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0...
|
|
(FIPS 180-2:5.1.2) */
|
|
pad = bytes >= 112 ? 128 + 112 - bytes : 112 - bytes;
|
|
memset(&ctx->wbuffer[bytes], 0, pad);
|
|
ctx->wbuffer[bytes] = 0x80;
|
|
|
|
*(uint64_t *) &ctx->wbuffer[bytes + pad + 8] = hton64(ctx->total64[0] << 3);
|
|
*(uint64_t *) &ctx->wbuffer[bytes + pad] = hton64((ctx->total64[1] << 3) | (ctx->total64[0] >> 61));
|
|
|
|
sha512_process_block128(ctx->wbuffer, bytes + pad + 16, ctx);
|
|
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
((uint64_t *) resbuf)[i] = hton64(ctx->H[i]);
|
|
}
|