procps/proc/meminfo.c
Jim Warner ae4b686745 library: eliminate extra stack header space provisions
With the new perspective on potential uses of a 'noop'
enumerator (or whatever we decide to call it) there is
no longer a need to provide for any extra 'user' space
in the stack header structures used by slab & meminfo.

Signed-off-by: Jim Warner <james.warner@comcast.net>
2015-07-23 22:31:50 +10:00

564 lines
18 KiB
C

/*
* meminfo - Memory statistics part of procps
*
* Copyright (C) 1992-1998 by Michael K. Johnson <johnsonm@redhat.com>
* Copyright (C) 1998-2003 Albert Cahalan
* Copyright (C) 2015 Craig Small <csmall@enc.com.au>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <proc/meminfo.h>
#include "procps-private.h"
#define MEMINFO_FILE "/proc/meminfo"
struct meminfo_data {
unsigned long active;
unsigned long inactive;
unsigned long high_free;
unsigned long high_total;
unsigned long low_free;
unsigned long low_total;
unsigned long available;
unsigned long buffers;
unsigned long cached;
unsigned long free;
unsigned long shared;
unsigned long total;
unsigned long used;
unsigned long slab;
unsigned long swap_free;
unsigned long swap_total;
unsigned long swap_used;
};
struct procps_meminfo {
int refcount;
int meminfo_fd;
struct meminfo_data data;
struct stacks_anchor *stacked;
};
struct stack_vectors {
struct stacks_anchor *owner;
struct meminfo_stack **heads;
};
struct stacks_anchor {
int depth;
struct stack_vectors *vectors;
struct stacks_anchor *self;
struct stacks_anchor *next;
};
/*
* procps_meminfo_new():
*
* Create a new container to hold the meminfo information
*
* The initial refcount is 1, and needs to be decremented
* to release the resources of the structure.
*
* Returns: a new meminfo info container
*/
PROCPS_EXPORT int procps_meminfo_new (
struct procps_meminfo **info)
{
struct procps_meminfo *m;
m = calloc(1, sizeof(struct procps_meminfo));
if (!m)
return -ENOMEM;
m->refcount = 1;
m->meminfo_fd = -1;
*info = m;
return 0;
}
/*
* procps_meminfo_read():
*
* Read the data out of /proc/meminfo putting the information
* into the supplied info structure
*/
PROCPS_EXPORT int procps_meminfo_read (
struct procps_meminfo *info)
{
char buf[8192];
char *head, *tail;
int size;
unsigned long *valptr;
signed long mem_used;
if (info == NULL)
return -1;
memset(&(info->data), 0, sizeof(struct meminfo_data));
/* read in the data */
if (-1 == info->meminfo_fd && (info->meminfo_fd = open(MEMINFO_FILE, O_RDONLY)) == -1) {
return -errno;
}
if (lseek(info->meminfo_fd, 0L, SEEK_SET) == -1) {
return -errno;
}
for (;;) {
if ((size = read(info->meminfo_fd, buf, sizeof(buf)-1)) < 0) {
if (errno == EINTR || errno == EAGAIN)
continue;
return -errno;
}
break;
}
if (size == 0)
return 0;
buf[size] = '\0';
/* Scan the file */
head = buf;
do {
tail = strchr(head, ' ');
if (!tail)
break;
*tail = '\0';
valptr = NULL;
switch (*head) {
case 'A':
if (0 == strcmp(head, "Active:"))
valptr = &(info->data.active);
break;
case 'B':
if (0 == strcmp(head, "Buffers:"))
valptr = &(info->data.buffers);
break;
case 'C':
if (0 == strcmp(head, "Cached:"))
valptr = &(info->data.cached);
break;
case 'H':
if (0 == strcmp(head, "HighFree:"))
valptr = &(info->data.high_free);
else if (0 == strcmp(head, "HighTotal:"))
valptr = &(info->data.high_total);
break;
case 'I':
if (0 == strcmp(head, "Inactive:"))
valptr = &(info->data.inactive);
break;
case 'L':
if (0 == strcmp(head, "LowFree:"))
valptr = &(info->data.low_free);
else if (0 == strcmp(head, "LowTotal:"))
valptr = &(info->data.low_total);
break;
case 'M':
if (0 == strcmp(head, "MemAvailable:"))
valptr = &(info->data.available);
else if (0 == strcmp(head, "MemFree:"))
valptr = &(info->data.free);
else if (0 == strcmp(head, "MemTotal:"))
valptr = &(info->data.total);
break;
case 'S':
if (0 == strcmp(head, "Slab:"))
valptr = &(info->data.slab);
else if (0 == strcmp(head, "SwapFree:"))
valptr = &(info->data.swap_free);
else if (0 == strcmp(head, "SwapTotal:"))
valptr = &(info->data.swap_total);
else if (0 == strcmp(head, "Shmem:"))
valptr = &(info->data.shared);
break;
default:
break;
}
head = tail+1;
if (valptr) {
*valptr = strtoul(head, &tail, 10);
}
tail = strchr(head, '\n');
if (!tail)
break;
head = tail + 1;
} while(tail);
if (0 == info->data.low_total) {
info->data.low_total = info->data.total;
info->data.low_free = info->data.free;
}
if (0 == info->data.available) {
info->data.available = info->data.free;
}
info->data.cached += info->data.slab;
info->data.swap_used = info->data.swap_total - info->data.swap_free;
/* if 'available' is greater than 'total' or our calculation of mem_used
overflows, that's symptomatic of running within a lxc container where
such values will be dramatically distorted over those of the host. */
if (info->data.available > info->data.total)
info->data.available = info->data.free;
mem_used = info->data.total - info->data.free - info->data.cached - info->data.buffers;
if (mem_used < 0)
mem_used = info->data.total - info->data.free;
info->data.used = (unsigned long)mem_used;
return 0;
}
PROCPS_EXPORT int procps_meminfo_ref (
struct procps_meminfo *info)
{
if (info == NULL)
return -EINVAL;
info->refcount++;
return info->refcount;
}
PROCPS_EXPORT int procps_meminfo_unref (
struct procps_meminfo **info)
{
if (info == NULL || *info == NULL)
return -EINVAL;
(*info)->refcount--;
if ((*info)->refcount == 0) {
if ((*info)->stacked) {
do {
struct stacks_anchor *p = (*info)->stacked;
(*info)->stacked = (*info)->stacked->next;
free(p);
} while((*info)->stacked);
}
free(*info);
*info = NULL;
return 0;
}
return (*info)->refcount;
}
/*
* Accessor functions
*/
PROCPS_EXPORT unsigned long procps_meminfo_get (
struct procps_meminfo *info,
enum meminfo_item item)
{
switch (item) {
case PROCPS_MEM_ACTIVE:
return info->data.active;
case PROCPS_MEM_INACTIVE:
return info->data.inactive;
case PROCPS_MEMHI_FREE:
return info->data.high_free;
case PROCPS_MEMHI_TOTAL:
return info->data.high_total;
case PROCPS_MEMHI_USED:
if (info->data.high_free > info->data.high_total)
return 0;
return info->data.high_total - info->data.high_free;
case PROCPS_MEMLO_FREE:
return info->data.low_free;
case PROCPS_MEMLO_TOTAL:
return info->data.low_total;
case PROCPS_MEMLO_USED:
if (info->data.low_free > info->data.low_total)
return 0;
return info->data.low_total - info->data.low_free;
case PROCPS_MEM_AVAILABLE:
return info->data.available;
case PROCPS_MEM_BUFFERS:
return info->data.buffers;
case PROCPS_MEM_CACHED:
return info->data.cached;
case PROCPS_MEM_FREE:
return info->data.free;
case PROCPS_MEM_SHARED:
return info->data.shared;
case PROCPS_MEM_TOTAL:
return info->data.total;
case PROCPS_MEM_USED:
return info->data.used;
case PROCPS_SWAP_FREE:
return info->data.swap_free;
case PROCPS_SWAP_TOTAL:
return info->data.swap_total;
case PROCPS_SWAP_USED:
if (info->data.swap_free > info->data.swap_total)
return 0;
return info->data.swap_total - info->data.swap_free;
default:
return 0;
}
}
PROCPS_EXPORT int procps_meminfo_getstack (
struct procps_meminfo *info,
struct meminfo_result *these)
{
if (info == NULL || these == NULL)
return -EINVAL;
for (;;) {
switch (these->item) {
case PROCPS_MEM_ACTIVE:
these->result.ul_int = info->data.active;
break;
case PROCPS_MEM_INACTIVE:
these->result.ul_int = info->data.inactive;
break;
case PROCPS_MEMHI_FREE:
these->result.ul_int = info->data.high_free;
break;
case PROCPS_MEMHI_TOTAL:
these->result.ul_int = info->data.high_total;
break;
case PROCPS_MEMHI_USED:
if (info->data.high_free > info->data.high_total)
these->result.ul_int = 0;
else
these->result.ul_int = info->data.high_total - info->data.high_free;
break;
case PROCPS_MEMLO_FREE:
these->result.ul_int = info->data.low_free;
break;
case PROCPS_MEMLO_TOTAL:
these->result.ul_int = info->data.low_total;
break;
case PROCPS_MEMLO_USED:
if (info->data.low_free > info->data.low_total)
these->result.ul_int = 0;
else
these->result.ul_int = info->data.low_total - info->data.low_free;
break;
case PROCPS_MEM_AVAILABLE:
these->result.ul_int = info->data.available;
break;
case PROCPS_MEM_BUFFERS:
these->result.ul_int = info->data.buffers;
break;
case PROCPS_MEM_CACHED:
these->result.ul_int = info->data.cached;
break;
case PROCPS_MEM_FREE:
these->result.ul_int = info->data.free;
break;
case PROCPS_MEM_SHARED:
these->result.ul_int = info->data.shared;
break;
case PROCPS_MEM_TOTAL:
these->result.ul_int = info->data.total;
break;
case PROCPS_MEM_USED:
these->result.ul_int = info->data.used;
break;
case PROCPS_SWAP_FREE:
these->result.ul_int = info->data.swap_free;
break;
case PROCPS_SWAP_TOTAL:
these->result.ul_int = info->data.swap_total;
break;
case PROCPS_SWAP_USED:
if (info->data.swap_free > info->data.swap_total)
these->result.ul_int = 0;
else
these->result.ul_int = info->data.swap_total - info->data.swap_free;
break;
case PROCPS_MEM_noop:
// don't disturb potential user data in the result struct
break;
case PROCPS_MEM_stack_end:
return 0;
default:
return -EINVAL;
}
++these;
}
}
PROCPS_EXPORT int procps_meminfo_stack_fill (
struct procps_meminfo *info,
struct meminfo_stack *stack)
{
int rc;
if (info == NULL || stack == NULL || stack->head == NULL)
return -EINVAL;
if ((rc == procps_meminfo_read(info)) < 0)
return rc;
return procps_meminfo_getstack(info, stack->head);
}
static void stacks_validate (struct meminfo_stack **v, const char *who)
{
#if 0
#include <stdio.h>
int i, t, x, n = 0;
struct stack_vectors *p = (struct stack_vectors *)v - 1;
fprintf(stderr, "%s: called by '%s'\n", __func__, who);
fprintf(stderr, "%s: owned by %p (whose self = %p)\n", __func__, p->owner, p->owner->self);
for (x = 0; v[x]; x++) {
struct meminfo_stack *h = v[x];
struct meminfo_result *r = h->head;
fprintf(stderr, "%s: vector[%02d] = %p", __func__, x, h);
i = 0;
for (i = 0; r->item < PROCPS_MEM_stack_end; i++, r++)
;
t = i + 1;
fprintf(stderr, ", stack %d found %d elements\n", n, i);
++n;
}
fprintf(stderr, "%s: found %d stack(s), each %d bytes (including eos)\n", __func__, x, (int)sizeof(struct meminfo_result) * t);
fprintf(stderr, "%s: sizeof(struct meminfo_stack) = %2d\n", __func__, (int)sizeof(struct meminfo_stack));
fprintf(stderr, "%s: sizeof(struct meminfo_result) = %2d\n", __func__, (int)sizeof(struct meminfo_result));
fputc('\n', stderr);
return;
#endif
}
static struct meminfo_result *stack_make (
struct meminfo_result *p,
int maxitems,
enum meminfo_item *items)
{
struct meminfo_result *p_sav = p;
int i;
for (i = 0; i < maxitems; i++) {
p->item = items[i];
// note: we rely on calloc to initialize actual result
++p;
}
return p_sav;
}
static int stack_items_valid (
int maxitems,
enum meminfo_item *items)
{
int i;
for (i = 0; i < maxitems; i++) {
if (items[i] < PROCPS_MEMHI_FREE)
return 0;
if (items[i] > PROCPS_MEM_stack_end)
return 0;
}
if (items[maxitems -1] != PROCPS_MEM_stack_end)
return 0;
return 1;
}
/*
* procps_meminfo_stacks_alloc():
*
* A local copy of code borrowed from slab.c to support the public version
* representing a single stack. Currently there is no conceivable need
* for multiple stacks in the 'memory' arena.
*/
static struct meminfo_stack **procps_meminfo_stacks_alloc (
struct procps_meminfo *info,
int maxstacks,
int maxitems,
enum meminfo_item *items)
{
struct stacks_anchor *p_blob;
struct stack_vectors *p_vect;
struct meminfo_stack *p_head;
size_t vect_size, head_size, list_size, blob_size;
void *v_head, *v_list;
int i;
if (info == NULL || items == NULL)
return NULL;
if (maxstacks < 1 || maxitems < 1)
return NULL;
if (!stack_items_valid(maxitems, items))
return NULL;
vect_size = sizeof(struct stack_vectors); // address vector struct
vect_size += sizeof(void *) * maxstacks; // plus vectors themselves
vect_size += sizeof(void *); // plus NULL delimiter
head_size = sizeof(struct meminfo_stack); // a head struct
list_size = sizeof(struct meminfo_result) * maxitems; // a results stack
blob_size = sizeof(struct stacks_anchor); // the anchor itself
blob_size += vect_size; // all vectors + delims
blob_size += head_size * maxstacks; // all head structs + user stuff
blob_size += list_size * maxstacks; // all results stacks
/* note: all memory is allocated in a single blob, facilitating a later free().
as a minimum, it's important that the result structures themselves always be
contiguous for any given stack (just as they are when defined statically). */
if (NULL == (p_blob = calloc(1, blob_size)))
return NULL;
p_blob->next = info->stacked;
info->stacked = p_blob;
p_blob->self = p_blob;
p_blob->vectors = (void *)p_blob + sizeof(struct stacks_anchor);
p_vect = p_blob->vectors;
p_vect->owner = p_blob->self;
p_vect->heads = (void *)p_vect + sizeof(struct stack_vectors);
v_head = (void *)p_vect + vect_size;
v_list = v_head + (head_size * maxstacks);
for (i = 0; i < maxstacks; i++) {
p_head = (struct meminfo_stack *)v_head;
p_head->head = stack_make((struct meminfo_result *)v_list, maxitems, items);
p_blob->vectors->heads[i] = p_head;
v_list += list_size;
v_head += head_size;
}
p_blob->depth = maxstacks;
stacks_validate(p_blob->vectors->heads, __func__);
return p_blob->vectors->heads;
}
/*
* procps_meminfo_stack_alloc():
*
* Allocate and initialize a single result stack under a simplified interface.
*
* Such a stack will will have its result structures properly primed with
* 'items', while the result itself will be zeroed.
*
*/
PROCPS_EXPORT struct meminfo_stack *procps_meminfo_stack_alloc (
struct procps_meminfo *info,
int maxitems,
enum meminfo_item *items)
{
struct meminfo_stack **v;
v = procps_meminfo_stacks_alloc(info, 1, maxitems, items);
if (!v)
return NULL;
stacks_validate(v, __func__);
return v[0];
}