thin-provisioning-tools/ft-lib/bcache.c

919 lines
18 KiB
C
Raw Normal View History

#define _GNU_SOURCE
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <libaio.h>
#include <unistd.h>
#include <linux/fs.h>
#include <sys/ioctl.h>
#include <stdarg.h>
#include "list.h"
#include "bcache.h"
//----------------------------------------------------------------
static void warn(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
}
// FIXME: raise a condition somehow?
static void raise(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
/*
* Assumes the list is not empty.
*/
static inline struct list_head *list_pop(struct list_head *head)
{
struct list_head *l;
if (head->next == head)
raise("list is empty\n");
l = head->next;
list_del(l);
return l;
}
//----------------------------------------------------------------
struct control_block {
struct list_head list;
void *context;
struct iocb cb;
};
struct cb_set {
struct list_head free;
struct list_head allocated;
struct control_block *vec;
} control_block_set;
static struct cb_set *cb_set_create(unsigned nr)
{
int i;
struct cb_set *cbs = malloc(sizeof(*cbs));
if (!cbs)
return NULL;
cbs->vec = malloc(nr * sizeof(*cbs->vec));
if (!cbs->vec) {
free(cbs);
return NULL;
}
init_list_head(&cbs->free);
init_list_head(&cbs->allocated);
for (i = 0; i < nr; i++)
list_add(&cbs->vec[i].list, &cbs->free);
return cbs;
}
static void cb_set_destroy(struct cb_set *cbs)
{
if (!list_empty(&cbs->allocated))
raise("async io still in flight");
free(cbs->vec);
free(cbs);
}
static struct control_block *cb_alloc(struct cb_set *cbs, void *context)
{
struct control_block *cb;
if (list_empty(&cbs->free))
return NULL;
cb = container_of(list_pop(&cbs->free), struct control_block, list);
cb->context = context;
list_add(&cb->list, &cbs->allocated);
return cb;
}
static void cb_free(struct cb_set *cbs, struct control_block *cb)
{
list_del(&cb->list);
list_add(&cb->list, &cbs->free);
}
static struct control_block *iocb_to_cb(struct iocb *icb)
{
return container_of(icb, struct control_block, cb);
}
//----------------------------------------------------------------
// FIXME: get from linux headers
#define SECTOR_SHIFT 9
#define PAGE_SIZE 4096
enum dir {
DIR_READ,
DIR_WRITE
};
struct io_engine {
io_context_t aio_context;
struct cb_set *cbs;
};
static struct io_engine *engine_create(unsigned max_io)
{
int r;
struct io_engine *e = malloc(sizeof(*e));
if (!e)
return NULL;
e->aio_context = 0;
r = io_setup(max_io, &e->aio_context);
if (r < 0) {
warn("io_setup failed");
return NULL;
}
e->cbs = cb_set_create(max_io);
if (!e->cbs) {
warn("couldn't create control block set");
free(e);
return NULL;
}
return e;
}
static void engine_destroy(struct io_engine *e)
{
cb_set_destroy(e->cbs);
io_destroy(e->aio_context);
free(e);
}
static int engine_issue(struct io_engine *e, int fd, enum dir d,
sector_t sb, sector_t se, void *data, void *context)
{
int r;
struct iocb *cb_array[1];
struct control_block *cb;
if (((uint64_t) data) & (PAGE_SIZE - 1))
return -1;
cb = cb_alloc(e->cbs, context);
if (!cb)
return false;
memset(&cb->cb, 0, sizeof(cb->cb));
cb->cb.aio_fildes = (int) fd;
cb->cb.u.c.buf = data;
cb->cb.u.c.offset = sb << SECTOR_SHIFT;
cb->cb.u.c.nbytes = (se - sb) << SECTOR_SHIFT;
cb->cb.aio_lio_opcode = (d == DIR_READ) ? IO_CMD_PREAD : IO_CMD_PWRITE;
cb_array[0] = &cb->cb;
r = io_submit(e->aio_context, 1, cb_array);
if (r < 0)
cb_free(e->cbs, cb);
return r;
}
#define MAX_IO 64
typedef void complete_fn(void *context, int io_error);
static int engine_wait(struct io_engine *e, struct timespec *ts, complete_fn fn)
{
int i, r;
struct io_event event[MAX_IO];
struct control_block *cb;
memset(&event, 0, sizeof(event));
r = io_getevents(e->aio_context, 1, MAX_IO, event, ts);
if (r < 0) {
warn("io_getevents failed");
return r;
}
if (r == 0)
return 0;
for (i = 0; i < r; i++) {
struct io_event *ev = event + i;
cb = iocb_to_cb((struct iocb *) ev->obj);
if (ev->res == cb->cb.u.c.nbytes)
fn((void *) cb->context, 0);
else if ((int) ev->res < 0)
fn(cb->context, (int) ev->res);
else {
warn("short io");
fn(cb->context, -ENODATA);
}
cb_free(e->cbs, cb);
}
return -ENODATA;
}
//----------------------------------------------------------------
#if 0
struct timespec micro_to_ts(unsigned micro)
{
struct timespec ts;
ts.tv_sec = micro / 1000000u;
ts.tv_nsec = (micro % 1000000) * 1000;
return ts;
}
static unsigned ts_to_micro(struct timespec const *ts)
{
unsigned micro = ts->tv_sec * 1000000;
micro += ts->tv_nsec / 1000;
return micro;
}
#endif
//----------------------------------------------------------------
#define MIN_BLOCKS 16
#define WRITEBACK_LOW_THRESHOLD_PERCENT 33
#define WRITEBACK_HIGH_THRESHOLD_PERCENT 66
//----------------------------------------------------------------
static void *alloc_aligned(size_t len, size_t alignment)
{
void *result = NULL;
int r = posix_memalign(&result, alignment, len);
if (r)
return NULL;
return result;
}
//----------------------------------------------------------------
static bool test_flags(struct block *b, unsigned bits)
{
return (b->flags & bits) != 0;
}
static void set_flags(struct block *b, unsigned bits)
{
b->flags |= bits;
}
static void clear_flags(struct block *b, unsigned bits)
{
b->flags &= ~bits;
}
//----------------------------------------------------------------
enum block_flags {
BF_IO_PENDING = (1 << 0),
BF_DIRTY = (1 << 1),
};
struct bcache {
int fd;
sector_t block_sectors;
uint64_t nr_data_blocks;
uint64_t nr_cache_blocks;
struct io_engine *engine;
void *raw_data;
struct block *raw_blocks;
/*
* Lists that categorise the blocks.
*/
unsigned nr_locked;
unsigned nr_dirty;
unsigned nr_io_pending;
struct list_head free;
struct list_head errored;
struct list_head dirty;
struct list_head clean;
struct list_head io_pending;
/*
* Hash table.
*/
unsigned nr_buckets;
unsigned hash_mask;
struct list_head *buckets;
/*
* Statistics
*/
unsigned read_hits;
unsigned read_misses;
unsigned write_zeroes;
unsigned write_hits;
unsigned write_misses;
unsigned prefetches;
};
//----------------------------------------------------------------
/* 2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
#define GOLDEN_RATIO_PRIME_64 0x9e37fffffffc0001UL
static unsigned hash(struct bcache *cache, uint64_t index)
{
uint64_t h = index;
h *= GOLDEN_RATIO_PRIME_64;
return h & cache->hash_mask;
}
static struct block *hash_lookup(struct bcache *cache, uint64_t index)
{
struct block *b;
unsigned h = hash(cache, index);
list_for_each_entry (b, cache->buckets + h, hash)
if (b->index == index)
return b;
return NULL;
}
static void hash_insert(struct block *b)
{
unsigned h = hash(b->cache, b->index);
list_add(&b->hash, b->cache->buckets + h);
}
static void hash_remove(struct block *b)
{
list_del(&b->hash);
}
/*
* Must return a power of 2.
*/
static unsigned calc_nr_buckets(unsigned nr_blocks)
{
unsigned r = 8;
unsigned n = nr_blocks / 4;
if (n < 8)
n = 8;
while (r < n)
r <<= 1;
return r;
}
static int hash_table_init(struct bcache *cache, unsigned nr_entries)
{
unsigned i;
cache->nr_buckets = calc_nr_buckets(nr_entries);
cache->hash_mask = cache->nr_buckets - 1;
cache->buckets = malloc(cache->nr_buckets * sizeof(*cache->buckets));
if (!cache->buckets)
return -ENOMEM;
for (i = 0; i < cache->nr_buckets; i++)
init_list_head(cache->buckets + i);
return 0;
}
static void hash_table_exit(struct bcache *cache)
{
free(cache->buckets);
}
//----------------------------------------------------------------
static int init_free_list(struct bcache *cache, unsigned count)
{
unsigned i;
size_t block_size = cache->block_sectors << SECTOR_SHIFT;
unsigned char *data =
(unsigned char *) alloc_aligned(count * block_size, PAGE_SIZE);
/* Allocate the data for each block. We page align the data. */
if (!data)
return -ENOMEM;
cache->raw_data = data;
cache->raw_blocks = malloc(count * sizeof(*cache->raw_blocks));
if (!cache->raw_blocks)
free(cache->raw_data);
for (i = 0; i < count; i++) {
struct block *b = cache->raw_blocks + i;
b->cache = cache;
b->data = data + (block_size * i);
list_add_tail(&b->list, &cache->free);
}
return 0;
}
static void exit_free_list(struct bcache *cache)
{
free(cache->raw_data);
free(cache->raw_blocks);
}
static struct block *alloc_block(struct bcache *cache)
{
if (list_empty(&cache->free))
return NULL;
return container_of(list_pop(&cache->free), struct block, list);
}
/*----------------------------------------------------------------
* Clean/dirty list management.
* Always use these methods to ensure nr_dirty_ is correct.
*--------------------------------------------------------------*/
static void unlink_block(struct block *b)
{
if (test_flags(b, BF_DIRTY))
b->cache->nr_dirty--;
list_del(&b->list);
}
static void link_block(struct block *b)
{
struct bcache *cache = b->cache;
if (test_flags(b, BF_DIRTY)) {
list_add_tail(&b->list, &cache->dirty);
cache->nr_dirty++;
} else
list_add_tail(&b->list, &cache->clean);
}
static void relink(struct block *b)
{
unlink_block(b);
link_block(b);
}
/*----------------------------------------------------------------
* Low level IO handling
*
* We cannot have two concurrent writes on the same block.
* eg, background writeback, put with dirty, flush?
*
* To avoid this we introduce some restrictions:
*
* i) A held block can never be written back.
* ii) You cannot get a block until writeback has completed.
*
*--------------------------------------------------------------*/
/*
* |b->list| should be valid (either pointing to itself, on one of the other
* lists.
*/
static int issue_low_level(struct block *b, enum dir d)
{
struct bcache *cache = b->cache;
sector_t sb = b->index * cache->block_sectors;
sector_t se = sb + cache->block_sectors;
set_flags(b, BF_IO_PENDING);
return engine_issue(cache->engine, cache->fd, d, sb, se, b->data, b);
}
static void issue_read(struct block *b)
{
assert(!test_flags(b, BF_IO_PENDING));
issue_low_level(b, DIR_READ);
}
static void issue_write(struct block *b)
{
assert(!test_flags(b, BF_IO_PENDING));
//b.v_->prepare(b.data_, b.index_);
issue_low_level(b, DIR_WRITE);
}
static void complete_io(void *context, int err)
{
struct block *b = context;
struct bcache *cache = b->cache;
b->error = err;
clear_flags(b, BF_IO_PENDING);
cache->nr_io_pending--;
/*
* b is on the io_pending list, so we don't want to use unlink_block.
* Which would incorrectly adjust nr_dirty.
*/
list_del(&b->list);
if (b->error)
list_add_tail(&b->list, &cache->errored);
else {
clear_flags(b, BF_DIRTY);
link_block(b);
}
}
static int wait_io(struct bcache *cache)
{
return engine_wait(cache->engine, NULL, complete_io);
}
/*----------------------------------------------------------------
* High level IO handling
*--------------------------------------------------------------*/
static void wait_all(struct bcache *cache)
{
while (!list_empty(&cache->io_pending))
wait_io(cache);
}
static void wait_specific(struct block *b)
{
while (test_flags(b, BF_IO_PENDING))
wait_io(b->cache);
}
static unsigned writeback(struct bcache *cache, unsigned count)
{
unsigned actual = 0;
struct block *b, *tmp;
list_for_each_entry_safe (b, tmp, &cache->dirty, list) {
if (actual == count)
break;
// We can't writeback anything that's still in use.
if (!b->ref_count) {
issue_write(b);
actual++;
}
}
return actual;
}
/*----------------------------------------------------------------
* High level allocation
*--------------------------------------------------------------*/
static struct block *find_unused_clean_block(struct bcache *cache)
{
struct block *b;
list_for_each_entry (b, &cache->clean, list) {
if (!b->ref_count) {
unlink_block(b);
hash_remove(b);
return b;
}
}
return NULL;
}
static struct block *new_block(struct bcache *cache, block_address index)
{
struct block *b;
b = alloc_block(cache);
while (!b && (cache->nr_locked < cache->nr_cache_blocks)) {
b = find_unused_clean_block(cache);
if (!b) {
if (list_empty(&cache->io_pending))
writeback(cache, 16);
wait_io(cache);
}
}
if (b) {
init_list_head(&b->list);
init_list_head(&b->hash);
b->flags = 0;
b->index = index;
b->ref_count = 0;
b->error = 0;
hash_insert(b);
}
return b;
}
/*----------------------------------------------------------------
* Block reference counting
*--------------------------------------------------------------*/
struct bcache *bcache_create(int fd, sector_t block_sectors, uint64_t on_disk_blocks,
unsigned nr_cache_blocks)
{
int r;
struct bcache *cache;
cache = malloc(sizeof(*cache));
if (!cache)
return NULL;
cache->fd = fd;
cache->block_sectors = block_sectors;
cache->nr_data_blocks = on_disk_blocks;
cache->nr_cache_blocks = nr_cache_blocks;
cache->engine = engine_create(nr_cache_blocks < 1024u ? nr_cache_blocks : 1024u);
if (!cache->engine) {
free(cache);
return NULL;
}
cache->nr_locked = 0;
cache->nr_dirty = 0;
cache->nr_io_pending = 0;
init_list_head(&cache->free);
init_list_head(&cache->errored);
init_list_head(&cache->dirty);
init_list_head(&cache->clean);
init_list_head(&cache->io_pending);
if (hash_table_init(cache, nr_cache_blocks)) {
engine_destroy(cache->engine);
free(cache);
}
cache->read_hits = 0;
cache->read_misses = 0;
cache->write_zeroes = 0;
cache->write_hits = 0;
cache->write_misses = 0;
cache->prefetches = 0;
r = init_free_list(cache, nr_cache_blocks);
if (r) {
engine_destroy(cache->engine);
hash_table_exit(cache);
free(cache);
}
return cache;
}
#define MD_BLOCK_SIZE 4096ull
struct bcache *bcache_simple(const char *path, unsigned nr_cache_blocks)
{
int r;
struct stat info;
struct bcache *cache;
int fd = open(path, O_DIRECT | O_EXCL | O_RDONLY);
uint64_t s;
if (fd < 0) {
raise("couldn't open cache file");
return NULL;
}
r = fstat(fd, &info);
if (r < 0) {
raise("couldn't stat cache file");
return NULL;
}
s = info.st_size;
cache = bcache_create(fd, MD_BLOCK_SIZE >> SECTOR_SHIFT,
s / MD_BLOCK_SIZE, nr_cache_blocks);
if (!cache)
close(fd);
return cache;
}
void bcache_destroy(struct bcache *cache)
{
if (cache->nr_locked)
warn("%u blocks are still locked\n", cache->nr_locked);
flush_cache(cache);
wait_all(cache);
exit_free_list(cache);
hash_table_exit(cache);
engine_destroy(cache->engine);
close(cache->fd);
free(cache);
}
// FIXME: we have to return an error code that can be turned into a Scheme
// condition.
static void check_index(struct bcache *cache, block_address index)
{
if (index >= cache->nr_data_blocks)
raise("block out of bounds (%llu >= %llu)",
(unsigned long long) index,
(unsigned long long) cache->nr_data_blocks);
}
uint64_t get_nr_blocks(struct bcache *cache)
{
return cache->nr_data_blocks;
}
uint64_t get_nr_locked(struct bcache *cache)
{
return cache->nr_locked;
}
static void zero_block(struct block *b)
{
b->cache->write_zeroes++;
memset(b->data, 0, b->cache->block_sectors << SECTOR_SHIFT);
set_flags(b, BF_DIRTY);
}
static void hit(struct block *b, unsigned flags)
{
struct bcache *cache = b->cache;
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_hits++;
else
cache->read_hits++;
relink(b);
}
static void miss(struct bcache *cache, unsigned flags)
{
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_misses++;
else
cache->read_misses++;
}
static struct block *lookup_or_read_block(struct bcache *cache,
block_address index, unsigned flags)
{
struct block *b = hash_lookup(cache, index);
if (b) {
// FIXME: this is insufficient. We need to also catch a read
// lock of a write locked block. Ref count needs to distinguish.
if (b->ref_count && (flags & (GF_DIRTY | GF_ZERO)))
raise("concurrent write lock attempt");
if (test_flags(b, BF_IO_PENDING)) {
miss(cache, flags);
wait_specific(b);
} else
hit(b, flags);
unlink_block(b);
if (flags & GF_ZERO)
zero_block(b);
} else {
miss(cache, flags);
b = new_block(cache, index);
if (b) {
if (flags & GF_ZERO)
zero_block(b);
else {
issue_read(b);
wait_specific(b);
// we know the block is clean and unerrored.
unlink_block(b);
}
}
}
if (b && !b->error) {
if (flags & (GF_DIRTY | GF_ZERO))
set_flags(b, BF_DIRTY);
link_block(b);
return b;
}
return NULL;
}
struct block *get_block(struct bcache *cache, block_address index, unsigned flags)
{
check_index(cache, index);
struct block *b = lookup_or_read_block(cache, index, flags);
if (b) {
if (!b->ref_count)
cache->nr_locked++;
b->ref_count++;
return b;
}
raise("couldn't get block");
return NULL;
}
static void preemptive_writeback(struct bcache *cache)
{
// FIXME: this ignores those blocks that are in the error state. Track
// nr_clean instead?
unsigned nr_available = cache->nr_cache_blocks - (cache->nr_dirty - cache->nr_io_pending);
if (nr_available < (WRITEBACK_LOW_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100))
writeback(cache, (WRITEBACK_HIGH_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100) - nr_available);
}
void release_block(struct block *b)
{
assert(b->ref_count);
b->ref_count--;
if (!b->ref_count)
b->cache->nr_locked--;
if (test_flags(b, BF_DIRTY))
preemptive_writeback(b->cache);
}
int flush_cache(struct bcache *cache)
{
while (!list_empty(&cache->dirty)) {
struct block *b = container_of(list_pop(&cache->dirty), struct block, list);
if (b->ref_count || test_flags(b, BF_IO_PENDING))
// The superblock may well be still locked.
continue;
issue_write(b);
}
wait_all(cache);
return list_empty(&cache->errored) ? 0 : -EIO;
}
void prefetch_block(struct bcache *cache, block_address index)
{
check_index(cache, index);
struct block *b = hash_lookup(cache, index);
if (!b) {
cache->prefetches++;
b = new_block(cache, index);
if (b)
issue_read(b);
}
}
//----------------------------------------------------------------