#include #include #include #include #include #include #include #include #include "third_party/libdivide.h" #include "config.h" #include "malloc.h" #include "mutex.h" #include "memory.h" #include "pages.h" #include "random.h" #include "util.h" // use __register_atfork directly to avoid linking with libpthread for glibc < 2.28 #ifdef __GLIBC__ extern void *__dso_handle; extern int __register_atfork(void (*)(void), void (*)(void), void (*)(void), void *); #define atfork(prepare, parent, child) __register_atfork(prepare, parent, child, __dso_handle) #else #define atfork pthread_atfork #endif static_assert(sizeof(void *) == 8, "64-bit only"); static_assert(!WRITE_AFTER_FREE_CHECK || ZERO_ON_FREE, "WRITE_AFTER_FREE_CHECK depends on ZERO_ON_FREE"); // either sizeof(u64) or 0 static const size_t canary_size = SLAB_CANARY ? sizeof(u64) : 0; #define CACHELINE_SIZE 64 static union { struct { void *slab_region_start; void *slab_region_end; struct region_allocator *region_allocator; struct region_info *regions[2]; atomic_bool initialized; }; char padding[PAGE_SIZE]; } ro __attribute__((aligned(PAGE_SIZE))); struct slab_metadata { u64 bitmap[4]; struct slab_metadata *next; struct slab_metadata *prev; u64 canary_value; }; static const size_t min_align = 16; static const size_t max_slab_size_class = 16384; static const u16 size_classes[] = { /* 0 */ 0, /* 16 */ 16, 32, 48, 64, 80, 96, 112, 128, /* 32 */ 160, 192, 224, 256, /* 64 */ 320, 384, 448, 512, /* 128 */ 640, 768, 896, 1024, /* 256 */ 1280, 1536, 1792, 2048, /* 512 */ 2560, 3072, 3584, 4096, /* 1024 */ 5120, 6144, 7168, 8192, /* 2048 */ 10240, 12288, 14336, 16384 }; static const u16 size_class_slots[] = { /* 0 */ 256, /* 16 */ 256, 128, 85, 64, 51, 42, 36, 64, /* 32 */ 51, 64, 54, 64, /* 64 */ 64, 64, 64, 64, /* 128 */ 64, 64, 64, 64, /* 256 */ 16, 16, 16, 16, /* 512 */ 8, 8, 8, 8, /* 1024 */ 8, 8, 8, 8, /* 2048 */ 6, 5, 4, 4 }; #define N_SIZE_CLASSES (sizeof(size_classes) / sizeof(size_classes[0])) struct size_info { size_t size; size_t class; }; static inline struct size_info get_size_info(size_t size) { if (size == 0) { return (struct size_info){0, 0}; } if (size <= 128) { return (struct size_info){(size + 15) & ~15, ((size - 1) >> 4) + 1}; } for (unsigned class = 9; class < N_SIZE_CLASSES; class++) { size_t real_size = size_classes[class]; if (size <= real_size) { return (struct size_info){real_size, class}; } } fatal_error("invalid size for slabs"); } // alignment must be a power of 2 <= PAGE_SIZE since slabs are only page aligned static inline struct size_info get_size_info_align(size_t size, size_t alignment) { for (unsigned class = 1; class < N_SIZE_CLASSES; class++) { size_t real_size = size_classes[class]; if (size <= real_size && !(real_size & (alignment - 1))) { return (struct size_info){real_size, class}; } } fatal_error("invalid size for slabs"); } static size_t get_slab_size(size_t slots, size_t size) { return PAGE_CEILING(slots * size); } // limit on the number of cached empty slabs before attempting purging instead static const size_t max_empty_slabs_total = 64 * 1024; static struct size_class { struct mutex lock; void *class_region_start; struct slab_metadata *slab_info; struct libdivide_u32_t size_divisor; struct libdivide_u64_t slab_size_divisor; // slabs with at least one allocated slot and at least one free slot // // LIFO doubly-linked list struct slab_metadata *partial_slabs; // slabs without allocated slots that are cached for near-term usage // // LIFO singly-linked list struct slab_metadata *empty_slabs; size_t empty_slabs_total; // length * slab_size // slabs without allocated slots that are purged and memory protected // // FIFO singly-linked list struct slab_metadata *free_slabs_head; struct slab_metadata *free_slabs_tail; struct slab_metadata *free_slabs_quarantine[FREE_SLABS_QUARANTINE_RANDOM_SIZE]; struct random_state rng; size_t metadata_allocated; size_t metadata_count; size_t metadata_count_unguarded; } __attribute__((aligned(CACHELINE_SIZE))) size_class_metadata[N_SIZE_CLASSES]; #define CLASS_REGION_SIZE (128ULL * 1024 * 1024 * 1024) #define REAL_CLASS_REGION_SIZE (CLASS_REGION_SIZE * 2) static const size_t slab_region_size = REAL_CLASS_REGION_SIZE * N_SIZE_CLASSES; static_assert(PAGE_SIZE == 4096, "bitmap handling will need adjustment for other page sizes"); static void *get_slab(struct size_class *c, size_t slab_size, struct slab_metadata *metadata) { size_t index = metadata - c->slab_info; return (char *)c->class_region_start + (index * slab_size); } static size_t get_metadata_max(size_t slab_size) { return CLASS_REGION_SIZE / slab_size; } static struct slab_metadata *alloc_metadata(struct size_class *c, size_t slab_size, bool non_zero_size) { if (unlikely(c->metadata_count >= c->metadata_allocated)) { size_t metadata_max = get_metadata_max(slab_size); if (c->metadata_count >= metadata_max) { errno = ENOMEM; return NULL; } size_t allocate = c->metadata_allocated * 2; if (allocate > metadata_max) { allocate = metadata_max; } if (memory_protect_rw(c->slab_info, allocate * sizeof(struct slab_metadata))) { return NULL; } c->metadata_allocated = allocate; } struct slab_metadata *metadata = c->slab_info + c->metadata_count; void *slab = get_slab(c, slab_size, metadata); if (non_zero_size && memory_protect_rw(slab, slab_size)) { return NULL; } c->metadata_count++; c->metadata_count_unguarded++; if (c->metadata_count_unguarded >= GUARD_SLABS_INTERVAL) { c->metadata_count++; c->metadata_count_unguarded = 0; } return metadata; } static void set_slot(struct slab_metadata *metadata, size_t index) { size_t bucket = index / 64; metadata->bitmap[bucket] |= 1UL << (index - bucket * 64); } static void clear_slot(struct slab_metadata *metadata, size_t index) { size_t bucket = index / 64; metadata->bitmap[bucket] &= ~(1UL << (index - bucket * 64)); } static bool get_slot(struct slab_metadata *metadata, size_t index) { size_t bucket = index / 64; return (metadata->bitmap[bucket] >> (index - bucket * 64)) & 1UL; } static u64 get_mask(size_t slots) { return slots < 64 ? ~0UL << slots : 0; } static size_t get_free_slot(struct random_state *rng, size_t slots, struct slab_metadata *metadata) { if (SLOT_RANDOMIZE) { // randomize start location for linear search (uniform random choice is too slow) unsigned random_index = get_random_u16_uniform(rng, slots); unsigned first_bitmap = random_index / 64; u64 random_split = ~(~0UL << (random_index - first_bitmap * 64)); for (unsigned i = first_bitmap; i <= (slots - 1) / 64; i++) { u64 masked = metadata->bitmap[i]; if (i == slots / 64) { masked |= get_mask(slots - i * 64); } if (i == first_bitmap) { masked |= random_split; } if (masked == ~0UL) { continue; } return ffzl(masked) - 1 + i * 64; } } for (unsigned i = 0; i <= (slots - 1) / 64; i++) { u64 masked = metadata->bitmap[i]; if (i == (slots - 1) / 64) { masked |= get_mask(slots - i * 64); } if (masked == ~0UL) { continue; } return ffzl(masked) - 1 + i * 64; } fatal_error("no zero bits"); } static bool has_free_slots(size_t slots, struct slab_metadata *metadata) { if (slots <= 64) { u64 masked = metadata->bitmap[0] | get_mask(slots); return masked != ~0UL; } else if (slots <= 128) { u64 masked = metadata->bitmap[1] | get_mask(slots - 64); return metadata->bitmap[0] != ~0UL || masked != ~0UL; } else if (slots <= 192) { u64 masked = metadata->bitmap[2] | get_mask(slots - 128); return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || masked != ~0UL; } u64 masked = metadata->bitmap[3] | get_mask(slots - 192); return metadata->bitmap[0] != ~0UL || metadata->bitmap[1] != ~0UL || metadata->bitmap[2] != ~0UL || masked != ~0UL; } static bool is_free_slab(struct slab_metadata *metadata) { return !metadata->bitmap[0] && !metadata->bitmap[1] && !metadata->bitmap[2] && !metadata->bitmap[3]; } static struct slab_metadata *get_metadata(struct size_class *c, void *p) { size_t offset = (char *)p - (char *)c->class_region_start; size_t index = libdivide_u64_do(offset, &c->slab_size_divisor); // still caught without this check either as a read access violation or "double free" if (index >= c->metadata_allocated) { fatal_error("invalid free within a slab yet to be used"); } return c->slab_info + index; } static void *slot_pointer(size_t size, void *slab, size_t slot) { return (char *)slab + slot * size; } static void write_after_free_check(const char *p, size_t size) { if (!WRITE_AFTER_FREE_CHECK) { return; } for (size_t i = 0; i < size; i += sizeof(u64)) { if (*(u64 *)(p + i)) { fatal_error("detected write after free"); } } } static const u64 canary_mask = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ? 0xffffffffffffff00UL : 0x00ffffffffffffffUL; static void set_canary(struct slab_metadata *metadata, void *p, size_t size) { memcpy((char *)p + size - canary_size, &metadata->canary_value, canary_size); } static inline void *allocate_small(size_t requested_size) { struct size_info info = get_size_info(requested_size); size_t size = info.size ? info.size : 16; struct size_class *c = &size_class_metadata[info.class]; size_t slots = size_class_slots[info.class]; size_t slab_size = get_slab_size(slots, size); mutex_lock(&c->lock); if (c->partial_slabs == NULL) { if (c->empty_slabs != NULL) { struct slab_metadata *metadata = c->empty_slabs; c->empty_slabs = c->empty_slabs->next; c->empty_slabs_total -= slab_size; metadata->next = NULL; metadata->prev = NULL; c->partial_slabs = metadata; void *slab = get_slab(c, slab_size, metadata); size_t slot = get_free_slot(&c->rng, slots, metadata); set_slot(metadata, slot); void *p = slot_pointer(size, slab, slot); if (requested_size) { write_after_free_check(p, size - canary_size); set_canary(metadata, p, size); } mutex_unlock(&c->lock); return p; } else if (c->free_slabs_head != NULL) { struct slab_metadata *metadata = c->free_slabs_head; metadata->canary_value = get_random_u64(&c->rng); void *slab = get_slab(c, slab_size, metadata); if (requested_size && memory_protect_rw(slab, slab_size)) { mutex_unlock(&c->lock); return NULL; } c->free_slabs_head = c->free_slabs_head->next; if (c->free_slabs_head == NULL) { c->free_slabs_tail = NULL; } metadata->next = NULL; metadata->prev = NULL; c->partial_slabs = metadata; size_t slot = get_free_slot(&c->rng, slots, metadata); set_slot(metadata, slot); void *p = slot_pointer(size, slab, slot); if (requested_size) { set_canary(metadata, p, size); } mutex_unlock(&c->lock); return p; } struct slab_metadata *metadata = alloc_metadata(c, slab_size, requested_size); if (unlikely(metadata == NULL)) { mutex_unlock(&c->lock); return NULL; } metadata->canary_value = get_random_u64(&c->rng) & canary_mask; c->partial_slabs = metadata; void *slab = get_slab(c, slab_size, metadata); size_t slot = get_free_slot(&c->rng, slots, metadata); set_slot(metadata, slot); void *p = slot_pointer(size, slab, slot); if (requested_size) { set_canary(metadata, p, size); } mutex_unlock(&c->lock); return p; } struct slab_metadata *metadata = c->partial_slabs; size_t slot = get_free_slot(&c->rng, slots, metadata); set_slot(metadata, slot); if (!has_free_slots(slots, metadata)) { c->partial_slabs = c->partial_slabs->next; if (c->partial_slabs) { c->partial_slabs->prev = NULL; } } void *slab = get_slab(c, slab_size, metadata); void *p = slot_pointer(size, slab, slot); if (requested_size) { write_after_free_check(p, size - canary_size); set_canary(metadata, p, size); } mutex_unlock(&c->lock); return p; } static size_t slab_size_class(void *p) { size_t offset = (char *)p - (char *)ro.slab_region_start; return offset / REAL_CLASS_REGION_SIZE; } static size_t slab_usable_size(void *p) { return size_classes[slab_size_class(p)]; } static void enqueue_free_slab(struct size_class *c, struct slab_metadata *metadata) { metadata->next = NULL; static_assert(FREE_SLABS_QUARANTINE_RANDOM_SIZE < (u16)-1, "free slabs quarantine too large"); size_t index = get_random_u16_uniform(&c->rng, FREE_SLABS_QUARANTINE_RANDOM_SIZE); struct slab_metadata *substitute = c->free_slabs_quarantine[index]; c->free_slabs_quarantine[index] = metadata; if (substitute == NULL) { return; } if (c->free_slabs_tail != NULL) { c->free_slabs_tail->next = substitute; } else { c->free_slabs_head = substitute; } c->free_slabs_tail = substitute; } static inline void deallocate_small(void *p, const size_t *expected_size) { size_t class = slab_size_class(p); struct size_class *c = &size_class_metadata[class]; size_t size = size_classes[class]; if (expected_size && size != *expected_size) { fatal_error("sized deallocation mismatch (small)"); } bool is_zero_size = size == 0; if (is_zero_size) { size = 16; } size_t slots = size_class_slots[class]; size_t slab_size = get_slab_size(slots, size); mutex_lock(&c->lock); struct slab_metadata *metadata = get_metadata(c, p); void *slab = get_slab(c, slab_size, metadata); size_t slot = libdivide_u32_do((char *)p - (char *)slab, &c->size_divisor); if (slot_pointer(size, slab, slot) != p) { fatal_error("invalid unaligned free"); } if (!get_slot(metadata, slot)) { fatal_error("double free"); } if (!is_zero_size) { if (ZERO_ON_FREE) { memset(p, 0, size - canary_size); } if (canary_size) { u64 canary_value; memcpy(&canary_value, (char *)p + size - canary_size, canary_size); if (unlikely(canary_value != metadata->canary_value)) { fatal_error("canary corrupted"); } } } if (!has_free_slots(slots, metadata)) { metadata->next = c->partial_slabs; metadata->prev = NULL; if (c->partial_slabs) { c->partial_slabs->prev = metadata; } c->partial_slabs = metadata; } clear_slot(metadata, slot); if (is_free_slab(metadata)) { if (metadata->prev) { metadata->prev->next = metadata->next; } else { c->partial_slabs = metadata->next; } if (metadata->next) { metadata->next->prev = metadata->prev; } metadata->prev = NULL; if (c->empty_slabs_total + slab_size > max_empty_slabs_total) { if (!memory_map_fixed(slab, slab_size)) { enqueue_free_slab(c, metadata); mutex_unlock(&c->lock); return; } // handle out-of-memory by just putting it into the empty slabs list } metadata->next = c->empty_slabs; c->empty_slabs = metadata; c->empty_slabs_total += slab_size; } mutex_unlock(&c->lock); } struct region_info { void *p; size_t size; size_t guard_size; }; struct quarantine_info { void *p; size_t size; }; #define INITIAL_REGION_TABLE_SIZE 256 static const size_t max_region_table_size = CLASS_REGION_SIZE / PAGE_SIZE; struct region_allocator { struct mutex lock; struct region_info *regions; size_t total; size_t free; struct quarantine_info quarantine_random[REGION_QUARANTINE_RANDOM_SIZE]; struct quarantine_info quarantine_queue[REGION_QUARANTINE_QUEUE_SIZE]; size_t quarantine_queue_index; struct random_state rng; }; static void regions_quarantine_deallocate_pages(void *p, size_t size, size_t guard_size) { if (size >= REGION_QUARANTINE_SKIP_THRESHOLD) { deallocate_pages(p, size, guard_size); return; } if (unlikely(memory_map_fixed(p, size))) { deallocate_pages(p, size, guard_size); return; } struct quarantine_info a = (struct quarantine_info){(char *)p - guard_size, size + guard_size * 2}; struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); size_t index = get_random_u64_uniform(&ra->rng, REGION_QUARANTINE_RANDOM_SIZE); struct quarantine_info b = ra->quarantine_random[index]; ra->quarantine_random[index] = a; if (b.p == NULL) { mutex_unlock(&ra->lock); return; } a = ra->quarantine_queue[ra->quarantine_queue_index]; ra->quarantine_queue[ra->quarantine_queue_index] = b; ra->quarantine_queue_index = (ra->quarantine_queue_index + 1) % REGION_QUARANTINE_QUEUE_SIZE; mutex_unlock(&ra->lock); if (a.p != NULL) { memory_unmap(a.p, a.size); } } static size_t hash_page(void *p) { uintptr_t u = (uintptr_t)p >> PAGE_SHIFT; size_t sum = u; sum = (sum << 7) - sum + (u >> 16); sum = (sum << 7) - sum + (u >> 32); sum = (sum << 7) - sum + (u >> 48); return sum; } static int regions_grow(void) { struct region_allocator *ra = ro.region_allocator; if (ra->total > SIZE_MAX / sizeof(struct region_info) / 2) { return 1; } size_t newtotal = ra->total * 2; size_t newsize = newtotal * sizeof(struct region_info); size_t mask = newtotal - 1; if (newtotal > max_region_table_size) { return 1; } struct region_info *p = ra->regions == ro.regions[0] ? ro.regions[1] : ro.regions[0]; if (memory_protect_rw(p, newsize)) { return 1; } for (size_t i = 0; i < ra->total; i++) { void *q = ra->regions[i].p; if (q != NULL) { size_t index = hash_page(q) & mask; while (p[index].p != NULL) { index = (index - 1) & mask; } p[index] = ra->regions[i]; } } memory_map_fixed(ra->regions, ra->total * sizeof(struct region_info)); ra->free = ra->free + ra->total; ra->total = newtotal; ra->regions = p; return 0; } static int regions_insert(void *p, size_t size, size_t guard_size) { struct region_allocator *ra = ro.region_allocator; if (ra->free * 4 < ra->total) { if (regions_grow()) { return 1; } } size_t mask = ra->total - 1; size_t index = hash_page(p) & mask; void *q = ra->regions[index].p; while (q != NULL) { index = (index - 1) & mask; q = ra->regions[index].p; } ra->regions[index].p = p; ra->regions[index].size = size; ra->regions[index].guard_size = guard_size; ra->free--; return 0; } static struct region_info *regions_find(void *p) { struct region_allocator *ra = ro.region_allocator; size_t mask = ra->total - 1; size_t index = hash_page(p) & mask; void *r = ra->regions[index].p; while (r != p && r != NULL) { index = (index - 1) & mask; r = ra->regions[index].p; } return (r == p && r != NULL) ? &ra->regions[index] : NULL; } static void regions_delete(struct region_info *region) { struct region_allocator *ra = ro.region_allocator; size_t mask = ra->total - 1; ra->free++; size_t i = region - ra->regions; for (;;) { ra->regions[i].p = NULL; ra->regions[i].size = 0; size_t j = i; for (;;) { i = (i - 1) & mask; if (ra->regions[i].p == NULL) { return; } size_t r = hash_page(ra->regions[i].p) & mask; if ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)) { continue; } ra->regions[j] = ra->regions[i]; break; } } } static void full_lock(void) { mutex_lock(&ro.region_allocator->lock); for (unsigned class = 0; class < N_SIZE_CLASSES; class++) { mutex_lock(&size_class_metadata[class].lock); } } static void full_unlock(void) { mutex_unlock(&ro.region_allocator->lock); for (unsigned class = 0; class < N_SIZE_CLASSES; class++) { mutex_unlock(&size_class_metadata[class].lock); } } static void post_fork_child(void) { mutex_init(&ro.region_allocator->lock); random_state_init(&ro.region_allocator->rng); for (unsigned class = 0; class < N_SIZE_CLASSES; class++) { struct size_class *c = &size_class_metadata[class]; mutex_init(&c->lock); random_state_init(&c->rng); } } static inline bool is_init(void) { return atomic_load_explicit(&ro.initialized, memory_order_acquire); } static inline void enforce_init(void) { if (!is_init()) { fatal_error("invalid uninitialized allocator usage"); } } COLD static void init_slow_path(void) { static struct mutex lock = MUTEX_INITIALIZER; mutex_lock(&lock); if (is_init()) { mutex_unlock(&lock); return; } if (sysconf(_SC_PAGESIZE) != PAGE_SIZE) { fatal_error("page size mismatch"); } ro.region_allocator = allocate_pages(sizeof(struct region_allocator), PAGE_SIZE, true); struct region_allocator *ra = ro.region_allocator; mutex_init(&ra->lock); random_state_init(&ra->rng); for (unsigned i = 0; i < 2; i++) { ro.regions[i] = allocate_pages(max_region_table_size, PAGE_SIZE, false); if (ro.regions[i] == NULL) { fatal_error("failed to reserve memory for regions table"); } } ra->regions = ro.regions[0]; ra->total = INITIAL_REGION_TABLE_SIZE; if (memory_protect_rw(ra->regions, ra->total * sizeof(struct region_info))) { fatal_error("failed to unprotect memory for regions table"); } ro.slab_region_start = memory_map(slab_region_size); if (ro.slab_region_start == NULL) { fatal_error("failed to allocate slab region"); } ro.slab_region_end = (char *)ro.slab_region_start + slab_region_size; for (unsigned class = 0; class < N_SIZE_CLASSES; class++) { struct size_class *c = &size_class_metadata[class]; mutex_init(&c->lock); random_state_init(&c->rng); size_t bound = (REAL_CLASS_REGION_SIZE - CLASS_REGION_SIZE) / PAGE_SIZE - 1; size_t gap = (get_random_u64_uniform(&c->rng, bound) + 1) * PAGE_SIZE; c->class_region_start = (char *)ro.slab_region_start + REAL_CLASS_REGION_SIZE * class + gap; size_t size = size_classes[class]; if (size == 0) { size = 16; } c->size_divisor = libdivide_u32_gen(size); size_t slab_size = get_slab_size(size_class_slots[class], size); c->slab_size_divisor = libdivide_u64_gen(slab_size); size_t metadata_max = get_metadata_max(slab_size); c->slab_info = allocate_pages(metadata_max * sizeof(struct slab_metadata), PAGE_SIZE, false); if (c->slab_info == NULL) { fatal_error("failed to allocate slab metadata"); } c->metadata_allocated = PAGE_SIZE / sizeof(struct slab_metadata); if (memory_protect_rw(c->slab_info, c->metadata_allocated * sizeof(struct slab_metadata))) { fatal_error("failed to allocate initial slab info"); } } atomic_store_explicit(&ro.initialized, true, memory_order_release); if (memory_protect_ro(&ro, sizeof(ro))) { fatal_error("failed to protect allocator data"); } mutex_unlock(&lock); // may allocate, so wait until the allocator is initialized to avoid deadlocking if (atfork(full_lock, full_unlock, post_fork_child)) { fatal_error("pthread_atfork failed"); } } static inline void init(void) { if (unlikely(!is_init())) { init_slow_path(); } } // trigger early initialization to set up pthread_atfork and protect state as soon as possible COLD __attribute__((constructor(101))) static void trigger_early_init(void) { // avoid calling init directly to skip it if this isn't the malloc implementation h_free(h_malloc(16)); } static size_t get_guard_size(struct random_state *state, size_t size) { return (get_random_u64_uniform(state, size / PAGE_SIZE / GUARD_SIZE_DIVISOR) + 1) * PAGE_SIZE; } static void *allocate(size_t size) { if (size <= max_slab_size_class) { return allocate_small(size); } struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); size_t guard_size = get_guard_size(&ra->rng, size); mutex_unlock(&ra->lock); void *p = allocate_pages(size, guard_size, true); if (p == NULL) { return NULL; } mutex_lock(&ra->lock); if (regions_insert(p, size, guard_size)) { mutex_unlock(&ra->lock); deallocate_pages(p, size, guard_size); return NULL; } mutex_unlock(&ra->lock); return p; } static void deallocate_large(void *p, const size_t *expected_size) { enforce_init(); struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); struct region_info *region = regions_find(p); if (region == NULL) { fatal_error("invalid free"); } size_t size = region->size; if (expected_size && size != *expected_size) { fatal_error("sized deallocation mismatch (large)"); } size_t guard_size = region->guard_size; regions_delete(region); mutex_unlock(&ra->lock); regions_quarantine_deallocate_pages(p, size, guard_size); } static size_t adjust_size_for_canaries(size_t size) { if (size > 0 && size <= max_slab_size_class) { return size + canary_size; } return size; } EXPORT void *h_malloc(size_t size) { init(); size = adjust_size_for_canaries(size); return allocate(size); } EXPORT void *h_calloc(size_t nmemb, size_t size) { size_t total_size; if (unlikely(__builtin_mul_overflow(nmemb, size, &total_size))) { errno = ENOMEM; return NULL; } init(); total_size = adjust_size_for_canaries(total_size); if (ZERO_ON_FREE) { return allocate(total_size); } void *p = allocate(total_size); if (unlikely(p == NULL)) { return NULL; } if (size && size <= max_slab_size_class) { memset(p, 0, total_size - canary_size); } return p; } #define MREMAP_MOVE_THRESHOLD (32 * 1024 * 1024) static_assert(MREMAP_MOVE_THRESHOLD >= REGION_QUARANTINE_SKIP_THRESHOLD, "mremap move threshold must be above region quarantine limit"); EXPORT void *h_realloc(void *old, size_t size) { if (old == NULL) { init(); size = adjust_size_for_canaries(size); return allocate(size); } size = adjust_size_for_canaries(size); size_t old_size; if (old >= ro.slab_region_start && old < ro.slab_region_end) { old_size = slab_usable_size(old); if (size <= max_slab_size_class && get_size_info(size).size == old_size) { return old; } } else { enforce_init(); struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); struct region_info *region = regions_find(old); if (region == NULL) { fatal_error("invalid realloc"); } old_size = region->size; size_t old_guard_size = region->guard_size; if (PAGE_CEILING(old_size) == PAGE_CEILING(size)) { region->size = size; mutex_unlock(&ra->lock); return old; } mutex_unlock(&ra->lock); size_t old_rounded_size = PAGE_CEILING(old_size); size_t rounded_size = PAGE_CEILING(size); if (size > max_slab_size_class) { // in-place shrink if (size < old_size) { void *new_end = (char *)old + rounded_size; if (memory_map_fixed(new_end, old_guard_size)) { return NULL; } void *new_guard_end = (char *)new_end + old_guard_size; regions_quarantine_deallocate_pages(new_guard_end, old_rounded_size - rounded_size, 0); mutex_lock(&ra->lock); struct region_info *region = regions_find(old); if (region == NULL) { fatal_error("invalid realloc"); } region->size = size; mutex_unlock(&ra->lock); return old; } // in-place growth void *guard_end = (char *)old + old_rounded_size + old_guard_size; size_t extra = rounded_size - old_rounded_size; if (!memory_remap((char *)old + old_rounded_size, old_guard_size, old_guard_size + extra)) { if (memory_protect_rw((char *)old + old_rounded_size, extra)) { memory_unmap(guard_end, extra); } else { mutex_lock(&ra->lock); struct region_info *region = regions_find(old); if (region == NULL) { fatal_error("invalid realloc"); } region->size = size; mutex_unlock(&ra->lock); return old; } } size_t copy_size = size < old_size ? size : old_size; if (copy_size >= MREMAP_MOVE_THRESHOLD) { void *new = allocate(size); if (new == NULL) { return NULL; } mutex_lock(&ra->lock); struct region_info *region = regions_find(old); if (region == NULL) { fatal_error("invalid realloc"); } regions_delete(region); mutex_unlock(&ra->lock); if (memory_remap_fixed(old, old_size, new, size)) { memcpy(new, old, copy_size); deallocate_pages(old, old_size, old_guard_size); } else { memory_unmap((char *)old - old_guard_size, old_guard_size); memory_unmap((char *)old + PAGE_CEILING(old_size), old_guard_size); } return new; } } } void *new = allocate(size); if (new == NULL) { return NULL; } size_t copy_size = size < old_size ? size : old_size; if (size > 0 && size <= max_slab_size_class) { copy_size -= canary_size; } memcpy(new, old, copy_size); if (old_size <= max_slab_size_class) { deallocate_small(old, NULL); } else { deallocate_large(old, NULL); } return new; } static int alloc_aligned(void **memptr, size_t alignment, size_t size, size_t min_alignment) { if ((alignment - 1) & alignment || alignment < min_alignment) { return EINVAL; } if (alignment <= PAGE_SIZE) { if (size <= max_slab_size_class && alignment > min_align) { size = get_size_info_align(size, alignment).size; } void *p = allocate(size); if (p == NULL) { return ENOMEM; } *memptr = p; return 0; } struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); size_t guard_size = get_guard_size(&ra->rng, size); mutex_unlock(&ra->lock); void *p = allocate_pages_aligned(size, alignment, guard_size); if (p == NULL) { return ENOMEM; } mutex_lock(&ra->lock); if (regions_insert(p, size, guard_size)) { mutex_unlock(&ra->lock); deallocate_pages(p, size, guard_size); return ENOMEM; } mutex_unlock(&ra->lock); *memptr = p; return 0; } static void *alloc_aligned_simple(size_t alignment, size_t size) { void *ptr; int ret = alloc_aligned(&ptr, alignment, size, 1); if (ret) { errno = ret; return NULL; } return ptr; } EXPORT int h_posix_memalign(void **memptr, size_t alignment, size_t size) { init(); size = adjust_size_for_canaries(size); return alloc_aligned(memptr, alignment, size, sizeof(void *)); } EXPORT void *h_aligned_alloc(size_t alignment, size_t size) { init(); size = adjust_size_for_canaries(size); return alloc_aligned_simple(alignment, size); } EXPORT void *h_memalign(size_t alignment, size_t size) ALIAS(h_aligned_alloc); EXPORT void *h_valloc(size_t size) { init(); size = adjust_size_for_canaries(size); return alloc_aligned_simple(PAGE_SIZE, size); } EXPORT void *h_pvalloc(size_t size) { size = PAGE_CEILING(size); if (!size) { errno = ENOMEM; return NULL; } init(); size = adjust_size_for_canaries(size); return alloc_aligned_simple(PAGE_SIZE, size); } EXPORT void h_free(void *p) { if (p == NULL) { return; } if (p >= ro.slab_region_start && p < ro.slab_region_end) { deallocate_small(p, NULL); return; } deallocate_large(p, NULL); } EXPORT void h_cfree(void *ptr) ALIAS(h_free); EXPORT void h_free_sized(void *p, size_t expected_size) { if (p == NULL) { return; } if (p >= ro.slab_region_start && p < ro.slab_region_end) { expected_size = get_size_info(adjust_size_for_canaries(expected_size)).size; deallocate_small(p, &expected_size); return; } deallocate_large(p, &expected_size); } EXPORT size_t h_malloc_usable_size(void *p) { if (p == NULL) { return 0; } if (p >= ro.slab_region_start && p < ro.slab_region_end) { size_t size = slab_usable_size(p); return size ? size - canary_size : 0; } enforce_init(); struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); struct region_info *region = regions_find(p); if (p == NULL) { fatal_error("invalid malloc_usable_size"); } size_t size = region->size; mutex_unlock(&ra->lock); return size; } EXPORT size_t h_malloc_object_size(void *p) { if (p == NULL) { return 0; } if (p >= ro.slab_region_start && p < ro.slab_region_end) { size_t size = slab_usable_size(p); return size ? size - canary_size : 0; } if (unlikely(!is_init())) { return 0; } struct region_allocator *ra = ro.region_allocator; mutex_lock(&ra->lock); struct region_info *region = regions_find(p); size_t size = p == NULL ? SIZE_MAX : region->size; mutex_unlock(&ra->lock); return size; } EXPORT size_t h_malloc_object_size_fast(void *p) { if (p == NULL) { return 0; } if (p >= ro.slab_region_start && p < ro.slab_region_end) { size_t size = slab_usable_size(p); return size ? size - canary_size : 0; } if (unlikely(!is_init())) { return 0; } return SIZE_MAX; } EXPORT int h_mallopt(UNUSED int param, UNUSED int value) { return 0; } EXPORT int h_malloc_trim(UNUSED size_t pad) { if (unlikely(!is_init())) { return 0; } bool is_trimmed = false; // skip zero byte size class since there's nothing to change for (unsigned class = 1; class < N_SIZE_CLASSES; class++) { struct size_class *c = &size_class_metadata[class]; size_t slab_size = get_slab_size(size_class_slots[class], size_classes[class]); mutex_lock(&c->lock); struct slab_metadata *iterator = c->empty_slabs; while (iterator) { void *slab = get_slab(c, slab_size, iterator); if (memory_map_fixed(slab, slab_size)) { break; } struct slab_metadata *trimmed = iterator; iterator = iterator->next; c->empty_slabs_total -= slab_size; enqueue_free_slab(c, trimmed); is_trimmed = true; } c->empty_slabs = iterator; mutex_unlock(&c->lock); } return is_trimmed; } EXPORT void h_malloc_stats(void) {} #if defined(__GLIBC__) || defined(__ANDROID__) EXPORT struct mallinfo h_mallinfo(void) { return (struct mallinfo){0}; } #endif EXPORT int h_malloc_info(UNUSED int options, UNUSED FILE *fp) { errno = ENOSYS; return -1; } COLD EXPORT void *h_malloc_get_state(void) { return NULL; } COLD EXPORT int h_malloc_set_state(UNUSED void *state) { return -2; } #ifdef __ANDROID__ EXPORT size_t __mallinfo_narenas(void) { return 0; } EXPORT size_t __mallinfo_nbins(void) { return 0; } EXPORT struct mallinfo __mallinfo_arena_info(UNUSED size_t arena) { return (struct mallinfo){0}; } EXPORT struct mallinfo __mallinfo_bin_info(UNUSED size_t arena, UNUSED size_t bin) { return (struct mallinfo){0}; } COLD EXPORT int h_iterate(UNUSED uintptr_t base, UNUSED size_t size, UNUSED void (*callback)(uintptr_t ptr, size_t size, void *arg), UNUSED void *arg) { fatal_error("not implemented"); } COLD EXPORT void h_malloc_disable(void) { full_lock(); } COLD EXPORT void h_malloc_enable(void) { full_unlock(); } #endif