procps/proc/slabinfo.c
Jim Warner 6634e813d4 library: correct 'use' calculations for <slabinfo> api
Awhile back, the calculation for cache utilization was
corrected to avoid a 32 bit overflow. This commit just
brings this branch into line with that earlier change.

[ references shown below represent the master branch ]

Reference(s):
commit 23ba442c886f6250d1068a82fb7d0fc544acfd63
https://gitlab.com/procps-ng/procps/merge_requests/29
http://www.freelists.org/post/procps/fix-regression-created-by-99d71ad

Signed-off-by: Jim Warner <james.warner@comcast.net>
2017-12-20 21:18:54 +11:00

1074 lines
37 KiB
C

/*
* slabinfo.c - slabinfo related functions for libproc
*
* Chris Rivera <cmrivera@ufl.edu>
* Robert Love <rml@tech9.net>
*
* Copyright (C) 2003 Chris Rivera
* Copyright (C) 2004 Albert Cahalan
* Copyright (C) 2015 Craig Small <csmall@enc.com.au>
* Copyright (C) 2016 Jim Warnerl <james.warner@comcast.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <proc/procps-private.h>
#include <proc/slabinfo.h>
#define SLABINFO_FILE "/proc/slabinfo"
#define SLABINFO_LINE_LEN 2048
#define SLABINFO_NAME_LEN 128
#define STACKS_INCR 128 // amount reap stack allocations grow
/*
Because 'select' could, at most, return only node[0] values and since 'reap' |
would be forced to duplicate global slabs stuff in every node results stack, |
the following #define can be used to enforce strictly logical return values. |
select: allow only SLABINFO & SLABS items
reap: allow only SLABINFO & SLABNODE items
Without the #define, these functions always return something even if just 0. |
get: return only SLABS results, else 0
select: return only SLABINFO & SLABS results, else zero
reap: return any requested, even when duplicated in each node's stack */
//#define ENFORCE_LOGICAL // ensure only logical items accepted by select/reap
struct slabs_summ {
unsigned int nr_objs; // number of objects, among all caches
unsigned int nr_active_objs; // number of active objects, among all caches
unsigned int nr_pages; // number of pages consumed by all objects
unsigned int nr_slabs; // number of slabs, among all caches
unsigned int nr_active_slabs; // number of active slabs, among all caches
unsigned int nr_caches; // number of caches
unsigned int nr_active_caches; // number of active caches
unsigned int avg_obj_size; // average object size
unsigned int min_obj_size; // size of smallest object
unsigned int max_obj_size; // size of largest object
unsigned long active_size; // size of all active objects
unsigned long total_size; // size of all objects
};
struct slabs_node {
char name[SLABINFO_NAME_LEN]; // name of this cache
unsigned long cache_size; // size of entire cache
unsigned int nr_objs; // number of objects in this cache
unsigned int nr_active_objs; // number of active objects
unsigned int obj_size; // size of each object
unsigned int objs_per_slab; // number of objects per slab
unsigned int pages_per_slab; // number of pages per slab
unsigned int nr_slabs; // number of slabs in this cache
unsigned int nr_active_slabs; // number of active slabs
unsigned int use; // percent full: total / active
};
struct slabs_hist {
struct slabs_summ new;
struct slabs_summ old;
};
struct stacks_extent {
int ext_numstacks;
struct stacks_extent *next;
struct slabinfo_stack **stacks;
};
struct ext_support {
int numitems; // includes 'logical_end' delimiter
enum slabinfo_item *items; // includes 'logical_end' delimiter
struct stacks_extent *extents; // anchor for these extents
#ifdef ENFORCE_LOGICAL
enum slabinfo_item lowest; // range of allowable enums
enum slabinfo_item highest;
#endif
int dirty_stacks;
};
struct fetch_support {
struct slabinfo_stack **anchor; // fetch consolidated extents
int n_alloc; // number of above pointers allocated
int n_inuse; // number of above pointers occupied
int n_alloc_save; // last known reap.stacks allocation
struct slabinfo_reap results; // count + stacks for return to caller
};
struct slabinfo_info {
int refcount;
FILE *slabinfo_fp;
int nodes_alloc; // nodes alloc()ed
int nodes_used; // nodes using alloced memory
struct slabs_node *nodes; // first slabnode of this list
struct slabs_hist slabs; // new/old slabs_summ data
struct ext_support select_ext; // supports concurrent select/reap
struct ext_support fetch_ext; // supports concurrent select/reap
struct fetch_support fetch; // support for procps_slabinfo_reap
struct slabs_node nul_node; // used by slabinfo_get/select
struct slabinfo_result get_this; // used by slabinfo_get
};
// ___ Results 'Set' Support ||||||||||||||||||||||||||||||||||||||||||||||||||
#define setNAME(e) set_slabinfo_ ## e
#define setDECL(e) static void setNAME(e) \
(struct slabinfo_result *R, struct slabs_hist *S, struct slabs_node *N)
// regular assignment
#define REG_set(e,t,x) setDECL(e) { (void)N; R->result. t = S->new . x; }
#define NOD_set(e,t,x) setDECL(e) { (void)S; R->result. t = N-> x; }
// delta assignment
#define HST_set(e,t,x) setDECL(e) { (void)N; R->result. t = (signed long)S->new . x - S->old. x; }
setDECL(noop) { (void)R; (void)S; (void)N; }
setDECL(extra) { (void)R; (void)S; (void)N; }
REG_set(SLABS_OBJS, u_int, nr_objs)
REG_set(SLABS_AOBJS, u_int, nr_active_objs)
REG_set(SLABS_PAGES, u_int, nr_pages)
REG_set(SLABS_SLABS, u_int, nr_slabs)
REG_set(SLABS_ASLABS, u_int, nr_active_slabs)
REG_set(SLABS_CACHES, u_int, nr_caches)
REG_set(SLABS_ACACHES, u_int, nr_active_caches)
REG_set(SLABS_SIZE_AVG, u_int, avg_obj_size)
REG_set(SLABS_SIZE_MIN, u_int, min_obj_size)
REG_set(SLABS_SIZE_MAX, u_int, max_obj_size)
REG_set(SLABS_SIZE_ACTIVE, ul_int, active_size)
REG_set(SLABS_SIZE_TOTAL, ul_int, total_size)
HST_set(SLABS_DELTA_OBJS, s_int, nr_objs)
HST_set(SLABS_DELTA_AOBJS, s_int, nr_active_objs)
HST_set(SLABS_DELTA_PAGES, s_int, nr_pages)
HST_set(SLABS_DELTA_SLABS, s_int, nr_slabs)
HST_set(SLABS_DELTA_ASLABS, s_int, nr_active_slabs)
HST_set(SLABS_DELTA_CACHES, s_int, nr_caches)
HST_set(SLABS_DELTA_ACACHES, s_int, nr_active_caches)
HST_set(SLABS_DELTA_SIZE_AVG, s_int, avg_obj_size)
HST_set(SLABS_DELTA_SIZE_MIN, s_int, min_obj_size)
HST_set(SLABS_DELTA_SIZE_MAX, s_int, max_obj_size)
HST_set(SLABS_DELTA_SIZE_ACTIVE, s_int, active_size)
HST_set(SLABS_DELTA_SIZE_TOTAL, s_int, total_size)
NOD_set(SLABNODE_NAME, str, name)
NOD_set(SLABNODE_OBJS, u_int, nr_objs)
NOD_set(SLABNODE_AOBJS, u_int, nr_active_objs)
NOD_set(SLABNODE_OBJ_SIZE, u_int, obj_size)
NOD_set(SLABNODE_OBJS_PER_SLAB, u_int, objs_per_slab)
NOD_set(SLABNODE_PAGES_PER_SLAB, u_int, pages_per_slab)
NOD_set(SLABNODE_SLABS, u_int, nr_slabs)
NOD_set(SLABNODE_ASLABS, u_int, nr_active_slabs)
NOD_set(SLABNODE_USE, u_int, use)
NOD_set(SLABNODE_SIZE, ul_int, cache_size)
#undef setDECL
#undef REG_set
#undef NOD_set
#undef HST_set
// ___ Sorting Support ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
struct sort_parms {
int offset;
enum slabinfo_sort_order order;
};
#define srtNAME(t) sort_slabinfo_ ## t
#define srtDECL(t) static int srtNAME(t) \
(const struct slabinfo_stack **A, const struct slabinfo_stack **B, struct sort_parms *P)
srtDECL(u_int) {
const struct slabinfo_result *a = (*A)->head + P->offset; \
const struct slabinfo_result *b = (*B)->head + P->offset; \
if ( a->result.u_int > b->result.u_int ) return P->order > 0 ? 1 : -1; \
if ( a->result.u_int < b->result.u_int ) return P->order > 0 ? -1 : 1; \
return 0;
}
srtDECL(ul_int) {
const struct slabinfo_result *a = (*A)->head + P->offset; \
const struct slabinfo_result *b = (*B)->head + P->offset; \
if ( a->result.ul_int > b->result.ul_int ) return P->order > 0 ? 1 : -1; \
if ( a->result.ul_int < b->result.ul_int ) return P->order > 0 ? -1 : 1; \
return 0;
}
srtDECL(str) {
const struct slabinfo_result *a = (*A)->head + P->offset;
const struct slabinfo_result *b = (*B)->head + P->offset;
return P->order * strcoll(a->result.str, b->result.str);
}
srtDECL(noop) { \
(void)A; (void)B; (void)P; \
return 0;
}
#undef srtDECL
// ___ Controlling Table ||||||||||||||||||||||||||||||||||||||||||||||||||||||
typedef void (*SET_t)(struct slabinfo_result *, struct slabs_hist *, struct slabs_node *);
#define RS(e) (SET_t)setNAME(e)
typedef int (*QSR_t)(const void *, const void *, void *);
#define QS(t) (QSR_t)srtNAME(t)
#define TS(t) STRINGIFY(t)
#define TS_noop ""
/*
* Need it be said?
* This table must be kept in the exact same order as
* those *enum slabinfo_item* guys ! */
static struct {
SET_t setsfunc; // the actual result setting routine
QSR_t sortfunc; // sort cmp func for a specific type
char *type2str; // the result type as a string value
} Item_table[] = {
/* setsfunc sortfunc type2str
---------------------------- ----------- ---------- */
{ RS(noop), QS(noop), TS_noop },
{ RS(extra), QS(ul_int), TS_noop },
{ RS(SLABS_OBJS), QS(noop), TS(u_int) },
{ RS(SLABS_AOBJS), QS(noop), TS(u_int) },
{ RS(SLABS_PAGES), QS(noop), TS(u_int) },
{ RS(SLABS_SLABS), QS(noop), TS(u_int) },
{ RS(SLABS_ASLABS), QS(noop), TS(u_int) },
{ RS(SLABS_CACHES), QS(noop), TS(u_int) },
{ RS(SLABS_ACACHES), QS(noop), TS(u_int) },
{ RS(SLABS_SIZE_AVG), QS(noop), TS(u_int) },
{ RS(SLABS_SIZE_MIN), QS(noop), TS(u_int) },
{ RS(SLABS_SIZE_MAX), QS(noop), TS(u_int) },
{ RS(SLABS_SIZE_ACTIVE), QS(noop), TS(ul_int) },
{ RS(SLABS_SIZE_TOTAL), QS(noop), TS(ul_int) },
{ RS(SLABS_DELTA_OBJS), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_AOBJS), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_PAGES), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SLABS), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_ASLABS), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_CACHES), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_ACACHES), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SIZE_AVG), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SIZE_MIN), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SIZE_MAX), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SIZE_ACTIVE), QS(noop), TS(s_int) },
{ RS(SLABS_DELTA_SIZE_TOTAL), QS(noop), TS(s_int) },
{ RS(SLABNODE_NAME), QS(str), TS(str) },
{ RS(SLABNODE_OBJS), QS(u_int), TS(u_int) },
{ RS(SLABNODE_AOBJS), QS(u_int), TS(u_int) },
{ RS(SLABNODE_OBJ_SIZE), QS(u_int), TS(u_int) },
{ RS(SLABNODE_OBJS_PER_SLAB), QS(u_int), TS(u_int) },
{ RS(SLABNODE_PAGES_PER_SLAB), QS(u_int), TS(u_int) },
{ RS(SLABNODE_SLABS), QS(u_int), TS(u_int) },
{ RS(SLABNODE_ASLABS), QS(u_int), TS(u_int) },
{ RS(SLABNODE_USE), QS(u_int), TS(u_int) },
{ RS(SLABNODE_SIZE), QS(ul_int), TS(ul_int) },
// dummy entry corresponding to SLABINFO_logical_end ...
{ NULL, NULL, NULL }
};
/* please note,
* this enum MUST be 1 greater than the highest value of any enum */
enum slabinfo_item SLABINFO_logical_end = SLABNODE_SIZE + 1;
#undef setNAME
#undef srtNAME
#undef RS
#undef QS
// ___ Private Functions ||||||||||||||||||||||||||||||||||||||||||||||||||||||
// --- slabnode specific support ----------------------------------------------
/* Alloc up more slabnode memory, if required
*/
static int alloc_slabnodes (
struct slabinfo_info *info)
{
struct slabs_node *new_nodes;
int new_count;
if (info->nodes_used < info->nodes_alloc)
return 1;
/* Increment the allocated number of slabs */
new_count = info->nodes_alloc * 5/4+30;
new_nodes = realloc(info->nodes, sizeof(struct slabs_node) * new_count);
if (!new_nodes)
return 0;
info->nodes = new_nodes;
info->nodes_alloc = new_count;
return 1;
} // end: alloc_slabnodes
/*
* get_slabnode - allocate slab_info structures using a free list
*
* In the fast path, we simply return a node off the free list. In the slow
* list, we malloc() a new node. The free list is never automatically reaped,
* both for simplicity and because the number of slab caches is fairly
* constant.
*/
static int get_slabnode (
struct slabinfo_info *info,
struct slabs_node **node)
{
if (info->nodes_used == info->nodes_alloc) {
if (!alloc_slabnodes(info))
return 0; // here, errno was set to ENOMEM
}
*node = &(info->nodes[info->nodes_used++]);
return 1;
} // end: get_slabnode
/* parse_slabinfo20:
*
* Actual parse routine for slabinfo 2.x (2.6 kernels)
* Note: difference between 2.0 and 2.1 is in the ": globalstat" part where version 2.1
* has extra column <nodeallocs>. We don't use ": globalstat" part in both versions.
*
* Formats (we don't use "statistics" extensions)
*
* slabinfo - version: 2.1
* # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> \
* : tunables <batchcount> <limit> <sharedfactor> \
* : slabdata <active_slabs> <num_slabs> <sharedavail>
*
* slabinfo - version: 2.1 (statistics)
* # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> \
* : tunables <batchcount> <limit> <sharedfactor> \
* : slabdata <active_slabs> <num_slabs> <sharedavail> \
* : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit> <nodeallocs> \
* : cpustat <allochit> <allocmiss> <freehit> <freemiss>
*
* slabinfo - version: 2.0
* # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> \
* : tunables <batchcount> <limit> <sharedfactor> \
* : slabdata <active_slabs> <num_slabs> <sharedavail>
*
* slabinfo - version: 2.0 (statistics)
* # name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> \
* : tunables <batchcount> <limit> <sharedfactor> \
* : slabdata <active_slabs> <num_slabs> <sharedavail> \
* : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <freelimit> \
* : cpustat <allochit> <allocmiss> <freehit> <freemiss>
*/
static int parse_slabinfo20 (
struct slabinfo_info *info)
{
struct slabs_node *node;
char buffer[SLABINFO_LINE_LEN];
int page_size = getpagesize();
struct slabs_summ *slabs = &(info->slabs.new);
slabs->min_obj_size = INT_MAX;
slabs->max_obj_size = 0;
while (fgets(buffer, SLABINFO_LINE_LEN, info->slabinfo_fp )) {
if (buffer[0] == '#')
continue;
if (!get_slabnode(info, &node))
return 1; // here, errno was set to ENOMEM
if (sscanf(buffer,
"%" STRINGIFY(SLABINFO_NAME_LEN) "s" \
"%u %u %u %u %u : tunables %*u %*u %*u : slabdata %u %u %*u",
node->name,
&node->nr_active_objs, &node->nr_objs,
&node->obj_size, &node->objs_per_slab,
&node->pages_per_slab, &node->nr_active_slabs,
&node->nr_slabs) < 8) {
errno = ERANGE;
return 1;
}
if (!node->name[0])
snprintf(node->name, sizeof(node->name), "%s", "unknown");
if (node->obj_size < slabs->min_obj_size)
slabs->min_obj_size = node->obj_size;
if (node->obj_size > slabs->max_obj_size)
slabs->max_obj_size = node->obj_size;
node->cache_size = (unsigned long)node->nr_slabs * node->pages_per_slab * page_size;
if (node->nr_objs) {
node->use = (unsigned int)(100 * ((float)node->nr_active_objs / node->nr_objs));
slabs->nr_active_caches++;
} else
node->use = 0;
slabs->nr_objs += node->nr_objs;
slabs->nr_active_objs += node->nr_active_objs;
slabs->total_size += (unsigned long)node->nr_objs * node->obj_size;
slabs->active_size += (unsigned long)node->nr_active_objs * node->obj_size;
slabs->nr_pages += node->nr_slabs * node->pages_per_slab;
slabs->nr_slabs += node->nr_slabs;
slabs->nr_active_slabs += node->nr_active_slabs;
slabs->nr_caches++;
}
if (slabs->nr_objs)
slabs->avg_obj_size = slabs->total_size / slabs->nr_objs;
return 0;
} // end: parse_slabinfo20
/* slabinfo_read_failed():
*
* Read the data out of /proc/slabinfo putting the information
* into the supplied info container
*
* Returns: 0 on success, 1 on error
*/
static int slabinfo_read_failed (
struct slabinfo_info *info)
{
char line[SLABINFO_LINE_LEN];
int major, minor;
memcpy(&info->slabs.old, &info->slabs.new, sizeof(struct slabs_summ));
memset(&(info->slabs.new), 0, sizeof(struct slabs_summ));
if (!alloc_slabnodes(info))
return 1; // here, errno was set to ENOMEM
memset(info->nodes, 0, sizeof(struct slabs_node)*info->nodes_alloc);
info->nodes_used = 0;
if (NULL == info->slabinfo_fp
&& (info->slabinfo_fp = fopen(SLABINFO_FILE, "r")) == NULL)
return 1;
if (fseek(info->slabinfo_fp, 0L, SEEK_SET) < 0)
return 1;
/* Parse the version string */
if (!fgets(line, SLABINFO_LINE_LEN, info->slabinfo_fp))
return 1;
if (2 != sscanf(line, "slabinfo - version: %d.%d", &major, &minor)
|| (major != 2)) {
errno = ERANGE;
return 1;
}
return parse_slabinfo20(info);
} // end: slabinfo_read_failed
// ___ Private Functions ||||||||||||||||||||||||||||||||||||||||||||||||||||||
// --- generalized support ----------------------------------------------------
static inline void slabinfo_assign_results (
struct slabinfo_stack *stack,
struct slabs_hist *summ,
struct slabs_node *node)
{
struct slabinfo_result *this = stack->head;
for (;;) {
enum slabinfo_item item = this->item;
if (item >= SLABINFO_logical_end)
break;
Item_table[item].setsfunc(this, summ, node);
++this;
}
return;
} // end: slabinfo_assign_results
static inline void slabinfo_cleanup_stack (
struct slabinfo_result *this)
{
for (;;) {
if (this->item >= SLABINFO_logical_end)
break;
if (this->item > SLABINFO_noop)
this->result.ul_int = 0;
++this;
}
} // end: slabinfo_cleanup_stack
static inline void slabinfo_cleanup_stacks_all (
struct ext_support *this)
{
struct stacks_extent *ext = this->extents;
int i;
while (ext) {
for (i = 0; ext->stacks[i]; i++)
slabinfo_cleanup_stack(ext->stacks[i]->head);
ext = ext->next;
};
this->dirty_stacks = 0;
} // end: slabinfo_cleanup_stacks_all
static void slabinfo_extents_free_all (
struct ext_support *this)
{
while (this->extents) {
struct stacks_extent *p = this->extents;
this->extents = this->extents->next;
free(p);
};
} // end: slabinfo_extents_free_all
static inline struct slabinfo_result *slabinfo_itemize_stack (
struct slabinfo_result *p,
int depth,
enum slabinfo_item *items)
{
struct slabinfo_result *p_sav = p;
int i;
for (i = 0; i < depth; i++) {
p->item = items[i];
p->result.ul_int = 0;
++p;
}
return p_sav;
} // end: slabinfo_itemize_stack
static void slabinfo_itemize_stacks_all (
struct ext_support *this)
{
struct stacks_extent *ext = this->extents;
while (ext) {
int i;
for (i = 0; ext->stacks[i]; i++)
slabinfo_itemize_stack(ext->stacks[i]->head, this->numitems, this->items);
ext = ext->next;
};
this->dirty_stacks = 0;
} // end: slabinfo_itemize_stacks_all
static inline int slabinfo_items_check_failed (
struct ext_support *this,
enum slabinfo_item *items,
int numitems)
{
int i;
/* if an enum is passed instead of an address of one or more enums, ol' gcc
* will silently convert it to an address (possibly NULL). only clang will
* offer any sort of warning like the following:
*
* warning: incompatible integer to pointer conversion passing 'int' to parameter of type 'enum slabinfo_item *'
* my_stack = procps_slabinfo_select(info, SLABINFO_noop, num);
* ^~~~~~~~~~~~~~~~
*/
if (numitems < 1
|| (void *)items < (void *)(unsigned long)(2 * SLABINFO_logical_end))
return 1;
for (i = 0; i < numitems; i++) {
#ifdef ENFORCE_LOGICAL
if (items[i] == SLABINFO_noop
|| (items[i] == SLABINFO_extra))
continue;
if (items[i] < this->lowest
|| (items[i] > this->highest))
return 1;
#else
// a slabinfo_item is currently unsigned, but we'll protect our future
if (items[i] < 0)
return 1;
if (items[i] >= SLABINFO_logical_end)
return 1;
#endif
}
return 0;
} // end: slabinfo_items_check_failed
/*
* slabinfo_stacks_alloc():
*
* Allocate and initialize one or more stacks each of which is anchored in an
* associated context structure.
*
* All such stacks will have their result structures properly primed with
* 'items', while the result itself will be zeroed.
*
* Returns a stacks_extent struct anchoring the 'heads' of each new stack.
*/
static struct stacks_extent *slabinfo_stacks_alloc (
struct ext_support *this,
int maxstacks)
{
struct stacks_extent *p_blob;
struct slabinfo_stack **p_vect;
struct slabinfo_stack *p_head;
size_t vect_size, head_size, list_size, blob_size;
void *v_head, *v_list;
int i;
vect_size = sizeof(void *) * maxstacks; // size of the addr vectors |
vect_size += sizeof(void *); // plus NULL addr delimiter |
head_size = sizeof(struct slabinfo_stack); // size of that head struct |
list_size = sizeof(struct slabinfo_result)*this->numitems; // any single results stack |
blob_size = sizeof(struct stacks_extent); // the extent anchor itself |
blob_size += vect_size; // plus room for addr vects |
blob_size += head_size * maxstacks; // plus room for head thing |
blob_size += list_size * maxstacks; // plus room for our stacks |
/* note: all of our memory is allocated in one single blob, facilitating a later free(). |
as a minimum, it is important that those result structures themselves always be |
contiguous within each stack since they are accessed through relative position. | */
if (NULL == (p_blob = calloc(1, blob_size)))
return NULL;
p_blob->next = this->extents; // push this extent onto... |
this->extents = p_blob; // ...some existing extents |
p_vect = (void *)p_blob + sizeof(struct stacks_extent); // prime our vector pointer |
p_blob->stacks = p_vect; // set actual vectors start |
v_head = (void *)p_vect + vect_size; // prime head pointer start |
v_list = v_head + (head_size * maxstacks); // prime our stacks pointer |
for (i = 0; i < maxstacks; i++) {
p_head = (struct slabinfo_stack *)v_head;
p_head->head = slabinfo_itemize_stack((struct slabinfo_result *)v_list, this->numitems, this->items);
p_blob->stacks[i] = p_head;
v_list += list_size;
v_head += head_size;
}
p_blob->ext_numstacks = maxstacks;
return p_blob;
} // end: slabinfo_stacks_alloc
static int slabinfo_stacks_fetch (
struct slabinfo_info *info)
{
#define n_alloc info->fetch.n_alloc
#define n_inuse info->fetch.n_inuse
#define n_saved info->fetch.n_alloc_save
struct stacks_extent *ext;
// initialize stuff -----------------------------------
if (!info->fetch.anchor) {
if (!(info->fetch.anchor = calloc(sizeof(void *), STACKS_INCR)))
return -1;
n_alloc = STACKS_INCR;
}
if (!info->fetch_ext.extents) {
if (!(ext = slabinfo_stacks_alloc(&info->fetch_ext, n_alloc)))
return -1; // here, errno was set to ENOMEM
memset(info->fetch.anchor, 0, sizeof(void *) * n_alloc);
memcpy(info->fetch.anchor, ext->stacks, sizeof(void *) * n_alloc);
slabinfo_itemize_stacks_all(&info->fetch_ext);
}
slabinfo_cleanup_stacks_all(&info->fetch_ext);
// iterate stuff --------------------------------------
n_inuse = 0;
while (n_inuse < info->nodes_used) {
if (!(n_inuse < n_alloc)) {
n_alloc += STACKS_INCR;
if ((!(info->fetch.anchor = realloc(info->fetch.anchor, sizeof(void *) * n_alloc)))
|| (!(ext = slabinfo_stacks_alloc(&info->fetch_ext, STACKS_INCR))))
return -1; // here, errno was set to ENOMEM
memcpy(info->fetch.anchor + n_inuse, ext->stacks, sizeof(void *) * STACKS_INCR);
}
slabinfo_assign_results(info->fetch.anchor[n_inuse], &info->slabs, &info->nodes[n_inuse]);
++n_inuse;
}
// finalize stuff -------------------------------------
/* note: we go to this trouble of maintaining a duplicate of the consolidated |
extent stacks addresses represented as our 'anchor' since these ptrs |
are exposed to a user (um, not that we don't trust 'em or anything). |
plus, we can NULL delimit these ptrs which we couldn't do otherwise. | */
if (n_saved < n_inuse + 1) {
n_saved = n_inuse + 1;
if (!(info->fetch.results.stacks = realloc(info->fetch.results.stacks, sizeof(void *) * n_saved)))
return -1;
}
memcpy(info->fetch.results.stacks, info->fetch.anchor, sizeof(void *) * n_inuse);
info->fetch.results.stacks[n_inuse] = NULL;
info->fetch.results.total = n_inuse;
return n_inuse;
#undef n_alloc
#undef n_inuse
#undef n_saved
} // end: slabinfo_stacks_fetch
static int slabinfo_stacks_reconfig_maybe (
struct ext_support *this,
enum slabinfo_item *items,
int numitems)
{
if (slabinfo_items_check_failed(this, items, numitems))
return -1;
/* is this the first time or have things changed since we were last called?
if so, gotta' redo all of our stacks stuff ... */
if (this->numitems != numitems + 1
|| memcmp(this->items, items, sizeof(enum slabinfo_item) * numitems)) {
// allow for our SLABINFO_logical_end
if (!(this->items = realloc(this->items, sizeof(enum slabinfo_item) * (numitems + 1))))
return -1;
memcpy(this->items, items, sizeof(enum slabinfo_item) * numitems);
this->items[numitems] = SLABINFO_logical_end;
this->numitems = numitems + 1;
if (this->extents)
slabinfo_extents_free_all(this);
return 1;
}
return 0;
} // end: slabinfo_stacks_reconfig_maybe
// ___ Public Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||||
// --- standard required functions --------------------------------------------
/*
* procps_slabinfo_new():
*
* @info: location of returned new structure
*
* Returns: < 0 on failure, 0 on success along with
* a pointer to a new context struct
*/
PROCPS_EXPORT int procps_slabinfo_new (
struct slabinfo_info **info)
{
struct slabinfo_info *p;
if (info == NULL || *info != NULL)
return -EINVAL;
if (!(p = calloc(1, sizeof(struct slabinfo_info))))
return -ENOMEM;
#ifdef ENFORCE_LOGICAL
p->select_ext.lowest = SLABS_OBJS;
p->select_ext.highest = SLABS_DELTA_SIZE_TOTAL;
p->fetch_ext.lowest = SLABNODE_NAME;
p->fetch_ext.highest = SLABNODE_SIZE;
#endif
p->refcount = 1;
/* do a priming read here for the following potential benefits: |
1) see if that caller's permissions were sufficient (root) |
2) make delta results potentially useful, even if 1st time |
3) elimnate need for history distortions 1st time 'switch' | */
if (slabinfo_read_failed(p)) {
procps_slabinfo_unref(&p);
return -errno;
}
*info = p;
return 0;
} // end: procps_slabinfo_new
PROCPS_EXPORT int procps_slabinfo_ref (
struct slabinfo_info *info)
{
if (info == NULL)
return -EINVAL;
info->refcount++;
return info->refcount;
} // end: procps_slabinfo_ref
PROCPS_EXPORT int procps_slabinfo_unref (
struct slabinfo_info **info)
{
if (info == NULL || *info == NULL)
return -EINVAL;
(*info)->refcount--;
if ((*info)->refcount < 1) {
int errno_sav = errno;
if ((*info)->slabinfo_fp) {
fclose((*info)->slabinfo_fp);
(*info)->slabinfo_fp = NULL;
}
if ((*info)->select_ext.extents)
slabinfo_extents_free_all((&(*info)->select_ext));
if ((*info)->select_ext.items)
free((*info)->select_ext.items);
if ((*info)->fetch.anchor)
free((*info)->fetch.anchor);
if ((*info)->fetch.results.stacks)
free((*info)->fetch.results.stacks);
if ((*info)->fetch_ext.extents)
slabinfo_extents_free_all(&(*info)->fetch_ext);
if ((*info)->fetch_ext.items)
free((*info)->fetch_ext.items);
free((*info)->nodes);
free(*info);
*info = NULL;
errno = errno_sav;
return 0;
}
return (*info)->refcount;
} // end: procps_slabinfo_unref
// --- variable interface functions -------------------------------------------
PROCPS_EXPORT struct slabinfo_result *procps_slabinfo_get (
struct slabinfo_info *info,
enum slabinfo_item item)
{
static time_t sav_secs;
time_t cur_secs;
errno = EINVAL;
if (info == NULL)
return NULL;
if (item < 0 || item >= SLABINFO_logical_end)
return NULL;
errno = 0;
/* we will NOT read the slabinfo file with every call - rather, we'll offer
a granularity of 1 second between reads ... */
cur_secs = time(NULL);
if (1 <= cur_secs - sav_secs) {
if (slabinfo_read_failed(info))
return NULL;
sav_secs = cur_secs;
}
info->get_this.item = item;
// with 'get', we must NOT honor the usual 'noop' guarantee
info->get_this.result.ul_int = 0;
Item_table[item].setsfunc(&info->get_this, &info->slabs, &info->nul_node);
return &info->get_this;
} // end: procps_slabinfo_get
/* procps_slabinfo_reap():
*
* Harvest all the requested SLABNODE (individual nodes) information
* providing the result stacks along with the total number of nodes.
*
* Returns: pointer to a slabinfo_reap struct on success, NULL on error.
*/
PROCPS_EXPORT struct slabinfo_reap *procps_slabinfo_reap (
struct slabinfo_info *info,
enum slabinfo_item *items,
int numitems)
{
errno = EINVAL;
if (info == NULL || items == NULL)
return NULL;
if (0 > slabinfo_stacks_reconfig_maybe(&info->fetch_ext, items, numitems))
return NULL; // here, errno may be overridden with ENOMEM
errno = 0;
if (info->fetch_ext.dirty_stacks)
slabinfo_cleanup_stacks_all(&info->fetch_ext);
if (slabinfo_read_failed(info))
return NULL;
if (0 > slabinfo_stacks_fetch(info))
return NULL;
info->fetch_ext.dirty_stacks = 1;
return &info->fetch.results;
} // end: procps_slabinfo_reap
/* procps_slabinfo_select():
*
* Obtain all the requested SLABS (global) information then return
* it in a single library provided results stack.
*
* Returns: pointer to a slabinfo_stack struct on success, NULL on error.
*/
PROCPS_EXPORT struct slabinfo_stack *procps_slabinfo_select (
struct slabinfo_info *info,
enum slabinfo_item *items,
int numitems)
{
errno = EINVAL;
if (info == NULL || items == NULL)
return NULL;
if (0 > slabinfo_stacks_reconfig_maybe(&info->select_ext, items, numitems))
return NULL; // here, errno may be overridden with ENOMEM
errno = 0;
if (!info->select_ext.extents
&& (!slabinfo_stacks_alloc(&info->select_ext, 1)))
return NULL;
if (info->select_ext.dirty_stacks)
slabinfo_cleanup_stacks_all(&info->select_ext);
if (slabinfo_read_failed(info))
return NULL;
slabinfo_assign_results(info->select_ext.extents->stacks[0], &info->slabs, &info->nul_node);
info->select_ext.dirty_stacks = 1;
return info->select_ext.extents->stacks[0];
} // end: procps_slabinfo_select
/*
* procps_slabinfo_sort():
*
* Sort stacks anchored in the passed stack pointers array
* based on the designated sort enumerator and specified order.
*
* Returns those same addresses sorted.
*
* Note: all of the stacks must be homogeneous (of equal length and content).
*/
PROCPS_EXPORT struct slabinfo_stack **procps_slabinfo_sort (
struct slabinfo_info *info,
struct slabinfo_stack *stacks[],
int numstacked,
enum slabinfo_item sortitem,
enum slabinfo_sort_order order)
{
struct slabinfo_result *p;
struct sort_parms parms;
int offset;
errno = EINVAL;
if (info == NULL || stacks == NULL)
return NULL;
// a slabinfo_item is currently unsigned, but we'll protect our future
if (sortitem < 0 || sortitem >= SLABINFO_logical_end)
return NULL;
if (order != SLABINFO_SORT_ASCEND && order != SLABINFO_SORT_DESCEND)
return NULL;
if (numstacked < 2)
return stacks;
offset = 0;
p = stacks[0]->head;
for (;;) {
if (p->item == sortitem)
break;
++offset;
if (p->item >= SLABINFO_logical_end)
return NULL;
++p;
}
errno = 0;
parms.offset = offset;
parms.order = order;
qsort_r(stacks, numstacked, sizeof(void *), (QSR_t)Item_table[p->item].sortfunc, &parms);
return stacks;
} // end: procps_slabinfo_sort
// --- special debugging function(s) ------------------------------------------
/*
* The following isn't part of the normal programming interface. Rather,
* it exists to validate result types referenced in application programs.
*
* It's used only when:
* 1) the 'XTRA_PROCPS_DEBUG' has been defined, or
* 2) the '#include <proc/xtra-procps-debug.h>' used
*/
PROCPS_EXPORT struct slabinfo_result *xtra_slabinfo_get (
struct slabinfo_info *info,
enum slabinfo_item actual_enum,
const char *typestr,
const char *file,
int lineno)
{
struct slabinfo_result *r = procps_slabinfo_get(info, actual_enum);
if (actual_enum < 0 || actual_enum >= SLABINFO_logical_end) {
fprintf(stderr, "%s line %d: invalid item = %d, type = %s\n"
, file, lineno, actual_enum, typestr);
}
if (r) {
char *str = Item_table[r->item].type2str;
if (str[0]
&& (strcmp(typestr, str)))
fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
}
return r;
} // end: xtra_slabinfo_get_
PROCPS_EXPORT struct slabinfo_result *xtra_slabinfo_val (
int relative_enum,
const char *typestr,
const struct slabinfo_stack *stack,
struct slabinfo_info *info,
const char *file,
int lineno)
{
char *str;
int i;
for (i = 0; stack->head[i].item < SLABINFO_logical_end; i++)
;
if (relative_enum < 0 || relative_enum >= i) {
fprintf(stderr, "%s line %d: invalid relative_enum = %d, type = %s\n"
, file, lineno, relative_enum, typestr);
return NULL;
}
str = Item_table[stack->head[relative_enum].item].type2str;
if (str[0]
&& (strcmp(typestr, str))) {
fprintf(stderr, "%s line %d: was %s, expected %s\n", file, lineno, typestr, str);
}
return &stack->head[relative_enum];
} // end: xtra_slabinfo_val