procps/proc/meminfo.c
Jim Warner 2c1973d64c library: eliminate one potential source of human error
There's a huge toe-stubber awaiting future maintenance
as reflected in that commit below which deals with the
addition of new enumerators to the Item_table. Namely,
whenever the table is grown, one must remember to also
change that existing 'logical_end' enumerator's value.

Well, not anymore! Since that MAXTABLE macro was added
to the procps-private.h header we can now also exploit
it so a 'logical_end' automatically tracks table size.

This change also renders some code associated with the
ITEMTABLE_DEBUG #define unnecessary. So it's gone too.

Reference(s):
. 08/2016, add new enumerators
commit 09e1886c9e731f8b8c89a55d11f72f53f030b2de
. 08/2020, added MAXTABLE macro
commit c865b06c304e645c05eae0f5e06a1f49ea105285
. 08/2020, introduced ITEMTABLE_DEBUG
commit 92d0297e1e4d5946c5b098e37c91c7e524a0eca0

Signed-off-by: Jim Warner <james.warner@comcast.net>
2020-08-26 21:50:20 +10:00

1016 lines
35 KiB
C

/*
* libprocps - Library to read proc filesystem
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <errno.h>
#include <fcntl.h>
#include <search.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <proc/procps-private.h>
#include <proc/meminfo.h>
#define MEMINFO_FILE "/proc/meminfo"
#define MEMINFO_BUFF 8192
/* ------------------------------------------------------------------------- +
this provision can be used to ensure that our Item_table was synchronized |
with those enumerators found in the associated header file. It's intended |
to only be used locally (& temporarily) at some point prior to a release! | */
// #define ITEMTABLE_DEBUG //----------------------------------------------- |
// ------------------------------------------------------------------------- +
struct meminfo_data {
unsigned long Active;
unsigned long Active_anon; // as: Active(anon): man 5 proc: 'to be documented'
unsigned long Active_file; // as: Active(file): man 5 proc: 'to be documented'
unsigned long AnonHugePages;
unsigned long AnonPages;
unsigned long Bounce;
unsigned long Buffers;
unsigned long Cached;
unsigned long CmaFree;
unsigned long CmaTotal;
unsigned long CommitLimit;
unsigned long Committed_AS;
unsigned long DirectMap1G;
unsigned long DirectMap2M;
unsigned long DirectMap4M;
unsigned long DirectMap4k;
unsigned long Dirty;
unsigned long FileHugePages;
unsigned long FilePmdMapped;
unsigned long HardwareCorrupted; // man 5 proc: 'to be documented'
unsigned long HighFree;
unsigned long HighTotal;
unsigned long HugePages_Free;
unsigned long HugePages_Rsvd;
unsigned long HugePages_Surp;
unsigned long HugePages_Total;
unsigned long Hugepagesize;
unsigned long Hugetlb;
unsigned long Inactive;
unsigned long Inactive_anon; // as: Inactive(anon): man 5 proc: 'to be documented'
unsigned long Inactive_file; // as: Inactive(file): man 5 proc: 'to be documented'
unsigned long KReclaimable;
unsigned long KernelStack;
unsigned long LowFree;
unsigned long LowTotal;
unsigned long Mapped;
unsigned long MemAvailable;
unsigned long MemFree;
unsigned long MemTotal;
unsigned long Mlocked; // man 5 proc: 'to be documented'
unsigned long MmapCopy; // man 5 proc: 'to be documented'
unsigned long NFS_Unstable;
unsigned long PageTables;
unsigned long Percpu;
unsigned long SReclaimable;
unsigned long SUnreclaim;
unsigned long ShadowCallStack;
unsigned long Shmem;
unsigned long ShmemHugePages;
unsigned long ShmemPmdMapped;
unsigned long Slab;
unsigned long SwapCached;
unsigned long SwapFree;
unsigned long SwapTotal;
unsigned long Unevictable; // man 5 proc: 'to be documented'
unsigned long VmallocChunk;
unsigned long VmallocTotal;
unsigned long VmallocUsed;
unsigned long Writeback;
unsigned long WritebackTmp;
unsigned long derived_mem_cached;
unsigned long derived_mem_hi_used;
unsigned long derived_mem_lo_used;
unsigned long derived_mem_used;
unsigned long derived_swap_used;
};
struct mem_hist {
struct meminfo_data new;
struct meminfo_data old;
};
struct stacks_extent {
int ext_numstacks;
struct stacks_extent *next;
struct meminfo_stack **stacks;
};
struct meminfo_info {
int refcount;
int meminfo_fd;
struct mem_hist hist;
int numitems;
enum meminfo_item *items;
struct stacks_extent *extents;
struct hsearch_data hashtab;
struct meminfo_result get_this;
};
// ___ Results 'Set' Support ||||||||||||||||||||||||||||||||||||||||||||||||||
#define setNAME(e) set_meminfo_ ## e
#define setDECL(e) static void setNAME(e) \
(struct meminfo_result *R, struct mem_hist *H)
// regular assignment
#define MEM_set(e,t,x) setDECL(e) { R->result. t = H->new. x; }
// delta assignment
#define HST_set(e,t,x) setDECL(e) { R->result. t = ( H->new. x - H->old. x ); }
setDECL(noop) { (void)R; (void)H; }
setDECL(extra) { (void)H; R->result.ul_int = 0; }
MEM_set(MEM_ACTIVE, ul_int, Active)
MEM_set(MEM_ACTIVE_ANON, ul_int, Active_anon)
MEM_set(MEM_ACTIVE_FILE, ul_int, Active_file)
MEM_set(MEM_ANON, ul_int, AnonPages)
MEM_set(MEM_AVAILABLE, ul_int, MemAvailable)
MEM_set(MEM_BOUNCE, ul_int, Bounce)
MEM_set(MEM_BUFFERS, ul_int, Buffers)
MEM_set(MEM_CACHED, ul_int, Cached)
MEM_set(MEM_CACHED_ALL, ul_int, derived_mem_cached)
MEM_set(MEM_CMA_FREE, ul_int, CmaFree)
MEM_set(MEM_CMA_TOTAL, ul_int, CmaTotal)
MEM_set(MEM_COMMITTED_AS, ul_int, Committed_AS)
MEM_set(MEM_COMMIT_LIMIT, ul_int, CommitLimit)
MEM_set(MEM_DIRECTMAP_1G, ul_int, DirectMap1G)
MEM_set(MEM_DIRECTMAP_2M, ul_int, DirectMap2M)
MEM_set(MEM_DIRECTMAP_4K, ul_int, DirectMap4k)
MEM_set(MEM_DIRECTMAP_4M, ul_int, DirectMap4M)
MEM_set(MEM_DIRTY, ul_int, Dirty)
MEM_set(MEM_FILE_HUGEPAGES, ul_int, FileHugePages)
MEM_set(MEM_FILE_PMDMAPPED, ul_int, FilePmdMapped)
MEM_set(MEM_FREE, ul_int, MemFree)
MEM_set(MEM_HARD_CORRUPTED, ul_int, HardwareCorrupted)
MEM_set(MEM_HIGH_FREE, ul_int, HighFree)
MEM_set(MEM_HIGH_TOTAL, ul_int, HighTotal)
MEM_set(MEM_HIGH_USED, ul_int, derived_mem_hi_used)
MEM_set(MEM_HUGETBL, ul_int, Hugetlb)
MEM_set(MEM_HUGE_ANON, ul_int, AnonHugePages)
MEM_set(MEM_HUGE_FREE, ul_int, HugePages_Free)
MEM_set(MEM_HUGE_RSVD, ul_int, HugePages_Rsvd)
MEM_set(MEM_HUGE_SIZE, ul_int, Hugepagesize)
MEM_set(MEM_HUGE_SURPLUS, ul_int, HugePages_Surp)
MEM_set(MEM_HUGE_TOTAL, ul_int, HugePages_Total)
MEM_set(MEM_INACTIVE, ul_int, Inactive)
MEM_set(MEM_INACTIVE_ANON, ul_int, Inactive_anon)
MEM_set(MEM_INACTIVE_FILE, ul_int, Inactive_file)
MEM_set(MEM_KERNEL_RECLAIM, ul_int, KReclaimable)
MEM_set(MEM_KERNEL_STACK, ul_int, KernelStack)
MEM_set(MEM_LOCKED, ul_int, Mlocked)
MEM_set(MEM_LOW_FREE, ul_int, LowFree)
MEM_set(MEM_LOW_TOTAL, ul_int, LowTotal)
MEM_set(MEM_LOW_USED, ul_int, derived_mem_lo_used)
MEM_set(MEM_MAPPED, ul_int, Mapped)
MEM_set(MEM_MAP_COPY, ul_int, MmapCopy)
MEM_set(MEM_NFS_UNSTABLE, ul_int, NFS_Unstable)
MEM_set(MEM_PAGE_TABLES, ul_int, PageTables)
MEM_set(MEM_PER_CPU, ul_int, Percpu)
MEM_set(MEM_SHADOWCALLSTACK, ul_int, ShadowCallStack)
MEM_set(MEM_SHARED, ul_int, Shmem)
MEM_set(MEM_SHMEM_HUGE, ul_int, ShmemHugePages)
MEM_set(MEM_SHMEM_HUGE_MAP, ul_int, ShmemPmdMapped)
MEM_set(MEM_SLAB, ul_int, Slab)
MEM_set(MEM_SLAB_RECLAIM, ul_int, SReclaimable)
MEM_set(MEM_SLAB_UNRECLAIM, ul_int, SUnreclaim)
MEM_set(MEM_TOTAL, ul_int, MemTotal)
MEM_set(MEM_UNEVICTABLE, ul_int, Unevictable)
MEM_set(MEM_USED, ul_int, derived_mem_used)
MEM_set(MEM_VM_ALLOC_CHUNK, ul_int, VmallocChunk)
MEM_set(MEM_VM_ALLOC_TOTAL, ul_int, VmallocTotal)
MEM_set(MEM_VM_ALLOC_USED, ul_int, VmallocUsed)
MEM_set(MEM_WRITEBACK, ul_int, Writeback)
MEM_set(MEM_WRITEBACK_TMP, ul_int, WritebackTmp)
HST_set(DELTA_ACTIVE, s_int, Active)
HST_set(DELTA_ACTIVE_ANON, s_int, Active_anon)
HST_set(DELTA_ACTIVE_FILE, s_int, Active_file)
HST_set(DELTA_ANON, s_int, AnonPages)
HST_set(DELTA_AVAILABLE, s_int, MemAvailable)
HST_set(DELTA_BOUNCE, s_int, Bounce)
HST_set(DELTA_BUFFERS, s_int, Buffers)
HST_set(DELTA_CACHED, s_int, Cached)
HST_set(DELTA_CACHED_ALL, s_int, derived_mem_cached)
HST_set(DELTA_CMA_FREE, s_int, CmaFree)
HST_set(DELTA_CMA_TOTAL, s_int, CmaTotal)
HST_set(DELTA_COMMITTED_AS, s_int, Committed_AS)
HST_set(DELTA_COMMIT_LIMIT, s_int, CommitLimit)
HST_set(DELTA_DIRECTMAP_1G, s_int, DirectMap1G)
HST_set(DELTA_DIRECTMAP_2M, s_int, DirectMap2M)
HST_set(DELTA_DIRECTMAP_4K, s_int, DirectMap4k)
HST_set(DELTA_DIRECTMAP_4M, s_int, DirectMap4M)
HST_set(DELTA_DIRTY, s_int, Dirty)
HST_set(DELTA_FILE_HUGEPAGES, s_int, FileHugePages)
HST_set(DELTA_FILE_PMDMAPPED, s_int, FilePmdMapped)
HST_set(DELTA_FREE, s_int, MemFree)
HST_set(DELTA_HARD_CORRUPTED, s_int, HardwareCorrupted)
HST_set(DELTA_HIGH_FREE, s_int, HighFree)
HST_set(DELTA_HIGH_TOTAL, s_int, HighTotal)
HST_set(DELTA_HIGH_USED, s_int, derived_mem_hi_used)
HST_set(DELTA_HUGETBL, s_int, Hugetlb)
HST_set(DELTA_HUGE_ANON, s_int, AnonHugePages)
HST_set(DELTA_HUGE_FREE, s_int, HugePages_Free)
HST_set(DELTA_HUGE_RSVD, s_int, HugePages_Rsvd)
HST_set(DELTA_HUGE_SIZE, s_int, Hugepagesize)
HST_set(DELTA_HUGE_SURPLUS, s_int, HugePages_Surp)
HST_set(DELTA_HUGE_TOTAL, s_int, HugePages_Total)
HST_set(DELTA_INACTIVE, s_int, Inactive)
HST_set(DELTA_INACTIVE_ANON, s_int, Inactive_anon)
HST_set(DELTA_INACTIVE_FILE, s_int, Inactive_file)
HST_set(DELTA_KERNEL_RECLAIM, s_int, KReclaimable)
HST_set(DELTA_KERNEL_STACK, s_int, KernelStack)
HST_set(DELTA_LOCKED, s_int, Mlocked)
HST_set(DELTA_LOW_FREE, s_int, LowFree)
HST_set(DELTA_LOW_TOTAL, s_int, LowTotal)
HST_set(DELTA_LOW_USED, s_int, derived_mem_lo_used)
HST_set(DELTA_MAPPED, s_int, Mapped)
HST_set(DELTA_MAP_COPY, s_int, MmapCopy)
HST_set(DELTA_NFS_UNSTABLE, s_int, NFS_Unstable)
HST_set(DELTA_PAGE_TABLES, s_int, PageTables)
HST_set(DELTA_PER_CPU, s_int, Percpu)
HST_set(DELTA_SHADOWCALLSTACK, s_int, ShadowCallStack)
HST_set(DELTA_SHARED, s_int, Shmem)
HST_set(DELTA_SHMEM_HUGE, s_int, ShmemHugePages)
HST_set(DELTA_SHMEM_HUGE_MAP, s_int, ShmemPmdMapped)
HST_set(DELTA_SLAB, s_int, Slab)
HST_set(DELTA_SLAB_RECLAIM, s_int, SReclaimable)
HST_set(DELTA_SLAB_UNRECLAIM, s_int, SUnreclaim)
HST_set(DELTA_TOTAL, s_int, MemTotal)
HST_set(DELTA_UNEVICTABLE, s_int, Unevictable)
HST_set(DELTA_USED, s_int, derived_mem_used)
HST_set(DELTA_VM_ALLOC_CHUNK, s_int, VmallocChunk)
HST_set(DELTA_VM_ALLOC_TOTAL, s_int, VmallocTotal)
HST_set(DELTA_VM_ALLOC_USED, s_int, VmallocUsed)
HST_set(DELTA_WRITEBACK, s_int, Writeback)
HST_set(DELTA_WRITEBACK_TMP, s_int, WritebackTmp)
MEM_set(SWAP_CACHED, ul_int, SwapCached)
MEM_set(SWAP_FREE, ul_int, SwapFree)
MEM_set(SWAP_TOTAL, ul_int, SwapTotal)
MEM_set(SWAP_USED, ul_int, derived_swap_used)
HST_set(SWAP_DELTA_CACHED, s_int, SwapCached)
HST_set(SWAP_DELTA_FREE, s_int, SwapFree)
HST_set(SWAP_DELTA_TOTAL, s_int, SwapTotal)
HST_set(SWAP_DELTA_USED, s_int, derived_swap_used)
#undef setDECL
#undef MEM_set
#undef HST_set
// ___ Controlling Table ||||||||||||||||||||||||||||||||||||||||||||||||||||||
typedef void (*SET_t)(struct meminfo_result *, struct mem_hist *);
#ifdef ITEMTABLE_DEBUG
#define RS(e) (SET_t)setNAME(e), MEMINFO_ ## e, STRINGIFY(MEMINFO_ ## e)
#else
#define RS(e) (SET_t)setNAME(e)
#endif
#define TS(t) STRINGIFY(t)
#define TS_noop ""
/*
* Need it be said?
* This table must be kept in the exact same order as
* those 'enum meminfo_item' guys ! */
static struct {
SET_t setsfunc; // the actual result setting routine
#ifdef ITEMTABLE_DEBUG
int enumnumb; // enumerator (must match position!)
char *enum2str; // enumerator name as a char* string
#endif
char *type2str; // the result type as a string value
} Item_table[] = {
/* setsfunc type2str
------------------------- ---------- */
{ RS(noop), TS_noop },
{ RS(extra), TS_noop },
{ RS(MEM_ACTIVE), TS(ul_int) },
{ RS(MEM_ACTIVE_ANON), TS(ul_int) },
{ RS(MEM_ACTIVE_FILE), TS(ul_int) },
{ RS(MEM_ANON), TS(ul_int) },
{ RS(MEM_AVAILABLE), TS(ul_int) },
{ RS(MEM_BOUNCE), TS(ul_int) },
{ RS(MEM_BUFFERS), TS(ul_int) },
{ RS(MEM_CACHED), TS(ul_int) },
{ RS(MEM_CACHED_ALL), TS(ul_int) },
{ RS(MEM_CMA_FREE), TS(ul_int) },
{ RS(MEM_CMA_TOTAL), TS(ul_int) },
{ RS(MEM_COMMITTED_AS), TS(ul_int) },
{ RS(MEM_COMMIT_LIMIT), TS(ul_int) },
{ RS(MEM_DIRECTMAP_1G), TS(ul_int) },
{ RS(MEM_DIRECTMAP_2M), TS(ul_int) },
{ RS(MEM_DIRECTMAP_4K), TS(ul_int) },
{ RS(MEM_DIRECTMAP_4M), TS(ul_int) },
{ RS(MEM_DIRTY), TS(ul_int) },
{ RS(MEM_FILE_HUGEPAGES), TS(ul_int) },
{ RS(MEM_FILE_PMDMAPPED), TS(ul_int) },
{ RS(MEM_FREE), TS(ul_int) },
{ RS(MEM_HARD_CORRUPTED), TS(ul_int) },
{ RS(MEM_HIGH_FREE), TS(ul_int) },
{ RS(MEM_HIGH_TOTAL), TS(ul_int) },
{ RS(MEM_HIGH_USED), TS(ul_int) },
{ RS(MEM_HUGETBL), TS(ul_int) },
{ RS(MEM_HUGE_ANON), TS(ul_int) },
{ RS(MEM_HUGE_FREE), TS(ul_int) },
{ RS(MEM_HUGE_RSVD), TS(ul_int) },
{ RS(MEM_HUGE_SIZE), TS(ul_int) },
{ RS(MEM_HUGE_SURPLUS), TS(ul_int) },
{ RS(MEM_HUGE_TOTAL), TS(ul_int) },
{ RS(MEM_INACTIVE), TS(ul_int) },
{ RS(MEM_INACTIVE_ANON), TS(ul_int) },
{ RS(MEM_INACTIVE_FILE), TS(ul_int) },
{ RS(MEM_KERNEL_RECLAIM), TS(ul_int) },
{ RS(MEM_KERNEL_STACK), TS(ul_int) },
{ RS(MEM_LOCKED), TS(ul_int) },
{ RS(MEM_LOW_FREE), TS(ul_int) },
{ RS(MEM_LOW_TOTAL), TS(ul_int) },
{ RS(MEM_LOW_USED), TS(ul_int) },
{ RS(MEM_MAPPED), TS(ul_int) },
{ RS(MEM_MAP_COPY), TS(ul_int) },
{ RS(MEM_NFS_UNSTABLE), TS(ul_int) },
{ RS(MEM_PAGE_TABLES), TS(ul_int) },
{ RS(MEM_PER_CPU), TS(ul_int) },
{ RS(MEM_SHADOWCALLSTACK), TS(ul_int) },
{ RS(MEM_SHARED), TS(ul_int) },
{ RS(MEM_SHMEM_HUGE), TS(ul_int) },
{ RS(MEM_SHMEM_HUGE_MAP), TS(ul_int) },
{ RS(MEM_SLAB), TS(ul_int) },
{ RS(MEM_SLAB_RECLAIM), TS(ul_int) },
{ RS(MEM_SLAB_UNRECLAIM), TS(ul_int) },
{ RS(MEM_TOTAL), TS(ul_int) },
{ RS(MEM_UNEVICTABLE), TS(ul_int) },
{ RS(MEM_USED), TS(ul_int) },
{ RS(MEM_VM_ALLOC_CHUNK), TS(ul_int) },
{ RS(MEM_VM_ALLOC_TOTAL), TS(ul_int) },
{ RS(MEM_VM_ALLOC_USED), TS(ul_int) },
{ RS(MEM_WRITEBACK), TS(ul_int) },
{ RS(MEM_WRITEBACK_TMP), TS(ul_int) },
{ RS(DELTA_ACTIVE), TS(s_int) },
{ RS(DELTA_ACTIVE_ANON), TS(s_int) },
{ RS(DELTA_ACTIVE_FILE), TS(s_int) },
{ RS(DELTA_ANON), TS(s_int) },
{ RS(DELTA_AVAILABLE), TS(s_int) },
{ RS(DELTA_BOUNCE), TS(s_int) },
{ RS(DELTA_BUFFERS), TS(s_int) },
{ RS(DELTA_CACHED), TS(s_int) },
{ RS(DELTA_CACHED_ALL), TS(s_int) },
{ RS(DELTA_CMA_FREE), TS(s_int) },
{ RS(DELTA_CMA_TOTAL), TS(s_int) },
{ RS(DELTA_COMMITTED_AS), TS(s_int) },
{ RS(DELTA_COMMIT_LIMIT), TS(s_int) },
{ RS(DELTA_DIRECTMAP_1G), TS(s_int) },
{ RS(DELTA_DIRECTMAP_2M), TS(s_int) },
{ RS(DELTA_DIRECTMAP_4K), TS(s_int) },
{ RS(DELTA_DIRECTMAP_4M), TS(s_int) },
{ RS(DELTA_DIRTY), TS(s_int) },
{ RS(DELTA_FILE_HUGEPAGES), TS(s_int) },
{ RS(DELTA_FILE_PMDMAPPED), TS(s_int) },
{ RS(DELTA_FREE), TS(s_int) },
{ RS(DELTA_HARD_CORRUPTED), TS(s_int) },
{ RS(DELTA_HIGH_FREE), TS(s_int) },
{ RS(DELTA_HIGH_TOTAL), TS(s_int) },
{ RS(DELTA_HIGH_USED), TS(s_int) },
{ RS(DELTA_HUGETBL), TS(s_int) },
{ RS(DELTA_HUGE_ANON), TS(s_int) },
{ RS(DELTA_HUGE_FREE), TS(s_int) },
{ RS(DELTA_HUGE_RSVD), TS(s_int) },
{ RS(DELTA_HUGE_SIZE), TS(s_int) },
{ RS(DELTA_HUGE_SURPLUS), TS(s_int) },
{ RS(DELTA_HUGE_TOTAL), TS(s_int) },
{ RS(DELTA_INACTIVE), TS(s_int) },
{ RS(DELTA_INACTIVE_ANON), TS(s_int) },
{ RS(DELTA_INACTIVE_FILE), TS(s_int) },
{ RS(DELTA_KERNEL_RECLAIM), TS(s_int) },
{ RS(DELTA_KERNEL_STACK), TS(s_int) },
{ RS(DELTA_LOCKED), TS(s_int) },
{ RS(DELTA_LOW_FREE), TS(s_int) },
{ RS(DELTA_LOW_TOTAL), TS(s_int) },
{ RS(DELTA_LOW_USED), TS(s_int) },
{ RS(DELTA_MAPPED), TS(s_int) },
{ RS(DELTA_MAP_COPY), TS(s_int) },
{ RS(DELTA_NFS_UNSTABLE), TS(s_int) },
{ RS(DELTA_PAGE_TABLES), TS(s_int) },
{ RS(DELTA_PER_CPU), TS(s_int) },
{ RS(DELTA_SHADOWCALLSTACK), TS(s_int) },
{ RS(DELTA_SHARED), TS(s_int) },
{ RS(DELTA_SHMEM_HUGE), TS(s_int) },
{ RS(DELTA_SHMEM_HUGE_MAP), TS(s_int) },
{ RS(DELTA_SLAB), TS(s_int) },
{ RS(DELTA_SLAB_RECLAIM), TS(s_int) },
{ RS(DELTA_SLAB_UNRECLAIM), TS(s_int) },
{ RS(DELTA_TOTAL), TS(s_int) },
{ RS(DELTA_UNEVICTABLE), TS(s_int) },
{ RS(DELTA_USED), TS(s_int) },
{ RS(DELTA_VM_ALLOC_CHUNK), TS(s_int) },
{ RS(DELTA_VM_ALLOC_TOTAL), TS(s_int) },
{ RS(DELTA_VM_ALLOC_USED), TS(s_int) },
{ RS(DELTA_WRITEBACK), TS(s_int) },
{ RS(DELTA_WRITEBACK_TMP), TS(s_int) },
{ RS(SWAP_CACHED), TS(ul_int) },
{ RS(SWAP_FREE), TS(ul_int) },
{ RS(SWAP_TOTAL), TS(ul_int) },
{ RS(SWAP_USED), TS(ul_int) },
{ RS(SWAP_DELTA_CACHED), TS(s_int) },
{ RS(SWAP_DELTA_FREE), TS(s_int) },
{ RS(SWAP_DELTA_TOTAL), TS(s_int) },
{ RS(SWAP_DELTA_USED), TS(s_int) },
};
/* please note,
* this enum MUST be 1 greater than the highest value of any enum */
enum meminfo_item MEMINFO_logical_end = MAXTABLE(Item_table);
#undef setNAME
#undef RS
// ___ Private Functions ||||||||||||||||||||||||||||||||||||||||||||||||||||||
static inline void meminfo_assign_results (
struct meminfo_stack *stack,
struct mem_hist *hist)
{
struct meminfo_result *this = stack->head;
for (;;) {
enum meminfo_item item = this->item;
if (item >= MEMINFO_logical_end)
break;
Item_table[item].setsfunc(this, hist);
++this;
}
return;
} // end: meminfo_assign_results
static void meminfo_extents_free_all (
struct meminfo_info *info)
{
while (info->extents) {
struct stacks_extent *p = info->extents;
info->extents = info->extents->next;
free(p);
};
} // end: meminfo_extents_free_all
static inline struct meminfo_result *meminfo_itemize_stack (
struct meminfo_result *p,
int depth,
enum meminfo_item *items)
{
struct meminfo_result *p_sav = p;
int i;
for (i = 0; i < depth; i++) {
p->item = items[i];
++p;
}
return p_sav;
} // end: meminfo_itemize_stack
static inline int meminfo_items_check_failed (
int numitems,
enum meminfo_item *items)
{
int i;
/* if an enum is passed instead of an address of one or more enums, ol' gcc
* will silently convert it to an address (possibly NULL). only clang will
* offer any sort of warning like the following:
*
* warning: incompatible integer to pointer conversion passing 'int' to parameter of type 'enum meminfo_item *'
* my_stack = procps_meminfo_select(info, MEMINFO_noop, num);
* ^~~~~~~~~~~~~~~~
*/
if (numitems < 1
|| (void *)items < (void *)(unsigned long)(2 * MEMINFO_logical_end))
return 1;
for (i = 0; i < numitems; i++) {
// a meminfo_item is currently unsigned, but we'll protect our future
if (items[i] < 0)
return 1;
if (items[i] >= MEMINFO_logical_end)
return 1;
}
return 0;
} // end: meminfo_items_check_failed
static int meminfo_make_hash_failed (
struct meminfo_info *info)
{
#define htVAL(f) e.key = STRINGIFY(f) ":"; e.data = &info->hist.new. f; \
if (!hsearch_r(e, ENTER, &ep, &info->hashtab)) return 1;
#define htXTRA(k,f) e.key = STRINGIFY(k) ":"; e.data = &info->hist.new. f; \
if (!hsearch_r(e, ENTER, &ep, &info->hashtab)) return 1;
ENTRY e, *ep;
size_t n;
// will also include those derived fields (more is better)
n = sizeof(struct meminfo_data) / sizeof(unsigned long);
// we'll follow the hsearch recommendation of an extra 25%
if (!hcreate_r(n + (n / 4), &info->hashtab))
return 1;
htVAL(Active)
htXTRA(Active(anon), Active_anon)
htXTRA(Active(file), Active_file)
htVAL(AnonHugePages)
htVAL(AnonPages)
htVAL(Bounce)
htVAL(Buffers)
htVAL(Cached)
htVAL(CmaFree)
htVAL(CmaTotal)
htVAL(CommitLimit)
htVAL(Committed_AS)
htVAL(DirectMap1G)
htVAL(DirectMap2M)
htVAL(DirectMap4M)
htVAL(DirectMap4k)
htVAL(Dirty)
htVAL(FileHugePages)
htVAL(FilePmdMapped)
htVAL(HardwareCorrupted)
htVAL(HighFree)
htVAL(HighTotal)
htVAL(HugePages_Free)
htVAL(HugePages_Rsvd)
htVAL(HugePages_Surp)
htVAL(HugePages_Total)
htVAL(Hugepagesize)
htVAL(Hugetlb)
htVAL(Inactive)
htXTRA(Inactive(anon), Inactive_anon)
htXTRA(Inactive(file), Inactive_file)
htVAL(KReclaimable)
htVAL(KernelStack)
htVAL(LowFree)
htVAL(LowTotal)
htVAL(Mapped)
htVAL(MemAvailable)
htVAL(MemFree)
htVAL(MemTotal)
htVAL(Mlocked)
htVAL(MmapCopy)
htVAL(NFS_Unstable)
htVAL(PageTables)
htVAL(Percpu)
htVAL(SReclaimable)
htVAL(SUnreclaim)
htVAL(ShadowCallStack)
htVAL(Shmem)
htVAL(ShmemHugePages)
htVAL(ShmemPmdMapped)
htVAL(Slab)
htVAL(SwapCached)
htVAL(SwapFree)
htVAL(SwapTotal)
htVAL(Unevictable)
htVAL(VmallocChunk)
htVAL(VmallocTotal)
htVAL(VmallocUsed)
htVAL(Writeback)
htVAL(WritebackTmp)
return 0;
#undef htVAL
#undef htXTRA
} // end: meminfo_make_hash_failed
/*
* meminfo_read_failed():
*
* Read the data out of /proc/meminfo putting the information
* into the supplied info structure
*/
static int meminfo_read_failed (
struct meminfo_info *info)
{
/* a 'memory history reference' macro for readability,
so we can focus the field names ... */
#define mHr(f) info->hist.new. f
char buf[MEMINFO_BUFF];
char *head, *tail;
int size;
unsigned long *valptr;
signed long mem_used;
// remember history from last time around
memcpy(&info->hist.old, &info->hist.new, sizeof(struct meminfo_data));
// clear out the soon to be 'current' values
memset(&info->hist.new, 0, sizeof(struct meminfo_data));
if (-1 == info->meminfo_fd
&& (info->meminfo_fd = open(MEMINFO_FILE, O_RDONLY)) == -1)
return 1;
if (lseek(info->meminfo_fd, 0L, SEEK_SET) == -1)
return 1;
for (;;) {
if ((size = read(info->meminfo_fd, buf, sizeof(buf)-1)) < 0) {
if (errno == EINTR || errno == EAGAIN)
continue;
return 1;
}
break;
}
if (size == 0) {
errno = EIO;
return 1;
}
buf[size] = '\0';
head = buf;
for (;;) {
static ENTRY e; // just to keep coverity off our backs (e.data)
ENTRY *ep;
tail = strchr(head, ' ');
if (!tail)
break;
*tail = '\0';
valptr = NULL;
e.key = head;
if (hsearch_r(e, FIND, &ep, &info->hashtab))
valptr = ep->data;
head = tail+1;
if (valptr)
*valptr = strtoul(head, &tail, 10);
tail = strchr(head, '\n');
if (!tail)
break;
head = tail + 1;
}
if (0 == mHr(MemAvailable))
mHr(MemAvailable) = mHr(MemFree);
mHr(derived_mem_cached) = mHr(Cached) + mHr(SReclaimable);
/* if 'available' is greater than 'total' or our calculation of mem_used
overflows, that's symptomatic of running within a lxc container where
such values will be dramatically distorted over those of the host. */
if (mHr(MemAvailable) > mHr(MemTotal))
mHr(MemAvailable) = mHr(MemFree);
mem_used = mHr(MemTotal) - mHr(MemFree) - mHr(derived_mem_cached) - mHr(Buffers);
if (mem_used < 0)
mem_used = mHr(MemTotal) - mHr(MemFree);
mHr(derived_mem_used) = (unsigned long)mem_used;
if (mHr(HighFree) < mHr(HighTotal))
mHr(derived_mem_hi_used) = mHr(HighTotal) - mHr(HighFree);
if (0 == mHr(LowTotal)) {
mHr(LowTotal) = mHr(MemTotal);
mHr(LowFree) = mHr(MemFree);
}
if (mHr(LowFree) < mHr(LowTotal))
mHr(derived_mem_lo_used) = mHr(LowTotal) - mHr(LowFree);
if (mHr(SwapFree) < mHr(SwapTotal))
mHr(derived_swap_used) = mHr(SwapTotal) - mHr(SwapFree);
else
mHr(derived_swap_used) = 0;
return 0;
#undef mHr
} // end: meminfo_read_failed
/*
* meminfo_stacks_alloc():
*
* Allocate and initialize one or more stacks each of which is anchored in an
* associated context structure.
*
* All such stacks will have their result structures properly primed with
* 'items', while the result itself will be zeroed.
*
* Returns a stacks_extent struct anchoring the 'heads' of each new stack.
*/
static struct stacks_extent *meminfo_stacks_alloc (
struct meminfo_info *info,
int maxstacks)
{
struct stacks_extent *p_blob;
struct meminfo_stack **p_vect;
struct meminfo_stack *p_head;
size_t vect_size, head_size, list_size, blob_size;
void *v_head, *v_list;
int i;
vect_size = sizeof(void *) * maxstacks; // size of the addr vectors |
vect_size += sizeof(void *); // plus NULL addr delimiter |
head_size = sizeof(struct meminfo_stack); // size of that head struct |
list_size = sizeof(struct meminfo_result)*info->numitems; // any single results stack |
blob_size = sizeof(struct stacks_extent); // the extent anchor itself |
blob_size += vect_size; // plus room for addr vects |
blob_size += head_size * maxstacks; // plus room for head thing |
blob_size += list_size * maxstacks; // plus room for our stacks |
/* note: all of this memory is allocated in a single blob, facilitating a later free(). |
as a minimum, it is important that the result structures themselves always are |
contiguous within each stack since they're accessed through relative position. | */
if (NULL == (p_blob = calloc(1, blob_size)))
return NULL;
p_blob->next = info->extents; // push this extent onto... |
info->extents = p_blob; // ...some existing extents |
p_vect = (void *)p_blob + sizeof(struct stacks_extent); // prime our vector pointer |
p_blob->stacks = p_vect; // set actual vectors start |
v_head = (void *)p_vect + vect_size; // prime head pointer start |
v_list = v_head + (head_size * maxstacks); // prime our stacks pointer |
for (i = 0; i < maxstacks; i++) {
p_head = (struct meminfo_stack *)v_head;
p_head->head = meminfo_itemize_stack((struct meminfo_result *)v_list, info->numitems, info->items);
p_blob->stacks[i] = p_head;
v_list += list_size;
v_head += head_size;
}
p_blob->ext_numstacks = maxstacks;
return p_blob;
} // end: meminfo_stacks_alloc
// ___ Public Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||||
// --- standard required functions --------------------------------------------
/*
* procps_meminfo_new:
*
* Create a new container to hold the stat information
*
* The initial refcount is 1, and needs to be decremented
* to release the resources of the structure.
*
* Returns: < 0 on failure, 0 on success along with
* a pointer to a new context struct
*/
PROCPS_EXPORT int procps_meminfo_new (
struct meminfo_info **info)
{
struct meminfo_info *p;
#ifdef ITEMTABLE_DEBUG
int i, failed = 0;
for (i = 0; i < MAXTABLE(Item_table); i++) {
if (i != Item_table[i].enumnumb) {
fprintf(stderr, "%s: enum/table error: Item_table[%d] was %s, but its value is %d\n"
, __FILE__, i, Item_table[i].enum2str, Item_table[i].enumnumb);
failed = 1;
}
}
if (failed) _Exit(EXIT_FAILURE);
#endif
if (info == NULL || *info != NULL)
return -EINVAL;
if (!(p = calloc(1, sizeof(struct meminfo_info))))
return -ENOMEM;
p->refcount = 1;
p->meminfo_fd = -1;
if (meminfo_make_hash_failed(p)) {
free(p);
return -errno;
}
/* do a priming read here for the following potential benefits: |
1) ensure there will be no problems with subsequent access |
2) make delta results potentially useful, even if 1st time |
3) elimnate need for history distortions 1st time 'switch' | */
if (meminfo_read_failed(p)) {
procps_meminfo_unref(&p);
return -errno;
}
*info = p;
return 0;
} // end: procps_meminfo_new
PROCPS_EXPORT int procps_meminfo_ref (
struct meminfo_info *info)
{
if (info == NULL)
return -EINVAL;
info->refcount++;
return info->refcount;
} // end: procps_meminfo_ref
PROCPS_EXPORT int procps_meminfo_unref (
struct meminfo_info **info)
{
if (info == NULL || *info == NULL)
return -EINVAL;
(*info)->refcount--;
if ((*info)->refcount < 1) {
int errno_sav = errno;
if ((*info)->extents)
meminfo_extents_free_all((*info));
if ((*info)->items)
free((*info)->items);
hdestroy_r(&(*info)->hashtab);
free(*info);
*info = NULL;
errno = errno_sav;
return 0;
}
return (*info)->refcount;
} // end: procps_meminfo_unref
// --- variable interface functions -------------------------------------------
PROCPS_EXPORT struct meminfo_result *procps_meminfo_get (
struct meminfo_info *info,
enum meminfo_item item)
{
static time_t sav_secs;
time_t cur_secs;
errno = EINVAL;
if (info == NULL)
return NULL;
if (item < 0 || item >= MEMINFO_logical_end)
return NULL;
errno = 0;
/* we will NOT read the meminfo file with every call - rather, we'll offer
a granularity of 1 second between reads ... */
cur_secs = time(NULL);
if (1 <= cur_secs - sav_secs) {
if (meminfo_read_failed(info))
return NULL;
sav_secs = cur_secs;
}
info->get_this.item = item;
// with 'get', we must NOT honor the usual 'noop' guarantee
info->get_this.result.ul_int = 0;
Item_table[item].setsfunc(&info->get_this, &info->hist);
return &info->get_this;
} // end: procps_meminfo_get
/* procps_meminfo_select():
*
* Harvest all the requested MEM and/or SWAP information then return
* it in a results stack.
*
* Returns: pointer to a meminfo_stack struct on success, NULL on error.
*/
PROCPS_EXPORT struct meminfo_stack *procps_meminfo_select (
struct meminfo_info *info,
enum meminfo_item *items,
int numitems)
{
errno = EINVAL;
if (info == NULL || items == NULL)
return NULL;
if (meminfo_items_check_failed(numitems, items))
return NULL;
errno = 0;
/* is this the first time or have things changed since we were last called?
if so, gotta' redo all of our stacks stuff ... */
if (info->numitems != numitems + 1
|| memcmp(info->items, items, sizeof(enum meminfo_item) * numitems)) {
// allow for our MEMINFO_logical_end
if (!(info->items = realloc(info->items, sizeof(enum meminfo_item) * (numitems + 1))))
return NULL;
memcpy(info->items, items, sizeof(enum meminfo_item) * numitems);
info->items[numitems] = MEMINFO_logical_end;
info->numitems = numitems + 1;
if (info->extents)
meminfo_extents_free_all(info);
}
if (!info->extents
&& (!meminfo_stacks_alloc(info, 1)))
return NULL;
if (meminfo_read_failed(info))
return NULL;
meminfo_assign_results(info->extents->stacks[0], &info->hist);
return info->extents->stacks[0];
} // end: procps_meminfo_select
// --- special debugging function(s) ------------------------------------------
/*
* The following isn't part of the normal programming interface. Rather,
* it exists to validate result types referenced in application programs.
*
* It's used only when:
* 1) the 'XTRA_PROCPS_DEBUG' has been defined, or
* 2) an #include of 'xtra-procps-debug.h' is used
*/
PROCPS_EXPORT struct meminfo_result *xtra_meminfo_get (
struct meminfo_info *info,
enum meminfo_item actual_enum,
const char *typestr,
const char *file,
int lineno)
{
struct meminfo_result *r = procps_meminfo_get(info, actual_enum);
if (actual_enum < 0 || actual_enum >= MEMINFO_logical_end) {
fprintf(stderr, "%s line %d: invalid item = %d, type = %s\n"
, file, lineno, actual_enum, typestr);
}
if (r) {
char *str = Item_table[r->item].type2str;
if (str[0]
&& (strcmp(typestr, str)))
fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
}
return r;
} // end: xtra_meminfo_get_
PROCPS_EXPORT struct meminfo_result *xtra_meminfo_val (
int relative_enum,
const char *typestr,
const struct meminfo_stack *stack,
struct meminfo_info *info,
const char *file,
int lineno)
{
char *str;
int i;
for (i = 0; stack->head[i].item < MEMINFO_logical_end; i++)
;
if (relative_enum < 0 || relative_enum >= i) {
fprintf(stderr, "%s line %d: invalid relative_enum = %d, valid range = 0-%d\n"
, file, lineno, relative_enum, i-1);
return NULL;
}
str = Item_table[stack->head[relative_enum].item].type2str;
if (str[0]
&& (strcmp(typestr, str))) {
fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
}
return &stack->head[relative_enum];
(void)info;
} // end: xtra_meminfo_val