#include "metadata.h" #include "btree_validator.h" #include "core_map.h" #include #include #include #include #include using namespace std; using namespace persistent_data; using namespace thin_provisioning; //---------------------------------------------------------------- namespace { uint32_t const SUPERBLOCK_MAGIC = 27022010; block_address const SUPERBLOCK_LOCATION = 0; uint32_t const VERSION = 1; unsigned const METADATA_CACHE_SIZE = 1024; unsigned const SECTOR_TO_BLOCK_SHIFT = 3; // FIXME: get the file size unsigned const NR_BLOCKS = 1024; transaction_manager<4096>::ptr open_tm(string const &dev_path) { block_manager<4096>::ptr bm(new block_manager<4096>(dev_path, NR_BLOCKS)); space_map::ptr sm(new core_map(NR_BLOCKS)); transaction_manager<4096>::ptr tm(new transaction_manager<4096>(bm, sm)); return tm; } superblock read_superblock(block_manager<4096>::ptr bm) { superblock sb; auto r = bm->read_lock(SUPERBLOCK_LOCATION); superblock_disk const *sbd = reinterpret_cast(&r.data()); superblock_traits::unpack(*sbd, sb); return sb; } // As well as the standard btree checks, we build up a set of what // devices having mappings defined, which can later be cross // referenced with the details tree. A separate block_counter is // used to later verify the data space map. class mapping_validator : public btree_validator<2, block_traits, MD_BLOCK_SIZE> { public: typedef boost::shared_ptr ptr; mapping_validator(block_counter &metadata_counter, block_counter &data_counter) : btree_validator<2, block_traits, MD_BLOCK_SIZE>(metadata_counter), data_counter_(data_counter) { } void visit_internal_leaf(unsigned level, bool is_root, btree_detail::node_ref const &n) { btree_validator<2, block_traits, MD_BLOCK_SIZE>::visit_internal_leaf(level, is_root, n); for (unsigned i = 0; i < n.get_nr_entries(); i++) devices_.insert(n.key_at(i)); } void visit_leaf(unsigned level, bool is_root, btree_detail::node_ref const &n) { btree_validator<2, block_traits, MD_BLOCK_SIZE>::visit_leaf(level, is_root, n); for (unsigned i = 0; i < n.get_nr_entries(); i++) data_counter_.inc(n.value_at(i).block_); } set get_devices() const { return devices_; } private: block_counter &data_counter_; set devices_; }; class details_validator : public btree_validator<1, device_details_traits, MD_BLOCK_SIZE> { public: typedef boost::shared_ptr ptr; details_validator(block_counter &counter) : btree_validator<1, device_details_traits, MD_BLOCK_SIZE>(counter) { } void visit_leaf(unsigned level, bool is_root, btree_detail::node_ref const &n) { btree_validator<1, device_details_traits, MD_BLOCK_SIZE>::visit_leaf(level, is_root, n); for (unsigned i = 0; i < n.get_nr_entries(); i++) devices_.insert(n.key_at(i)); } set get_devices() const { return devices_; } private: set devices_; }; } //---------------------------------------------------------------- thin::thin(thin_dev_t dev, metadata *metadata) : dev_(dev), metadata_(metadata) { } thin_dev_t thin::get_dev_t() const { return dev_; } thin::maybe_address thin::lookup(block_address thin_block) { uint64_t key[2] = {dev_, thin_block}; return metadata_->mappings_.lookup(key); } void thin::insert(block_address thin_block, block_address data_block) { uint64_t key[2] = {dev_, thin_block}; block_time bt; bt.block_ = data_block; bt.time_ = 0; // FIXME: use current time. return metadata_->mappings_.insert(key, bt); } void thin::remove(block_address thin_block) { uint64_t key[2] = {dev_, thin_block}; metadata_->mappings_.remove(key); } void thin::set_snapshot_time(uint32_t time) { uint64_t key[1] = { dev_ }; auto mdetail = metadata_->details_.lookup(key); if (!mdetail) throw runtime_error("no such device"); mdetail->snapshotted_time_ = time; metadata_->details_.insert(key, *mdetail); } block_address thin::get_mapped_blocks() const { uint64_t key[1] = { dev_ }; auto mdetail = metadata_->details_.lookup(key); if (!mdetail) throw runtime_error("no such device"); return mdetail->mapped_blocks_; } void thin::set_mapped_blocks(block_address count) { uint64_t key[1] = { dev_ }; auto mdetail = metadata_->details_.lookup(key); if (!mdetail) throw runtime_error("no such device"); mdetail->mapped_blocks_ = count; metadata_->details_.insert(key, *mdetail); } //-------------------------------- metadata::metadata(std::string const &dev_path) : tm_(open_tm(dev_path)), sb_(read_superblock(tm_->get_bm())), data_sm_(open_disk_sm(tm_, static_cast(&sb_.data_space_map_root_))), details_(tm_, sb_.device_details_root_, typename device_details_traits::ref_counter()), mappings_top_level_(tm_, sb_.data_mapping_root_, mtree_ref_counter(tm_)), mappings_(tm_, sb_.data_mapping_root_, block_time_ref_counter(data_sm_)) { #if 0 ::memset(&sb_, 0, sizeof(sb_)); sb_.data_mapping_root_ = mappings_.get_root(); sb_.device_details_root_ = details_.get_root(); sb_.metadata_block_size_ = MD_BLOCK_SIZE; sb_.metadata_nr_blocks_ = tm_->get_bm()->get_nr_blocks(); #endif } metadata::~metadata() { } void metadata::commit() { sb_.data_mapping_root_ = mappings_.get_root(); sb_.device_details_root_ = details_.get_root(); auto superblock = tm_->get_bm()->superblock(SUPERBLOCK_LOCATION); auto disk = reinterpret_cast(superblock.data()); superblock_traits::pack(sb_, *disk); } void metadata::create_thin(thin_dev_t dev) { uint64_t key[1] = {dev}; if (device_exists(dev)) throw std::runtime_error("Device already exists"); single_mapping_tree::ptr new_tree(new single_mapping_tree(tm_, block_time_ref_counter(data_sm_))); mappings_top_level_.insert(key, new_tree->get_root()); mappings_.set_root(mappings_top_level_.get_root()); // FIXME: ugly } void metadata::create_snap(thin_dev_t dev, thin_dev_t origin) { uint64_t snap_key[1] = {dev}; uint64_t origin_key[1] = {origin}; auto mtree_root = mappings_top_level_.lookup(origin_key); if (!mtree_root) throw std::runtime_error("unknown origin"); single_mapping_tree otree(tm_, *mtree_root, block_time_ref_counter(data_sm_)); single_mapping_tree::ptr clone(otree.clone()); mappings_top_level_.insert(snap_key, clone->get_root()); mappings_.set_root(mappings_top_level_.get_root()); // FIXME: ugly sb_.time_++; auto o = open_thin(origin); auto s = open_thin(dev); o->set_snapshot_time(sb_.time_); s->set_snapshot_time(sb_.time_); s->set_mapped_blocks(o->get_mapped_blocks()); } void metadata::del(thin_dev_t dev) { uint64_t key[1] = {dev}; mappings_top_level_.remove(key); } void metadata::set_transaction_id(uint64_t id) { sb_.trans_id_ = id; } uint64_t metadata::get_transaction_id() const { return sb_.trans_id_; } block_address metadata::get_held_root() const { return sb_.held_root_; } block_address metadata::alloc_data_block() { return data_sm_->new_block(); } void metadata::free_data_block(block_address b) { data_sm_->dec(b); } block_address metadata::get_nr_free_data_blocks() const { return data_sm_->get_nr_free(); } sector_t metadata::get_data_block_size() const { return sb_.data_block_size_; } block_address metadata::get_data_dev_size() const { return data_sm_->get_nr_blocks(); } thin::ptr metadata::open_thin(thin_dev_t dev) { uint64_t key[1] = {dev}; auto mdetails = details_.lookup(key); if (!mdetails) throw runtime_error("no such device"); thin *ptr = new thin(dev, this); thin::ptr r(ptr); return r; } bool metadata::device_exists(thin_dev_t dev) const { uint64_t key[1] = {dev}; return details_.lookup(key); } boost::optional metadata::check() { error_set::ptr errors(new error_set("Errors in metadata")); block_counter metadata_counter, data_counter; mapping_validator::ptr mv(new mapping_validator(metadata_counter, data_counter)); mappings_.visit(mv); auto mapped_devs = mv->get_devices(); details_validator::ptr dv(new details_validator(metadata_counter)); details_.visit(dv); auto details_devs = dv->get_devices(); for (auto it = mapped_devs.begin(); it != mapped_devs.end(); ++it) if (details_devs.count(*it) == 0) { ostringstream out; out << "mapping exists for device " << *it << ", yet there is no entry in the details tree."; throw runtime_error(out.str()); } data_sm_->check(metadata_counter); { error_set::ptr data_errors(new error_set("Errors in data reference counts")); bool bad = false; auto data_counts = data_counter.get_counts(); for (auto it = data_counts.begin(); it != data_counts.end(); ++it) { uint32_t ref_count = data_sm_->get_count(it->first); if (ref_count != it->second) { ostringstream out; out << it->first << ": was " << ref_count << ", expected " << it->second; data_errors->add_child(out.str()); bad = true; } } if (bad) errors->add_child(data_errors); } return (errors->get_children().size() > 0) ? optional(errors) : optional(); } //----------------------------------------------------------------