procps/proc/pids.c
Jim Warner 7e6a371d8a library: implement task/thread support via the new api
This commit is the culmination of efforts to modernize
the library api. It should be treated as a first blush
attempt, especially since I have absolutely no library
design experience. But I did have a very strong desire
to lessen the new library's impact on the top program.

Under this new api, a 'stack' is the equivalent of the
old proc_t. It can be seen as a variable length record
whose contents & order is under complete user control.

That initial stack/record configuration is established
at procps_pids_new() time and will probably serve most
program needs. But, a dynamic & demanding program like
top will later change a stack via procps_pids_reset().

For programs like top & ps, procps_pids_reap() will be
the function that will retrieve all tasks and threads.

Any program that needs to filter / select only certain
processes or users have available other functions that
can be used: procps_pids_stacks_alloc, fill & dealloc.

This implementation attempts to maximize that existing
proven libprocps code base. As we gain more experience
such actual code can be migrated into the pids.c file.

Signed-off-by: Jim Warner <james.warner@comcast.net>
2015-08-23 21:05:06 +10:00

1284 lines
45 KiB
C

/*
* pids.c - task/thread/process related declarations for libproc
*
* Copyright (C) 1998-2005 Albert Cahalan
* Copyright (C) 2015 Craig Small <csmall@enc.com.au>
* Copyright (C) 2015 Jim Warner <james.warner@comcast.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
//efine _GNU_SOURCE // for qsort_r
#define OOMEM_ENABLE // we will not disturb the api
#define WITH_SYSTEMD // with optional functionality
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <proc/pids.h>
#include "procps-private.h"
#include "readproc.h" // and two headers for bridged
#include "wchan.h" // support (temporary include)
//#define UNREF_RPTHASH // report on hashing, at uref time
#define FILL_ID_MAX 255 // upper limit for pid/uid fills
enum pids_item PROCPS_PIDS_logical_end = PROCPS_PIDS_noop + 1;
enum pids_item PROCPS_PIDS_physical_end = PROCPS_PIDS_noop + 2;
struct stacks_extent { // callers see a pids_stacks struct
struct pids_stack **stacks;
int ext_numitems; // includes 'physical_end' delimiter
int ext_numstacks;
struct stacks_extent *next;
};
struct procps_pidsinfo {
int refcount;
int maxitems; // includes 'physical_end' delimiter
int curitems; // includes 'logical_end' delimiter
enum pids_item *items; // includes 'phy/log_end' delimiters
struct pids_stack **anchor; // reapable stacks (consolidated extents)
int alloc_total; // number of above pointers allocated
int inuse_total; // number of above pointers occupied
struct stacks_extent *extents; // anchor for all allocated extents
int history_yes; // need historical data
struct history_info *hist; // pointer to historical support data
int dirty_stacks; // extents need dynamic storage clean
unsigned pgs2k_shift; // to convert some proc vaules
unsigned flags; // the old library PROC_FILL flagss
PROCTAB *PT; // the old library essential interface
struct pids_counts counts; // counts for 'procps_pids_stacks_fill'
struct pids_reap reap; // counts + stacks for 'procps_pids_reap'
};
// ___ Results 'Set' Support ||||||||||||||||||||||||||||||||||||||||||||||||||
/* note: the vast majority of these 'set' functions have no need for
the procps_pidsinfo structure, but it's being passed to all
bacause of the CVT_set requirement & for future flexibility */
#define setNAME(e) set_results_ ## e
#define setDECL(e) static void setNAME(e) \
(struct procps_pidsinfo *I, struct pids_result *R, proc_t *P)
// value the addr member
#define ADR_set(e,t,x) setDECL(e) { \
(void)I; R->result. t = (void *)P-> x; }
// convert pages to kib
#define CVT_set(e,t,x) setDECL(e) { \
R->result. t = (unsigned long)(P-> x) << I -> pgs2k_shift; }
// strdup of a static char array
#define DUP_set(e,x) setDECL(e) { \
(void)I; R->result.str = strdup(P-> x); }
// regular assignment copy
#define REG_set(e,t,x) setDECL(e) { \
(void)I; R->result. t = P-> x; }
// take ownership of a regular char* string
#define STR_set(e,x) setDECL(e) { \
(void)I; R->result.str = P-> x; P-> x = NULL; }
// take ownership of a vectorized single string
#define VEC_set(e,x) setDECL(e) { \
(void)I; R->result.str = (const char *)*P-> x; P-> x = NULL; }
ADR_set(ADDR_END_CODE, addr, end_code)
ADR_set(ADDR_KSTK_EIP, addr, kstk_eip)
ADR_set(ADDR_KSTK_ESP, addr, kstk_esp)
ADR_set(ADDR_START_CODE, addr, start_code)
ADR_set(ADDR_START_STACK, addr, start_stack)
REG_set(ALARM, sl_int, alarm)
VEC_set(CGROUP, cgroup)
STR_set(CMD, cmd)
VEC_set(CMDLINE, cmdline)
VEC_set(ENVIRON, environ)
REG_set(EXIT_SIGNAL, s_int, exit_signal)
REG_set(FLAGS, ul_int, flags)
REG_set(FLT_MAJ, ul_int, maj_flt)
REG_set(FLT_MAJ_C, ul_int, cmaj_flt)
REG_set(FLT_MAJ_DELTA, ul_int, maj_delta)
REG_set(FLT_MIN, ul_int, min_flt)
REG_set(FLT_MIN_C, ul_int, cmin_flt)
REG_set(FLT_MIN_DELTA, ul_int, min_delta)
REG_set(ID_EGID, u_int, egid)
REG_set(ID_EGROUP, str, egroup)
REG_set(ID_EUID, u_int, euid)
REG_set(ID_EUSER, str, euser)
REG_set(ID_FGID, u_int, fgid)
REG_set(ID_FGROUP, str, fgroup)
REG_set(ID_FUID, u_int, fuid)
REG_set(ID_FUSER, str, fuser)
REG_set(ID_PGRP, s_int, pgrp)
REG_set(ID_PID, s_int, tid)
REG_set(ID_PPID, s_int, ppid)
REG_set(ID_RGID, u_int, rgid)
REG_set(ID_RGROUP, str, rgroup)
REG_set(ID_RUID, u_int, ruid)
REG_set(ID_RUSER, str, ruser)
REG_set(ID_SESSION, s_int, session)
REG_set(ID_SGID, u_int, sgid)
REG_set(ID_SGROUP, str, sgroup)
REG_set(ID_SUID, u_int, suid)
REG_set(ID_SUSER, str, suser)
REG_set(ID_TGID, s_int, tgid)
REG_set(ID_TPGID, s_int, tpgid)
REG_set(LXCNAME, str, lxcname)
REG_set(MEM_CODE, sl_int, trs)
CVT_set(MEM_CODE_KIB, ul_int, trs)
REG_set(MEM_DATA, sl_int, drs)
CVT_set(MEM_DATA_KIB, ul_int, drs)
REG_set(MEM_DT, sl_int, dt)
REG_set(MEM_LRS, sl_int, lrs)
REG_set(MEM_RES, sl_int, resident)
CVT_set(MEM_RES_KIB, ul_int, resident)
REG_set(MEM_SHR, sl_int, share)
CVT_set(MEM_SHR_KIB, ul_int, share)
REG_set(MEM_VIRT, sl_int, size)
CVT_set(MEM_VIRT_KIB, ul_int, size)
REG_set(NICE, sl_int, nice)
REG_set(NLWP, s_int, nlwp)
REG_set(NS_IPC, ul_int, ns[0])
REG_set(NS_MNT, ul_int, ns[1])
REG_set(NS_NET, ul_int, ns[2])
REG_set(NS_PID, ul_int, ns[3])
REG_set(NS_USER, ul_int, ns[4])
REG_set(NS_UTS, ul_int, ns[5])
REG_set(OOM_ADJ, s_int, oom_adj)
REG_set(OOM_SCORE, s_int, oom_score)
REG_set(PRIORITY, s_int, priority)
REG_set(PROCESSOR, u_int, processor)
REG_set(RSS, sl_int, rss)
REG_set(RSS_RLIM, ul_int, rss_rlim)
REG_set(RTPRIO, ul_int, rtprio)
REG_set(SCHED_CLASS, ul_int, sched)
STR_set(SD_MACH, sd_mach)
STR_set(SD_OUID, sd_ouid)
STR_set(SD_SEAT, sd_seat)
STR_set(SD_SESS, sd_sess)
STR_set(SD_SLICE, sd_slice)
STR_set(SD_UNIT, sd_unit)
STR_set(SD_UUNIT, sd_uunit)
DUP_set(SIGBLOCKED, blocked)
DUP_set(SIGCATCH, sigcatch)
DUP_set(SIGIGNORE, sigignore)
DUP_set(SIGNALS, signal)
DUP_set(SIGPENDING, _sigpnd)
REG_set(STATE, s_ch, state)
STR_set(SUPGIDS, supgid)
STR_set(SUPGROUPS, supgrp)
setDECL(TICS_ALL) { (void)I; R->result.ull_int = P->utime + P->stime; }
setDECL(TICS_ALL_C) { (void)I; R->result.ull_int = P->utime + P->stime + P->cutime + P->cstime; }
REG_set(TICS_DELTA, u_int, pcpu)
REG_set(TICS_SYSTEM, ull_int, stime)
REG_set(TICS_SYSTEM_C, ull_int, cstime)
REG_set(TICS_USER, ull_int, utime)
REG_set(TICS_USER_C, ull_int, cutime)
REG_set(TIME_START, ull_int, start_time)
REG_set(TTY, s_int, tty)
REG_set(VM_DATA, ul_int, vm_data)
REG_set(VM_EXE, ul_int, vm_exe)
REG_set(VM_LIB, ul_int, vm_lib)
REG_set(VM_LOCK, ul_int, vm_lock)
REG_set(VM_RSS, ul_int, vm_rss)
REG_set(VM_SIZE, ul_int, vm_size)
REG_set(VM_STACK, ul_int, vm_stack)
REG_set(VM_SWAP, ul_int, vm_swap)
setDECL(VM_USED) { (void)I; R->result.ul_int = P->vm_swap + P->vm_rss; }
REG_set(VSIZE_PGS, ul_int, vsize)
ADR_set(WCHAN_ADDR, addr, wchan)
setDECL(WCHAN_NAME) { (void)I; R->result.str = strdup(lookup_wchan(P->tid)); }
setDECL(noop) { (void)I; (void)R; (void)P; return; }
setDECL(logical_end) { (void)I; (void)R; (void)P; return; }
setDECL(physical_end) { (void)I; (void)R; (void)P; return; }
#undef setDECL
#undef ADR_set
#undef CVT_set
#undef DUP_set
#undef REG_set
#undef STR_set
#undef VEC_set
// ___ Sorting Support ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
struct sort_parms {
int offset;
enum pids_sort_order order;
};
#define srtNAME(e) sort_results_ ## e
#define NUM_srt(T) static int srtNAME(T) ( \
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) { \
const struct pids_result *a = (*A)->head + P->offset; \
const struct pids_result *b = (*B)->head + P->offset; \
return P->order * (b->result. T - a->result. T); }
#define REG_srt(T) static int srtNAME(T) ( \
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) { \
const struct pids_result *a = (*A)->head + P->offset; \
const struct pids_result *b = (*B)->head + P->offset; \
if ( a->result. T > b->result. T ) return P->order > 0 ? -1 : 1; \
if ( a->result. T < b->result. T ) return P->order > 0 ? 1 : -1; \
return 0; }
NUM_srt(s_ch)
NUM_srt(s_int)
NUM_srt(sl_int)
REG_srt(u_int)
REG_srt(ul_int)
REG_srt(ull_int)
REG_srt(addr)
static int srtNAME(str) (
const struct pids_stack **A, const struct pids_stack **B, struct sort_parms *P) {
const struct pids_result *a = (*A)->head + P->offset;
const struct pids_result *b = (*B)->head + P->offset;
return P->order * strcoll(b->result.str, a->result.str);
}
static int srtNAME(noop) (
const struct pids_stack **A, const struct pids_stack **B, enum pids_item *O) {
(void)A; (void)B; (void)O;
return 0;
}
#undef NUM_srt
#undef REG_srt
// ___ Controlling Table ||||||||||||||||||||||||||||||||||||||||||||||||||||||
#define f_arg PROC_FILLARG // we don't use
// from either 'stat' or 'status' (preferred)
#define f_either PROC_SPARE_1
#define f_env PROC_FILLENV // we don't use
#define f_grp PROC_FILLGRP
#define f_lxc PROC_FILL_LXC
#define f_ns PROC_FILLNS
#define f_oom PROC_FILLOOM
#define f_stat PROC_FILLSTAT
#define f_statm PROC_FILLMEM
#define f_status PROC_FILLSTATUS
#define f_systemd PROC_FILLSYSTEMD
#define f_usr PROC_FILLUSR
// remaining are compound flags, yielding single string
#define x_cgroup PROC_EDITCGRPCVT | PROC_FILLCGROUP // just 1 str
#define x_cmdline PROC_EDITCMDLCVT | PROC_FILLARG // just 1 str
#define x_environ PROC_EDITENVRCVT | PROC_FILLENV // just 1 str
#define x_ogroup PROC_FILLSTATUS | PROC_FILLGRP
#define x_ouser PROC_FILLSTATUS | PROC_FILLUSR
#define x_supgrp PROC_FILLSTATUS | PROC_FILLSUPGRP
typedef void (*SET_t)(struct procps_pidsinfo *, struct pids_result *, proc_t *);
typedef int (*QSR_t)(const void *, const void *, void *);
#define RS(e) (SET_t)setNAME(e)
#define QS(t) (QSR_t)srtNAME(t)
/*
* Need it be said?
* This table must be kept in the exact same order as
* those 'enum pids_item' guys ! */
static struct {
SET_t function; // the actual result setting routine
unsigned oldflags; // PROC_FILLxxxx flags for this item
int mustfree; // free is needed for string storage
QSR_t callback; // sort cmp func for a specific type
int makehist; // a result requires history support
} Item_table[] = {
/* function oldflags mustfree callback makehist
--------------------- ---------- -------- ------------ -------- */
{ RS(ADDR_END_CODE), f_stat, 0, QS(addr), 0 },
{ RS(ADDR_KSTK_EIP), f_stat, 0, QS(addr), 0 },
{ RS(ADDR_KSTK_ESP), f_stat, 0, QS(addr), 0 },
{ RS(ADDR_START_CODE), f_stat, 0, QS(addr), 0 },
{ RS(ADDR_START_STACK), f_stat, 0, QS(addr), 0 },
{ RS(ALARM), f_stat, 0, QS(sl_int), 0 },
{ RS(CGROUP), x_cgroup, -1, QS(str), 0 },
{ RS(CMD), f_either, -1, QS(str), 0 },
{ RS(CMDLINE), x_cmdline, -1, QS(str), 0 },
{ RS(ENVIRON), x_environ, -1, QS(str), 0 },
{ RS(EXIT_SIGNAL), f_stat, 0, QS(s_int), 0 },
{ RS(FLAGS), f_stat, 0, QS(ul_int), 0 },
{ RS(FLT_MAJ), f_stat, 0, QS(ul_int), 0 },
{ RS(FLT_MAJ_C), f_stat, 0, QS(ul_int), 0 },
{ RS(FLT_MAJ_DELTA), f_stat, 0, QS(ul_int), -1 },
{ RS(FLT_MIN), f_stat, 0, QS(ul_int), 0 },
{ RS(FLT_MIN_C), f_stat, 0, QS(ul_int), 0 },
{ RS(FLT_MIN_DELTA), f_stat, 0, QS(ul_int), -1 },
{ RS(ID_EGID), 0, 0, QS(u_int), 0 },
{ RS(ID_EGROUP), f_grp, 0, QS(str), 0 },
{ RS(ID_EUID), 0, 0, QS(u_int), 0 },
{ RS(ID_EUSER), f_usr, 0, QS(str), 0 },
{ RS(ID_FGID), f_status, 0, QS(u_int), 0 },
{ RS(ID_FGROUP), x_ogroup, 0, QS(str), 0 },
{ RS(ID_FUID), f_status, 0, QS(u_int), 0 },
{ RS(ID_FUSER), x_ouser, 0, QS(str), 0 },
{ RS(ID_PGRP), f_stat, 0, QS(s_int), 0 },
{ RS(ID_PID), 0, 0, QS(s_int), 0 },
{ RS(ID_PPID), f_either, 0, QS(s_int), 0 },
{ RS(ID_RGID), f_status, 0, QS(u_int), 0 },
{ RS(ID_RGROUP), x_ogroup, 0, QS(str), 0 },
{ RS(ID_RUID), f_status, 0, QS(u_int), 0 },
{ RS(ID_RUSER), x_ouser, 0, QS(str), 0 },
{ RS(ID_SESSION), f_stat, 0, QS(s_int), 0 },
{ RS(ID_SGID), f_status, 0, QS(u_int), 0 },
{ RS(ID_SGROUP), x_ogroup, 0, QS(str), 0 },
{ RS(ID_SUID), f_status, 0, QS(u_int), 0 },
{ RS(ID_SUSER), x_ouser, 0, QS(str), 0 },
{ RS(ID_TGID), f_status, 0, QS(s_int), 0 },
{ RS(ID_TPGID), f_stat, 0, QS(s_int), 0 },
{ RS(LXCNAME), f_lxc, 0, QS(str), 0 },
{ RS(MEM_CODE), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_CODE_KIB), f_statm, 0, QS(ul_int), 0 },
{ RS(MEM_DATA), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_DATA_KIB), f_statm, 0, QS(ul_int), 0 },
{ RS(MEM_DT), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_LRS), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_RES), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_RES_KIB), f_statm, 0, QS(ul_int), 0 },
{ RS(MEM_SHR), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_SHR_KIB), f_statm, 0, QS(ul_int), 0 },
{ RS(MEM_VIRT), f_statm, 0, QS(sl_int), 0 },
{ RS(MEM_VIRT_KIB), f_statm, 0, QS(ul_int), 0 },
{ RS(NICE), f_stat, 0, QS(sl_int), 0 },
{ RS(NLWP), f_either, 0, QS(s_int), 0 },
{ RS(NS_IPC), f_ns, 0, QS(ul_int), 0 },
{ RS(NS_MNT), f_ns, 0, QS(ul_int), 0 },
{ RS(NS_NET), f_ns, 0, QS(ul_int), 0 },
{ RS(NS_PID), f_ns, 0, QS(ul_int), 0 },
{ RS(NS_USER), f_ns, 0, QS(ul_int), 0 },
{ RS(NS_UTS), f_ns, 0, QS(ul_int), 0 },
{ RS(OOM_ADJ), f_oom, 0, QS(s_int), 0 },
{ RS(OOM_SCORE), f_oom, 0, QS(s_int), 0 },
{ RS(PRIORITY), f_stat, 0, QS(s_int), 0 },
{ RS(PROCESSOR), f_stat, 0, QS(u_int), 0 },
{ RS(RSS), f_stat, 0, QS(sl_int), 0 },
{ RS(RSS_RLIM), f_stat, 0, QS(ul_int), 0 },
{ RS(RTPRIO), f_stat, 0, QS(ul_int), 0 },
{ RS(SCHED_CLASS), f_stat, 0, QS(ul_int), 0 },
{ RS(SD_MACH), f_systemd, -1, QS(str), 0 },
{ RS(SD_OUID), f_systemd, -1, QS(str), 0 },
{ RS(SD_SEAT), f_systemd, -1, QS(str), 0 },
{ RS(SD_SESS), f_systemd, -1, QS(str), 0 },
{ RS(SD_SLICE), f_systemd, -1, QS(str), 0 },
{ RS(SD_UNIT), f_systemd, -1, QS(str), 0 },
{ RS(SD_UUNIT), f_systemd, -1, QS(str), 0 },
{ RS(SIGBLOCKED), f_status, -1, QS(str), 0 },
{ RS(SIGCATCH), f_status, -1, QS(str), 0 },
{ RS(SIGIGNORE), f_status, -1, QS(str), 0 },
{ RS(SIGNALS), f_status, -1, QS(str), 0 },
{ RS(SIGPENDING), f_status, -1, QS(str), 0 },
{ RS(STATE), f_either, 0, QS(s_ch), 0 },
{ RS(SUPGIDS), f_status, -1, QS(str), 0 },
{ RS(SUPGROUPS), x_supgrp, -1, QS(str), 0 },
{ RS(TICS_ALL), f_stat, 0, QS(ull_int), 0 },
{ RS(TICS_ALL_C), f_stat, 0, QS(ull_int), 0 },
{ RS(TICS_DELTA), f_stat, 0, QS(u_int), -1 },
{ RS(TICS_SYSTEM), f_stat, 0, QS(ull_int), 0 },
{ RS(TICS_SYSTEM_C), f_stat, 0, QS(ull_int), 0 },
{ RS(TICS_USER), f_stat, 0, QS(ull_int), 0 },
{ RS(TICS_USER_C), f_stat, 0, QS(ull_int), 0 },
{ RS(TIME_START), f_stat, 0, QS(ull_int), 0 },
{ RS(TTY), f_stat, 0, QS(s_int), 0 },
{ RS(VM_DATA), f_status, 0, QS(ul_int), 0 },
{ RS(VM_EXE), f_status, 0, QS(ul_int), 0 },
{ RS(VM_LIB), f_status, 0, QS(ul_int), 0 },
{ RS(VM_LOCK), f_status, 0, QS(ul_int), 0 },
{ RS(VM_RSS), f_status, 0, QS(ul_int), 0 },
{ RS(VM_SIZE), f_status, 0, QS(ul_int), 0 },
{ RS(VM_STACK), f_status, 0, QS(ul_int), 0 },
{ RS(VM_SWAP), f_status, 0, QS(ul_int), 0 },
{ RS(VM_USED), f_status, 0, QS(ul_int), 0 },
{ RS(VSIZE_PGS), f_stat, 0, QS(ul_int), 0 },
{ RS(WCHAN_ADDR), f_stat, 0, QS(addr), 0 },
{ RS(WCHAN_NAME), 0, -1, QS(str), 0 },
{ RS(noop), 0, 0, QS(noop), 0 },
{ RS(logical_end), 0, 0, QS(noop), 0 },
{ RS(physical_end), 0, 0, QS(noop), 0 }
};
#undef RS
#undef QS
#undef srtNAME
#undef setNAME
#undef f_arg
//#undef f_either // needed later
#undef f_env
#undef f_grp
#undef f_lxc
#undef f_ns
#undef f_oom
//#undef f_stat // needed later
#undef f_statm
//#undef f_status // needed later
#undef f_systemd
#undef f_usr
#undef x_cgroup
#undef x_cmdline
#undef x_environ
#undef x_ogroup
#undef x_ouser
#undef x_supgrp
// ___ History Support Private Functions ||||||||||||||||||||||||||||||||||||||
// ( stolen from top when he wasn't looking ) -------------------------------
#define HHASH_SIZE 1024
#define _HASH_PID_(K) (K & (HHASH_SIZE - 1))
#define Hr(x) info->hist->x // 'hist ref', minimize stolen impact
typedef unsigned long long TIC_t;
typedef struct HST_t {
TIC_t tics; // last frame's tics count
unsigned long maj, min; // last frame's maj/min_flt counts
int pid; // record 'key'
int lnk; // next on hash chain
} HST_t;
struct history_info {
int num_tasks; // used as index (tasks tallied)
int HHist_siz; // max number of HST_t structs
HST_t *PHist_sav; // alternating 'old/new' HST_t anchors
HST_t *PHist_new;
int HHash_one [HHASH_SIZE]; // the actual hash tables
int HHash_two [HHASH_SIZE]; // (accessed via PHash_sav/PHash_new)
int HHash_nul [HHASH_SIZE]; // an 'empty' hash table image
int *PHash_sav; // alternating 'old/new' hash tables
int *PHash_new; // (aka. the 'one/two' actual tables)
};
static void config_history (
struct procps_pidsinfo *info)
{
int i;
for (i = 0; i < HHASH_SIZE; i++) // make the 'empty' table image
Hr(HHash_nul[i]) = -1;
memcpy(Hr(HHash_one), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
memcpy(Hr(HHash_two), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
Hr(PHash_sav) = Hr(HHash_one); // alternating 'old/new' hash tables
Hr(PHash_new) = Hr(HHash_two);
} // end: config_history
static inline HST_t *histget (
struct procps_pidsinfo *info,
int pid)
{
int V = Hr(PHash_sav[_HASH_PID_(pid)]);
while (-1 < V) {
if (Hr(PHist_sav[V].pid) == pid)
return &Hr(PHist_sav[V]);
V = Hr(PHist_sav[V].lnk); }
return NULL;
} // end: histget
static inline void histput (
struct procps_pidsinfo *info,
unsigned this)
{
int V = _HASH_PID_(Hr(PHist_new[this].pid));
Hr(PHist_new[this].lnk) = Hr(PHash_new[V]);
Hr(PHash_new[V] = this);
} // end: histput
#undef _HASH_PID_
static int make_hist (
struct procps_pidsinfo *info,
proc_t *p)
{
#define slot info->hist->num_tasks
TIC_t tics;
HST_t *h;
if (slot + 1 >= Hr(HHist_siz)) {
Hr(HHist_siz) = Hr(HHist_siz) * 5 / 4 + 100;
Hr(PHist_sav) = realloc(Hr(PHist_sav), sizeof(HST_t) * Hr(HHist_siz));
Hr(PHist_new) = realloc(Hr(PHist_new), sizeof(HST_t) * Hr(HHist_siz));
if (!Hr(PHist_sav || !Hr(PHist_new)))
return -ENOMEM;
}
Hr(PHist_new[slot].pid) = p->tid;
Hr(PHist_new[slot].tics) = tics = (p->utime + p->stime);
Hr(PHist_new[slot].maj) = p->maj_flt;
Hr(PHist_new[slot].min) = p->min_flt;
histput(info, slot);
if ((h = histget(info, p->tid))) {
tics -= h->tics;
p->maj_delta = p->maj_flt - h->maj;
p->min_delta = p->min_flt - h->min;
}
p->pcpu = tics;
slot++;
return 0;
#undef slot
} // end: make_hist
static inline void toggle_history (
struct procps_pidsinfo *info)
{
void *v;
v = Hr(PHist_sav);
Hr(PHist_sav) = Hr(PHist_new);
Hr(PHist_new) = v;
v = Hr(PHash_sav);
Hr(PHash_sav) = Hr(PHash_new);
Hr(PHash_new) = v;
memcpy(Hr(PHash_new), Hr(HHash_nul), sizeof(Hr(HHash_nul)));
info->hist->num_tasks = 0;
} // end: toggle_history
#ifdef UNREF_RPTHASH
static void unref_rpthash (
struct procps_pidsinfo *info)
{
int i, j, pop, total_occupied, maxdepth, maxdepth_sav, numdepth
, cross_foot, sz = HHASH_SIZE * (unsigned)sizeof(int);
int depths[HHASH_SIZE];
for (i = 0, total_occupied = 0, maxdepth = 0; i < HHASH_SIZE; i++) {
int V = Hr(PHash_new[i]);
j = 0;
if (-1 < V) {
++total_occupied;
while (-1 < V) {
V = Hr(PHist_new[V].lnk);
if (-1 < V) j++;
}
}
depths[i] = j;
if (maxdepth < j) maxdepth = j;
}
maxdepth_sav = maxdepth;
fprintf(stderr,
"\n Supplementary HASH report:"
"\n\tTwo Tables providing for %d entries each + 1 extra for 'empty' image"
"\n\t%dk (%d bytes) per table, %d total bytes (including 'empty' image)"
"\n\tResults from latest hash (PHash_new + PHist_new)..."
"\n"
"\n\tTotal hashed = %d"
"\n\tLevel-0 hash entries = %d (%d%% occupied)"
"\n\tMax Depth = %d"
"\n\n"
, HHASH_SIZE, sz / 1024, sz, sz * 3
, info->hist->num_tasks
, total_occupied, (total_occupied * 100) / HHASH_SIZE
, maxdepth + 1);
if (total_occupied) {
for (pop = total_occupied, cross_foot = 0; maxdepth; maxdepth--) {
for (i = 0, numdepth = 0; i < HHASH_SIZE; i++)
if (depths[i] == maxdepth) ++numdepth;
fprintf(stderr,
"\t %5d (%3d%%) hash table entries at depth %d\n"
, numdepth, (numdepth * 100) / total_occupied, maxdepth + 1);
pop -= numdepth;
cross_foot += numdepth;
if (0 == pop && cross_foot == total_occupied) break;
}
if (pop) {
fprintf(stderr, "\t %5d (%3d%%) unchained hash table entries\n"
, pop, (pop * 100) / total_occupied);
cross_foot += pop;
}
fprintf(stderr,
"\t -----\n"
"\t %5d total entries occupied\n", cross_foot);
if (maxdepth_sav) {
fprintf(stderr, "\n PIDs at max depth: ");
for (i = 0; i < HHASH_SIZE; i++)
if (depths[i] == maxdepth_sav) {
j = Hr(PHash_new[i]);
fprintf(stderr, "\n\tpos %4d: %05d", i, Hr(PHist_new[j].pid));
while (-1 < j) {
j = Hr(PHist_new[j].lnk);
if (-1 < j) fprintf(stderr, ", %05d", Hr(PHist_new[j].pid));
}
}
fprintf(stderr, "\n");
}
}
} // end: unref_rpthash
#endif // UNREF_RPTHASH
#undef HHASH_SIZE
// ___ Standard Private Functions |||||||||||||||||||||||||||||||||||||||||||||
static inline void assign_results (
struct procps_pidsinfo *info,
struct pids_stack *stack,
proc_t *p)
{
struct pids_result *this = stack->head;
for (;;) {
enum pids_item item = this->item;
if (item >= PROCPS_PIDS_logical_end)
break;
Item_table[item].function(info, this, p);
++this;
}
return;
} // end: assign_results
static inline void cleanup_stack (
struct pids_result *p,
int depth)
{
int i;
for (i = 0; i < depth; i++) {
if (p->item < PROCPS_PIDS_noop) {
if (Item_table[p->item].mustfree && p->result.str)
free((void*)p->result.str);
if (p->item < PROCPS_PIDS_noop)
p->result.ull_int = 0;
}
++p;
}
} // end: cleanup_stack
static inline void cleanup_stacks_all (
struct procps_pidsinfo *info)
{
struct stacks_extent *ext = info->extents;
int i;
while (ext) {
for (i = 0; ext->stacks[i]; i++)
cleanup_stack(ext->stacks[i]->head, info->maxitems);
ext = ext->next;
};
info->dirty_stacks = 0;
} // end: cleanup_stacks_all
static int free_extent (
struct procps_pidsinfo *info,
struct stacks_extent *ext)
{
struct stacks_extent *p = info->extents;
if (ext) {
if (ext == p) {
info->extents = p->next;
free(ext);
return 0;
}
do {
if (ext == p->next) {
p->next = p->next->next;
free(ext);
return 0;
}
p = p->next;
} while (p);
}
return -1;
} // end: free_extent
static int items_check_failed (
int maxitems,
enum pids_item *items)
{
int i;
for (i = 0; i < maxitems; i++) {
if (items[i] < 0)
return -1;
if (items[i] > PROCPS_PIDS_noop) {
return -1;
}
}
return 0;
} // end: items_check_failed
static inline void libflags_set (
struct procps_pidsinfo *info)
{
int i;
info->flags = info->history_yes = 0;
for (i = 0; i < info->curitems; i++) {
info->flags |= Item_table[info->items[i]].oldflags;
info->history_yes |= Item_table[info->items[i]].makehist;
}
if (info->flags & f_either) {
if (!(info->flags & f_stat))
info->flags |= f_status;
}
return;
} // end: libflags_set
static inline void oldproc_close (
struct procps_pidsinfo *info)
{
if (info->PT != NULL) {
closeproc(info->PT);
info->PT = NULL;
}
return;
} // end: oldproc_close
static inline int oldproc_open (
struct procps_pidsinfo *info,
int supp_flgs,
...)
{
va_list vl;
int *ids;
if (info->PT == NULL) {
va_start(vl, supp_flgs);
ids = va_arg(vl, int*);
va_end(vl);
if (NULL == (info->PT = openproc(info->flags | supp_flgs, ids)))
return 0;
}
return 1;
} // end: oldproc_open
static inline struct pids_result *stack_itemize (
struct pids_result *p,
int depth,
enum pids_item *items)
{
struct pids_result *p_sav = p;
int i;
for (i = 0; i < depth; i++) {
p->item = items[i];
p->result.ull_int = 0;
++p;
}
return p_sav;
} // end: stack_itemize
static inline int tally_proc (
struct procps_pidsinfo *info,
struct pids_counts *counts,
proc_t *p)
{
switch (p->state) {
case 'R':
++counts->running;
break;
case 'S':
case 'D':
++counts->sleeping;
break;
case 'T':
++counts->stopped;
break;
case 'Z':
++counts->zombied;
break;
default: // keep gcc happy
break;
}
++counts->total;
if (info->history_yes)
return !make_hist(info, p);
return 1;
} // end: tally_proc
static void validate_stacks (
void *stacks,
const char *who)
{
#if 0
#include <stdio.h>
static int once = 0;
struct stacks_extent *ext = (struct stacks_extent *)stacks;
int i, t, x, n = 0;
fprintf(stderr, " %s: called by '%s'\n", __func__, who);
fprintf(stderr, " %s: ext_numitems = %d, ext_numstacks = %d, extents = %p, next = %p\n", __func__, ext->ext_numitems, ext->ext_numstacks, ext, ext->next);
fprintf(stderr, " %s: stacks_extent results excluding the end-of-stack element ...\n", __func__);
for (x = 0; NULL != ext->stacks[x]; x++) {
struct pids_stack *h = ext->stacks[x];
struct pids_result *r = h->head;
fprintf(stderr, " %s: v[%03d] = %p, h = %p, fill_id #%-5u", __func__, x, h, r, (unsigned)h->fill_id);
for (i = 0; r->item < PROCPS_PIDS_logical_end; i++, r++)
;
t = i + 1;
fprintf(stderr, " - found %d elements for stack %d\n", i, n);
++n;
}
if (!once) {
fprintf(stderr, " %s: found %d total stack(s), each %d bytes (including eos)\n", __func__, x, (int)(sizeof(struct pids_stack) + (sizeof(struct pids_result) * t)));
fprintf(stderr, " %s: sizeof(struct pids_stack) = %d\n", __func__, (int)sizeof(struct pids_stack));
fprintf(stderr, " %s: sizeof(struct pids_result) = %d\n", __func__, (int)sizeof(struct pids_result));
fprintf(stderr, " %s: sizeof(struct stacks_extent) = %d\n", __func__, (int)sizeof(struct stacks_extent));
once = 1;
}
fputc('\n', stderr);
return;
#endif
} // end: validate_stacks
// ___ Public Functions |||||||||||||||||||||||||||||||||||||||||||||||||||||||
/*
* procps_pids_new():
*
* @info: location of returned new structure
*
* Returns: 0 on success <0 on failure
*/
PROCPS_EXPORT int procps_pids_new (
struct procps_pidsinfo **info,
int maxitems,
enum pids_item *items)
{
struct procps_pidsinfo *p;
int pgsz;
if (info == NULL || *info != NULL)
return -EINVAL;
if (items_check_failed(maxitems, items))
return -EINVAL;
if (!(p = calloc(1, sizeof(struct procps_pidsinfo))))
return -ENOMEM;
// allow for our PROCPS_PIDS_physical_end
if (!(p->items = calloc((maxitems + 1), sizeof(enum pids_item)))) {
free(p);
return -ENOMEM;
}
if (!(p->hist = calloc((maxitems + 1), sizeof(struct history_info)))) {
free(p->items);
free(p);
return -ENOMEM;
}
memcpy(p->items, items, sizeof(enum pids_item) * maxitems);
p->items[maxitems] = PROCPS_PIDS_physical_end;
p->curitems = p->maxitems = maxitems + 1;
libflags_set(p);
pgsz = getpagesize();
while (pgsz > 1024) { pgsz >>= 1; p->pgs2k_shift++; }
config_history(p);
p->refcount = 1;
*info = p;
return 0;
} // end: procps_pids_new
/* procps_pids_reap():
*
* Harvest all the available tasks/threads and provide the result
* stacks along with a summary of the information gathered.
*
* Returns: pointer to a pids_reap struct on success, NULL on error.
*/
PROCPS_EXPORT struct pids_reap *procps_pids_reap (
struct procps_pidsinfo *info,
enum pids_reap_type which)
{
#define amtGROW 256
#define n_alloc info->alloc_total
#define n_inuse info->inuse_total
static proc_t task; // static for initial zeroes + later dynamic free(s)
proc_t*(*read_something)(PROCTAB*, proc_t*);
struct pids_stacks *ext;
int n_save = n_alloc;
if (!info->anchor) {
if (!(info->anchor = calloc(sizeof(void*), amtGROW)))
return NULL;
if (!(ext = procps_pids_stacks_alloc(info, amtGROW)))
return NULL;
memcpy(info->anchor, ext->stacks, sizeof(void*) * amtGROW);
if (!(info->reap.reaped.stacks = calloc(sizeof(void*), amtGROW)))
return NULL;
n_save = info->alloc_total = amtGROW;
}
if (info->dirty_stacks)
cleanup_stacks_all(info);
memset(&info->reap.counts, 0, sizeof(struct pids_counts));
read_something = which ? readeither : readproc;
if (!oldproc_open(info, 0))
return NULL;
toggle_history(info);
for (n_inuse = 0; ; n_inuse++) {
if (n_inuse == n_alloc) {
n_alloc += amtGROW;
if (!(info->anchor = realloc(info->anchor, sizeof(void*) * n_alloc)))
return NULL;
if (!(ext = procps_pids_stacks_alloc(info, amtGROW)))
return NULL;
memcpy(info->anchor + n_inuse, ext->stacks, sizeof(void*) * amtGROW);
}
if (NULL == read_something(info->PT, &task))
break;
if (!tally_proc(info, &info->reap.counts, &task))
return NULL;
assign_results(info, info->anchor[n_inuse], &task);
}
oldproc_close(info);
if (n_save != n_alloc
&& !(info->reap.reaped.stacks = realloc(info->reap.reaped.stacks, sizeof(void*) * n_alloc)))
return NULL;
memcpy(info->reap.reaped.stacks, info->anchor, sizeof(void*) * n_alloc);
info->dirty_stacks = 1;
return &info->reap;
#undef n_alloc
#undef n_inuse
#undef amtGROW
} // end: procps_pids_reap
PROCPS_EXPORT int procps_pids_ref (
struct procps_pidsinfo *info)
{
if (info == NULL)
return -EINVAL;
info->refcount++;
return info->refcount;
} // end: procps_pids_ref
PROCPS_EXPORT int procps_pids_reset (
struct procps_pidsinfo *info,
int newmaxitems,
enum pids_item *newitems)
{
struct stacks_extent *ext;
int i;
if (info == NULL)
return -EINVAL;
/* disallow (for now?) absolute increases in stacks size
( users must 'unref' and then 'new' to achieve that ) */
if (newmaxitems + 1 > info->maxitems)
return -EINVAL;
if (items_check_failed(newmaxitems, newitems))
return -EINVAL;
/* shame on this caller, they didn't change anything - but they might have
shortened their stacks. yet we cannot reposition their logical_end enum
lest we overlay some string result that would never be freed, let alone
all those strings that could follow it. so here's the deal, this caller
will just have to suffer the additional overhead of retrieving unneeded
results until they offer us a real, properly formatted 'reset' request! */
if (info->curitems == newmaxitems + 1
&& !memcmp(info->items, newitems, sizeof(enum pids_item) * newmaxitems))
return 0;
if (info->dirty_stacks)
cleanup_stacks_all(info);
memcpy(info->items, newitems, sizeof(enum pids_item) * newmaxitems);
info->items[newmaxitems] = PROCPS_PIDS_logical_end;
// account for above PROCPS_PIDS_logical_end
info->curitems = newmaxitems + 1;
ext = info->extents;
while (ext) {
for (i = 0; ext->stacks[i]; i++)
stack_itemize(ext->stacks[i]->head, info->curitems, info->items);
validate_stacks(ext, __func__);
ext = ext->next;
};
libflags_set(info);
return 0;
} // end: procps_pids_reset
/*
* procps_pids_stacks_alloc():
*
* Allocate and initialize one or more stacks each of which is anchored in an
* associated pids_stack structure (which may include extra user space).
*
* All such stacks will will have their result structures properly primed with
* 'items', while the result itself will be zeroed.
*
* Returns an array of pointers representing the 'heads' of each new stack.
*/
PROCPS_EXPORT struct pids_stacks *procps_pids_stacks_alloc (
struct procps_pidsinfo *info,
int maxstacks)
{
struct stacks_extent *p_blob;
struct pids_stack **p_vect;
struct pids_stack *p_head;
size_t vect_size, head_size, list_size, blob_size;
void *v_head, *v_list;
int i;
if (info == NULL || info->items == NULL)
return NULL;
if (maxstacks < 1)
return NULL;
vect_size = sizeof(void *) * maxstacks; // address vectors themselves
vect_size += sizeof(void *); // plus NULL delimiter
head_size = sizeof(struct pids_stack); // a head struct
list_size = sizeof(struct pids_result) * info->maxitems; // a results stack
blob_size = sizeof(struct stacks_extent); // the extent anchor itself
blob_size += vect_size; // all vectors + delim
blob_size += head_size * maxstacks; // all head structs
blob_size += list_size * maxstacks; // all results stacks
/* note: all memory is allocated in a single blob, facilitating a later free().
as a minimum, it's important that the result structures themselves always be
contiguous for any given stack (just as they are when defined statically). */
if (NULL == (p_blob = calloc(1, blob_size)))
return NULL;
p_blob->next = info->extents;
info->extents = p_blob;
p_blob->stacks = (void *)p_blob + sizeof(struct stacks_extent);
p_vect = p_blob->stacks;
v_head = (void *)p_vect + vect_size;
v_list = v_head + (head_size * maxstacks);
for (i = 0; i < maxstacks; i++) {
p_head = (struct pids_stack *)v_head;
p_head->head = stack_itemize((struct pids_result *)v_list, info->curitems, info->items);
p_blob->stacks[i] = p_head;
v_list += list_size;
v_head += head_size;
}
p_blob->ext_numitems = info->maxitems;
p_blob->ext_numstacks = maxstacks;
validate_stacks(p_blob, __func__);
return (struct pids_stacks *)p_blob;
} // end: procps_pids_stacks_alloc
PROCPS_EXPORT int procps_pids_stacks_dealloc (
struct procps_pidsinfo *info,
struct pids_stacks **these)
{
struct stacks_extent *ext;
if (info == NULL || these == NULL)
return -EINVAL;
if ((*these)->stacks == NULL || (*these)->stacks[0] == NULL)
return -EINVAL;
ext = (struct stacks_extent *)(*these);
int rc = free_extent(info, ext);
*these = NULL;
return rc;
} // end: procps_pids_stacks_dealloc
PROCPS_EXPORT struct pids_counts *procps_pids_stacks_fill (
struct procps_pidsinfo *info,
struct pids_stacks *these,
int maxstacks,
enum pids_fill_type which)
{
static proc_t task; // static for initial zeroes + later dynamic free(s)
unsigned ids[FILL_ID_MAX + 1];
int i;
if (info == NULL || these == NULL)
return NULL;
if (these->stacks == NULL || these->stacks[0] == NULL)
return NULL;
if (which != PROCPS_FILL_PID && which != PROCPS_FILL_UID)
return NULL;
if (maxstacks < 1 || maxstacks > FILL_ID_MAX)
return NULL;
for (i = 0; i < maxstacks; i++) {
if (these->stacks[i] == NULL)
break;
ids[i] = these->stacks[i]->fill_id;
}
ids[i] = 0;
if (info->dirty_stacks)
cleanup_stacks_all(info);
memset(&info->counts, 0, sizeof(struct pids_counts));
if (!oldproc_open(info, which, ids, i))
return NULL;
toggle_history(info);
for (i = 0; i < maxstacks; i++) {
if (these->stacks[i] == NULL)
break;
if (!readproc(info->PT, &task))
break;
if (!tally_proc(info, &info->counts, &task)) {
oldproc_close(info);
return NULL;
}
assign_results(info, these->stacks[i], &task);
}
oldproc_close(info);
info->dirty_stacks = 1;
validate_stacks(these, __func__);
return &info->counts;
} // end: procps_pids_stacks_fill
/*
* procps_pids_stacks_sort():
*
* Sort stacks anchored in the passed pids_stack pointers array
* based on the designated sort enumerator and specified order.
*
* Returns those same addresses sorted.
*
* Note: all of the stacks must be homogeneous (of equal length and content).
*/
PROCPS_EXPORT struct pids_stack **procps_pids_stacks_sort (
struct procps_pidsinfo *info,
struct pids_stack **stacks,
int numstacked,
enum pids_item sort,
enum pids_sort_order order)
{
struct sort_parms parms;
struct pids_result *p;
int offset;
if (info == NULL || stacks == NULL)
return NULL;
if (sort < 0 || sort > PROCPS_PIDS_noop)
return NULL;
if (order < -1 || order > +1)
return NULL;
if (numstacked < 2)
return stacks;
offset = 0;
p = stacks[0]->head;
for (;;) {
if (p->item == sort)
break;
++offset;
if (offset >= info->curitems)
return NULL;
if (p->item > PROCPS_PIDS_noop)
return NULL;
++p;
}
parms.offset = offset;
parms.order = order;
qsort_r(stacks, numstacked, sizeof(void *), (QSR_t)Item_table[p->item].callback, &parms);
return stacks;
} // end: procps_pids_stacks_sort
PROCPS_EXPORT int procps_pids_unref (
struct procps_pidsinfo **info)
{
if (info == NULL || *info == NULL)
return -EINVAL;
(*info)->refcount--;
if ((*info)->refcount == 0) {
#ifdef UNREF_RPTHASH
unref_rpthash(*info);
#endif
if ((*info)->extents) {
cleanup_stacks_all(*info);
do {
struct stacks_extent *p = (*info)->extents;
(*info)->extents = (*info)->extents->next;
free(p);
} while ((*info)->extents);
}
if ((*info)->reap.reaped.stacks)
free((*info)->reap.reaped.stacks);
if ((*info)->anchor)
free((*info)->anchor);
if ((*info)->items)
free((*info)->items);
if ((*info)->hist) {
free((*info)->hist->PHist_sav);
free((*info)->hist->PHist_new);
free((*info)->hist);
}
free(*info);
*info = NULL;
return 0;
}
return (*info)->refcount;
} // end: procps_pids_unref