sysklogd/ksym_mod.c
Joey Schulze 2c81663786 . Use lseek64() instead of llseek() which is deprecated these days
. Keith Owens <kaos@ocs.com.au>
   - Fixed bug that caused klogd to die if there is no sym_array available.
   - When symbols are expanded, print the line twice.  Once with
     addresses converted to symbols, once with the raw text.  Allows
     external programs such as ksymoops do their own processing on the
     original data.
2000-09-12 21:15:28 +00:00

701 lines
18 KiB
C

/*
ksym_mod.c - functions for building symbol lookup tables for klogd
Copyright (c) 1995, 1996 Dr. G.W. Wettstein <greg@wind.rmcc.com>
Copyright (c) 1996 Enjellic Systems Development
This file is part of the sysklogd package, a kernel and system log daemon.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* This file implements functions which are useful for building
* a symbol lookup table based on the in kernel symbol table
* maintained by the Linux kernel.
*
* Proper logging of kernel panics generated by loadable modules
* tends to be difficult. Since the modules are loaded dynamically
* their addresses are not known at kernel load time. A general
* protection fault (Oops) cannot be properly deciphered with
* classic methods using the static symbol map produced at link time.
*
* One solution to this problem is to have klogd attempt to translate
* addresses from module when the fault occurs. By referencing the
* the kernel symbol table proper resolution of these symbols is made
* possible.
*
* At least that is the plan.
*
* Wed Aug 21 09:20:09 CDT 1996: Dr. Wettstein
* The situation where no module support has been compiled into a
* kernel is now detected. An informative message is output indicating
* that the kernel has no loadable module support whenever kernel
* module symbols are loaded.
*
* An informative message is printed indicating the number of kernel
* modules and the number of symbols loaded from these modules.
*
* Sun Jun 15 16:23:29 MET DST 1997: Michael Alan Dorman
* Some more glibc patches made by <mdorman@debian.org>.
*
* Sat Jan 10 15:00:18 CET 1998: Martin Schulze <joey@infodrom.north.de>
* Fixed problem with klogd not being able to be built on a kernel
* newer than 2.1.18. It was caused by modified structures
* inside the kernel that were included. I have worked in a
* patch from Alessandro Suardi <asuardi@uninetcom.it>.
*
* Sun Jan 25 20:57:34 CET 1998: Martin Schulze <joey@infodrom.north.de>
* Another patch for Linux/alpha by Christopher C Chimelis
* <chris@classnet.med.miami.edu>.
*
* Thu Mar 19 23:39:29 CET 1998: Manuel Rodrigues <pmanuel@cindy.fe.up.pt>
* Changed lseek() to llseek() in order to support > 2GB address
* space which provided by kernels > 2.1.70.
*
* Mon Apr 13 18:18:45 CEST 1998: Martin Schulze <joey@infodrom.north.de>
* Removed <sys/module.h> as it's no longer part of recent glibc
* versions. Added prototyp for llseek() which has been
* forgotton in <unistd.h> from glibc. Added more log
* information if problems occurred while reading a system map
* file, by submission from Mark Simon Phillips <M.S.Phillips@nortel.co.uk>.
*
* Sun Jan 3 18:38:03 CET 1999: Martin Schulze <joey@infodrom.north.de>
* Corrected return value of AddModule if /dev/kmem can't be
* loaded. This will prevent klogd from segfaulting if /dev/kmem
* is not available. Patch from Topi Miettinen <tom@medialab.sonera.net>.
*
* Tue Sep 12 23:11:13 CEST 2000: Martin Schulze <joey@infodrom.ffis.de>
* Changed llseek() to lseek64() in order to skip a libc warning.
*/
/* Includes. */
#include <stdlib.h>
#include <malloc.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#if !defined(__GLIBC__)
#include <linux/time.h>
#include <linux/module.h>
#else /* __GLIBC__ */
#include <linux/module.h>
extern __off64_t lseek64 __P ((int __fd, __off64_t __offset, int __whence));
extern int get_kernel_syms __P ((struct kernel_sym *__table));
#endif /* __GLIBC__ */
#include <stdarg.h>
#include <paths.h>
#include <linux/version.h>
#include "klogd.h"
#include "ksyms.h"
#if !defined(__GLIBC__)
/*
* The following bit uses some kernel/library magic to product what
* looks like a function call to user level code. This function is
* actually a system call in disguise. The purpose of the getsyms
* call is to return a current copy of the in-kernel symbol table.
*/
#define __LIBRARY__
#include <linux/unistd.h>
#define __NR_getsyms __NR_get_kernel_syms
_syscall1(int, getsyms, struct kernel_sym *, syms);
#undef __LIBRARY__
extern int getsyms(struct kernel_sym *);
#else /* __GLIBC__ */
#define getsyms get_kernel_syms
#endif /* __GLIBC__ */
/* Variables static to this module. */
struct sym_table
{
unsigned long value;
char *name;
};
struct Module
{
struct sym_table *sym_array;
int num_syms;
char *name;
struct module module;
#if LINUX_VERSION_CODE >= 0x20112
struct module_info module_info;
#endif
};
static int num_modules = 0;
struct Module *sym_array_modules = (struct Module *) 0;
static int have_modules = 0;
#if defined(TEST)
static int debugging = 1;
#else
extern int debugging;
#endif
/* Function prototypes. */
static void FreeModules(void);
static int AddSymbol(struct Module *mp, unsigned long, char *);
static int AddModule(unsigned long, char *);
static int symsort(const void *, const void *);
/**************************************************************************
* Function: InitMsyms
*
* Purpose: This function is responsible for building a symbol
* table which can be used to resolve addresses for
* loadable modules.
*
* Arguements: Void
*
* Return: A boolean return value is assumed.
*
* A false value indicates that something went wrong.
*
* True if loading is successful.
**************************************************************************/
extern int InitMsyms()
{
auto int rtn,
tmp;
auto struct kernel_sym *ksym_table,
*p;
/* Initialize the kernel module symbol table. */
FreeModules();
/*
* The system call which returns the kernel symbol table has
* essentialy two modes of operation. Called with a null pointer
* the system call returns the number of symbols defined in the
* the table.
*
* The second mode of operation is to pass a valid pointer to
* the call which will then load the current symbol table into
* the memory provided.
*
* Returning the symbol table is essentially an all or nothing
* proposition so we need to pre-allocate enough memory for the
* complete table regardless of how many symbols we need.
*
* Bummer.
*/
if ( (rtn = getsyms((struct kernel_sym *) 0)) < 0 )
{
if ( errno == ENOSYS )
Syslog(LOG_INFO, "No module symbols loaded - "
"kernel modules not enabled.\n");
else
Syslog(LOG_ERR, "Error loading kernel symbols " \
"- %s\n", strerror(errno));
return(0);
}
if ( debugging )
fprintf(stderr, "Loading kernel module symbols - "
"Size of table: %d\n", rtn);
ksym_table = (struct kernel_sym *) malloc(rtn * \
sizeof(struct kernel_sym));
if ( ksym_table == (struct kernel_sym *) 0 )
{
Syslog(LOG_WARNING, " Failed memory allocation for kernel " \
"symbol table.\n");
return(0);
}
if ( (rtn = getsyms(ksym_table)) < 0 )
{
Syslog(LOG_WARNING, "Error reading kernel symbols - %s\n", \
strerror(errno));
return(0);
}
/*
* Build a symbol table compatible with the other one used by
* klogd.
*/
tmp = rtn;
p = ksym_table;
while ( tmp-- )
{
if ( !AddModule(p->value, p->name) )
{
Syslog(LOG_WARNING, "Error adding kernel module table "
"entry.\n");
free(ksym_table);
return(0);
}
++p;
}
/* Sort the symbol tables in each module. */
for (rtn = tmp= 0; tmp < num_modules; ++tmp)
{
rtn += sym_array_modules[tmp].num_syms;
if ( sym_array_modules[tmp].num_syms < 2 )
continue;
qsort(sym_array_modules[tmp].sym_array, \
sym_array_modules[tmp].num_syms, \
sizeof(struct sym_table), symsort);
}
if ( rtn == 0 )
Syslog(LOG_INFO, "No module symbols loaded.");
else
Syslog(LOG_INFO, "Loaded %d %s from %d module%s", rtn, \
(rtn == 1) ? "symbol" : "symbols", \
num_modules, (num_modules == 1) ? "." : "s.");
free(ksym_table);
return(1);
}
static int symsort(p1, p2)
const void *p1;
const void *p2;
{
auto const struct sym_table *sym1 = p1,
*sym2 = p2;
if ( sym1->value < sym2->value )
return(-1);
if ( sym1->value == sym2->value )
return(0);
return(1);
}
/**************************************************************************
* Function: FreeModules
*
* Purpose: This function is used to free all memory which has been
* allocated for the modules and their symbols.
*
* Arguements: None specified.
*
* Return: void
**************************************************************************/
static void FreeModules()
{
auto int nmods,
nsyms;
auto struct Module *mp;
/* Check to see if the module symbol tables need to be cleared. */
have_modules = 0;
if ( num_modules == 0 )
return;
for (nmods= 0; nmods < num_modules; ++nmods)
{
mp = &sym_array_modules[nmods];
if ( mp->num_syms == 0 )
continue;
for (nsyms= 0; nsyms < mp->num_syms; ++nsyms)
free(mp->sym_array[nsyms].name);
free(mp->sym_array);
}
free(sym_array_modules);
sym_array_modules = (struct Module *) 0;
num_modules = 0;
return;
}
/**************************************************************************
* Function: AddModule
*
* Purpose: This function is responsible for adding a module to
* the list of currently loaded modules.
*
* Arguements: (unsigned long) address, (char *) symbol
*
* address:-> The address of the module.
*
* symbol:-> The name of the module.
*
* Return: int
**************************************************************************/
static int AddModule(address, symbol)
unsigned long address;
char *symbol;
{
auto int memfd;
auto struct Module *mp;
/* Return if we have loaded the modules. */
if ( have_modules )
return(1);
/*
* The following section of code is responsible for determining
* whether or not we are done reading the list of modules.
*/
if ( symbol[0] == '#' )
{
if ( symbol[1] == '\0' )
{
/*
* A symbol which consists of a # sign only
* signifies a a resident kernel segment. When we
* hit one of these we are done reading the
* module list.
*/
have_modules = 1;
return(1);
}
/* Allocate space for the module. */
sym_array_modules = (struct Module *) \
realloc(sym_array_modules, \
(num_modules+1) * sizeof(struct Module));
if ( sym_array_modules == (struct Module *) 0 )
{
Syslog(LOG_WARNING, "Cannot allocate Module array.\n");
return(0);
}
mp = &sym_array_modules[num_modules];
if ( (memfd = open("/dev/kmem", O_RDONLY)) < 0 )
{
Syslog(LOG_WARNING, "Error opening /dev/kmem\n");
return(0);
}
if ( lseek64(memfd, address, SEEK_SET) < 0 )
{
Syslog(LOG_WARNING, "Error seeking in /dev/kmem\n");
Syslog(LOG_WARNING, "Symbol %s, value %08x\n", symbol, address);
return(0);
}
if ( read(memfd, \
(char *)&sym_array_modules[num_modules].module, \
sizeof(struct module)) < 0 )
{
Syslog(LOG_WARNING, "Error reading module "
"descriptor.\n");
return(0);
}
close(memfd);
/* Save the module name. */
mp->name = (char *) malloc(strlen(&symbol[1]) + 1);
if ( mp->name == (char *) 0 )
return(0);
strcpy(mp->name, &symbol[1]);
mp->num_syms = 0;
mp->sym_array = (struct sym_table *) 0;
++num_modules;
return(1);
}
else
{
if (num_modules > 0)
mp = &sym_array_modules[num_modules - 1];
else
mp = &sym_array_modules[0];
AddSymbol(mp, address, symbol);
}
return(1);
}
/**************************************************************************
* Function: AddSymbol
*
* Purpose: This function is responsible for adding a symbol name
* and its address to the symbol table.
*
* Arguements: (struct Module *) mp, (unsigned long) address, (char *) symbol
*
* mp:-> A pointer to the module which the symbol is
* to be added to.
*
* address:-> The address of the symbol.
*
* symbol:-> The name of the symbol.
*
* Return: int
*
* A boolean value is assumed. True if the addition is
* successful. False if not.
**************************************************************************/
static int AddSymbol(mp, address, symbol)
struct Module *mp;
unsigned long address;
char *symbol;
{
auto int tmp;
/* Allocate space for the symbol table entry. */
mp->sym_array = (struct sym_table *) realloc(mp->sym_array, \
(mp->num_syms+1) * sizeof(struct sym_table));
if ( mp->sym_array == (struct sym_table *) 0 )
return(0);
/* Then the space for the symbol. */
tmp = strlen(symbol);
tmp += (strlen(mp->name) + 1);
mp->sym_array[mp->num_syms].name = (char *) malloc(tmp + 1);
if ( mp->sym_array[mp->num_syms].name == (char *) 0 )
return(0);
memset(mp->sym_array[mp->num_syms].name, '\0', tmp + 1);
/* Stuff interesting information into the module. */
mp->sym_array[mp->num_syms].value = address;
strcpy(mp->sym_array[mp->num_syms].name, mp->name);
strcat(mp->sym_array[mp->num_syms].name, ":");
strcat(mp->sym_array[mp->num_syms].name, symbol);
++mp->num_syms;
return(1);
}
/**************************************************************************
* Function: LookupModuleSymbol
*
* Purpose: Find the symbol which is related to the given address from
* a kernel module.
*
* Arguements: (long int) value, (struct symbol *) sym
*
* value:-> The address to be located.
*
* sym:-> A pointer to a structure which will be
* loaded with the symbol's parameters.
*
* Return: (char *)
*
* If a match cannot be found a diagnostic string is printed.
* If a match is found the pointer to the symbolic name most
* closely matching the address is returned.
**************************************************************************/
extern char * LookupModuleSymbol(value, sym)
unsigned long value;
struct symbol *sym;
{
auto int nmod,
nsym;
auto struct sym_table *last;
auto struct Module *mp;
sym->size = 0;
sym->offset = 0;
if ( num_modules == 0 )
return((char *) 0);
for(nmod= 0; nmod < num_modules; ++nmod)
{
mp = &sym_array_modules[nmod];
/*
* Run through the list of symbols in this module and
* see if the address can be resolved.
*/
for(nsym= 1, last = &mp->sym_array[0];
nsym < mp->num_syms;
++nsym)
{
if ( mp->sym_array[nsym].value > value )
{
sym->offset = value - last->value;
sym->size = mp->sym_array[nsym].value - \
last->value;
return(last->name);
}
last = &mp->sym_array[nsym];
}
/*
* At this stage of the game we still cannot give up the
* ghost. There is the possibility that the address is
* from a module which has no symbols registered with
* the kernel. The solution is to compare the address
* against the starting address and extant of the module
* If it is in this range we can at least return the
* name of the module.
*/
#if LINUX_VERSION_CODE < 0x20112
if ( (void *) value >= mp->module.addr &&
(void *) value <= (mp->module.addr + \
mp->module.size * 4096) )
#else
if ( value >= mp->module_info.addr &&
value <= (mp->module_info.addr + \
mp->module.size * 4096) )
#endif
{
/*
* A special case needs to be checked for. The above
* conditional tells us that we are within the
* extant of this module but symbol lookup has
* failed.
*
* We need to check to see if any symbols have
* been defined in this module. If there have been
* symbols defined the assumption must be made that
* the faulting address lies somewhere beyond the
* last symbol. About the only thing we can do
* at this point is use an offset from this
* symbol.
*/
if ( mp->num_syms > 0 )
{
last = &mp->sym_array[mp->num_syms - 1];
#if LINUX_VERSION_CODE < 0x20112
sym->size = (int) mp->module.addr + \
(mp->module.size * 4096) - value;
#else
sym->size = (int) mp->module_info.addr + \
(mp->module.size * 4096) - value;
#endif
sym->offset = value - last->value;
return(last->name);
}
/*
* There were no symbols defined for this module.
* Return the module name and the offset of the
* faulting address in the module.
*/
sym->size = mp->module.size * 4096;
#if LINUX_VERSION_CODE < 0x20112
sym->offset = (void *) value - mp->module.addr;
#else
sym->offset = value - mp->module_info.addr;
#endif
return(mp->name);
}
}
/* It has been a hopeless exercise. */
return((char *) 0);
}
/*
* Setting the -DTEST define enables the following code fragment to
* be compiled. This produces a small standalone program which will
* dump the current kernel symbol table.
*/
#if defined(TEST)
#include <stdarg.h>
extern int main(int, char **);
int main(argc, argv)
int argc;
char *argv[];
{
auto int lp, syms;
if ( !InitMsyms() )
{
fprintf(stderr, "Cannot load module symbols.\n");
return(1);
}
printf("Number of modules: %d\n\n", num_modules);
for(lp= 0; lp < num_modules; ++lp)
{
printf("Module #%d = %s, Number of symbols = %d\n", lp + 1, \
sym_array_modules[lp].name, \
sym_array_modules[lp].num_syms);
for (syms= 0; syms < sym_array_modules[lp].num_syms; ++syms)
{
printf("\tSymbol #%d\n", syms + 1);
printf("\tName: %s\n", \
sym_array_modules[lp].sym_array[syms].name);
printf("\tAddress: %lx\n\n", \
sym_array_modules[lp].sym_array[syms].value);
}
}
FreeModules();
return(0);
}
extern void Syslog(int priority, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stdout, "Pr: %d, ", priority);
vfprintf(stdout, fmt, ap);
va_end(ap);
fputc('\n', stdout);
return;
}
#endif