Joe Thornber 3e5de399a7 [functional tests] Remove dependency on the ThunderChez library.
I've just moved the relevant code into the functional-tests dir.
2020-04-30 12:07:42 +01:00

585 lines
20 KiB
Scheme

;; R6RS port of the Scheme48 reference implementation of SRFI-27
; MODULE DEFINITION FOR SRFI-27
; =============================
;
; Sebastian.Egner@philips.com, Mar-2002, in Scheme 48 0.57
; 1. The core generator is implemented in 'mrg32k3a-a.scm'.
; 2. The generic parts of the interface are in 'mrg32k3a.scm'.
; 3. The non-generic parts (record type, time, error) are here.
; history of this file:
; SE, 22-Mar-2002: initial version
; SE, 27-Mar-2002: checked again
; JS, 06-Dec-2007: R6RS port
(define-record-type :random-source
(fields state-ref
state-set!
randomize!
pseudo-randomize!
make-integers
make-reals))
(define :random-source-make make-:random-source)
(define state-ref :random-source-state-ref)
(define state-set! :random-source-state-set!)
(define randomize! :random-source-randomize!)
(define pseudo-randomize! :random-source-pseudo-randomize!)
(define make-integers :random-source-make-integers)
(define make-reals :random-source-make-reals)
(define (:random-source-current-time)
(time-nanosecond (current-time)))
;;; mrg32k3a-a.ss
; 54-BIT INTEGER IMPLEMENTATION OF THE "MRG32K3A"-GENERATOR
; =========================================================
;
; Sebastian.Egner@philips.com, Mar-2002.
;
; This file is an implementation of Pierre L'Ecuyer's MRG32k3a
; pseudo random number generator. Please refer to 'mrg32k3a.scm'
; for more information.
;
; compliance:
; Scheme R5RS with integers covering at least {-2^53..2^53-1}.
;
; history of this file:
; SE, 18-Mar-2002: initial version
; SE, 22-Mar-2002: comments adjusted, range added
; SE, 25-Mar-2002: pack/unpack just return their argument
; the actual generator
(define (mrg32k3a-random-m1 state)
(let ((x11 (vector-ref state 0))
(x12 (vector-ref state 1))
(x13 (vector-ref state 2))
(x21 (vector-ref state 3))
(x22 (vector-ref state 4))
(x23 (vector-ref state 5)))
(let ((x10 (modulo (- (* 1403580 x12) (* 810728 x13)) 4294967087))
(x20 (modulo (- (* 527612 x21) (* 1370589 x23)) 4294944443)))
(vector-set! state 0 x10)
(vector-set! state 1 x11)
(vector-set! state 2 x12)
(vector-set! state 3 x20)
(vector-set! state 4 x21)
(vector-set! state 5 x22)
(modulo (- x10 x20) 4294967087))))
; interface to the generic parts of the generator
(define (mrg32k3a-pack-state unpacked-state)
unpacked-state)
(define (mrg32k3a-unpack-state state)
state)
(define (mrg32k3a-random-range) ; m1
4294967087)
(define (mrg32k3a-random-integer state range) ; rejection method
(let* ((q (quotient 4294967087 range))
(qn (* q range)))
(do ((x (mrg32k3a-random-m1 state) (mrg32k3a-random-m1 state)))
((< x qn) (quotient x q)))))
(define (mrg32k3a-random-real state) ; normalization is 1/(m1+1)
(* 0.0000000002328306549295728 (+ 1.0 (mrg32k3a-random-m1 state))))
;;; mrg32k3a.ss
; GENERIC PART OF MRG32k3a-GENERATOR FOR SRFI-27
; ==============================================
;
; Sebastian.Egner@philips.com, 2002.
;
; This is the generic R5RS-part of the implementation of the MRG32k3a
; generator to be used in SRFI-27. It is based on a separate implementation
; of the core generator (presumably in native code) and on code to
; provide essential functionality not available in R5RS (see below).
;
; compliance:
; Scheme R5RS with integer covering at least {-2^53..2^53-1}.
; In addition,
; SRFI-23: error
;
; history of this file:
; SE, 22-Mar-2002: refactored from earlier versions
; SE, 25-Mar-2002: pack/unpack need not allocate
; SE, 27-Mar-2002: changed interface to core generator
; SE, 10-Apr-2002: updated spec of mrg32k3a-random-integer
; Generator
; =========
;
; Pierre L'Ecuyer's MRG32k3a generator is a Combined Multiple Recursive
; Generator. It produces the sequence {(x[1,n] - x[2,n]) mod m1 : n}
; defined by the two recursive generators
;
; x[1,n] = ( a12 x[1,n-2] + a13 x[1,n-3]) mod m1,
; x[2,n] = (a21 x[2,n-1] + a23 x[2,n-3]) mod m2,
;
; where the constants are
; m1 = 4294967087 = 2^32 - 209 modulus of 1st component
; m2 = 4294944443 = 2^32 - 22853 modulus of 2nd component
; a12 = 1403580 recursion coefficients
; a13 = -810728
; a21 = 527612
; a23 = -1370589
;
; The generator passes all tests of G. Marsaglia's Diehard testsuite.
; Its period is (m1^3 - 1)(m2^3 - 1)/2 which is nearly 2^191.
; L'Ecuyer reports: "This generator is well-behaved in all dimensions
; up to at least 45: ..." [with respect to the spectral test, SE].
;
; The period is maximal for all values of the seed as long as the
; state of both recursive generators is not entirely zero.
;
; As the successor state is a linear combination of previous
; states, it is possible to advance the generator by more than one
; iteration by applying a linear transformation. The following
; publication provides detailed information on how to do that:
;
; [1] P. L'Ecuyer, R. Simard, E. J. Chen, W. D. Kelton:
; An Object-Oriented Random-Number Package With Many Long
; Streams and Substreams. 2001.
; To appear in Operations Research.
;
; Arithmetics
; ===========
;
; The MRG32k3a generator produces values in {0..2^32-209-1}. All
; subexpressions of the actual generator fit into {-2^53..2^53-1}.
; The code below assumes that Scheme's "integer" covers this range.
; In addition, it is assumed that floating point literals can be
; read and there is some arithmetics with inexact numbers.
;
; However, for advancing the state of the generator by more than
; one step at a time, the full range {0..2^32-209-1} is needed.
; Required: Backbone Generator
; ============================
;
; At this point in the code, the following procedures are assumed
; to be defined to execute the core generator:
;
; (mrg32k3a-pack-state unpacked-state) -> packed-state
; (mrg32k3a-unpack-state packed-state) -> unpacked-state
; pack/unpack a state of the generator. The core generator works
; on packed states, passed as an explicit argument, only. This
; allows native code implementations to store their state in a
; suitable form. Unpacked states are #(x10 x11 x12 x20 x21 x22)
; with integer x_ij. Pack/unpack need not allocate new objects
; in case packed and unpacked states are identical.
;
; (mrg32k3a-random-range) -> m-max
; (mrg32k3a-random-integer packed-state range) -> x in {0..range-1}
; advance the state of the generator and return the next random
; range-limited integer.
; Note that the state is not necessarily advanced by just one
; step because we use the rejection method to avoid any problems
; with distribution anomalies.
; The range argument must be an exact integer in {1..m-max}.
; It can be assumed that range is a fixnum if the Scheme system
; has such a number representation.
;
; (mrg32k3a-random-real packed-state) -> x in (0,1)
; advance the state of the generator and return the next random
; real number between zero and one (both excluded). The type of
; the result should be a flonum if possible.
; Required: Record Data Type
; ==========================
;
; At this point in the code, the following procedures are assumed
; to be defined to create and access a new record data type:
;
; (:random-source-make a0 a1 a2 a3 a4 a5) -> s
; constructs a new random source object s consisting of the
; objects a0 .. a5 in this order.
;
; (:random-source? obj) -> bool
; tests if a Scheme object is a :random-source.
;
; (:random-source-state-ref s) -> a0
; (:random-source-state-set! s) -> a1
; (:random-source-randomize! s) -> a2
; (:random-source-pseudo-randomize! s) -> a3
; (:random-source-make-integers s) -> a4
; (:random-source-make-reals s) -> a5
; retrieve the values in the fields of the object s.
; Required: Current Time as an Integer
; ====================================
;
; At this point in the code, the following procedure is assumed
; to be defined to obtain a value that is likely to be different
; for each invokation of the Scheme system:
;
; (:random-source-current-time) -> x
; an integer that depends on the system clock. It is desired
; that the integer changes as fast as possible.
; Accessing the State
; ===================
(define (mrg32k3a-state-ref packed-state)
(cons 'lecuyer-mrg32k3a
(vector->list (mrg32k3a-unpack-state packed-state))))
(define (mrg32k3a-state-set external-state)
(define (check-value x m)
(if (and (integer? x)
(exact? x)
(<= 0 x (- m 1)))
#t
(error "illegal value" x)))
(if (and (list? external-state)
(= (length external-state) 7)
(eq? (car external-state) 'lecuyer-mrg32k3a))
(let ((s (cdr external-state)))
(check-value (list-ref s 0) mrg32k3a-m1)
(check-value (list-ref s 1) mrg32k3a-m1)
(check-value (list-ref s 2) mrg32k3a-m1)
(check-value (list-ref s 3) mrg32k3a-m2)
(check-value (list-ref s 4) mrg32k3a-m2)
(check-value (list-ref s 5) mrg32k3a-m2)
(if (or (zero? (+ (list-ref s 0) (list-ref s 1) (list-ref s 2)))
(zero? (+ (list-ref s 3) (list-ref s 4) (list-ref s 5))))
(error "illegal degenerate state" external-state))
(mrg32k3a-pack-state (list->vector s)))
(error "malformed state" external-state)))
; Pseudo-Randomization
; ====================
;
; Reference [1] above shows how to obtain many long streams and
; substream from the backbone generator.
;
; The idea is that the generator is a linear operation on the state.
; Hence, we can express this operation as a 3x3-matrix acting on the
; three most recent states. Raising the matrix to the k-th power, we
; obtain the operation to advance the state by k steps at once. The
; virtual streams and substreams are now simply parts of the entire
; periodic sequence (which has period around 2^191).
;
; For the implementation it is necessary to compute with matrices in
; the ring (Z/(m1*m1)*Z)^(3x3). By the Chinese-Remainder Theorem, this
; is isomorphic to ((Z/m1*Z) x (Z/m2*Z))^(3x3). We represent such a pair
; of matrices
; [ [[x00 x01 x02],
; [x10 x11 x12],
; [x20 x21 x22]], mod m1
; [[y00 y01 y02],
; [y10 y11 y12],
; [y20 y21 y22]] mod m2]
; as a vector of length 18 of the integers as writen above:
; #(x00 x01 x02 x10 x11 x12 x20 x21 x22
; y00 y01 y02 y10 y11 y12 y20 y21 y22)
;
; As the implementation should only use the range {-2^53..2^53-1}, the
; fundamental operation (x*y) mod m, where x, y, m are nearly 2^32,
; is computed by breaking up x and y as x = x1*w + x0 and y = y1*w + y0
; where w = 2^16. In this case, all operations fit the range because
; w^2 mod m is a small number. If proper multiprecision integers are
; available this is not necessary, but pseudo-randomize! is an expected
; to be called only occasionally so we do not provide this implementation.
(define mrg32k3a-m1 4294967087) ; modulus of component 1
(define mrg32k3a-m2 4294944443) ; modulus of component 2
(define mrg32k3a-initial-state ; 0 3 6 9 12 15 of A^16, see below
'#( 1062452522
2961816100
342112271
2854655037
3321940838
3542344109))
(define mrg32k3a-generators #f) ; computed when needed
(define (mrg32k3a-pseudo-randomize-state i j)
(define (product A B) ; A*B in ((Z/m1*Z) x (Z/m2*Z))^(3x3)
(define w 65536) ; wordsize to split {0..2^32-1}
(define w-sqr1 209) ; w^2 mod m1
(define w-sqr2 22853) ; w^2 mod m2
(define (lc i0 i1 i2 j0 j1 j2 m w-sqr) ; linear combination
(let ((a0h (quotient (vector-ref A i0) w))
(a0l (modulo (vector-ref A i0) w))
(a1h (quotient (vector-ref A i1) w))
(a1l (modulo (vector-ref A i1) w))
(a2h (quotient (vector-ref A i2) w))
(a2l (modulo (vector-ref A i2) w))
(b0h (quotient (vector-ref B j0) w))
(b0l (modulo (vector-ref B j0) w))
(b1h (quotient (vector-ref B j1) w))
(b1l (modulo (vector-ref B j1) w))
(b2h (quotient (vector-ref B j2) w))
(b2l (modulo (vector-ref B j2) w)))
(modulo
(+ (* (+ (* a0h b0h)
(* a1h b1h)
(* a2h b2h))
w-sqr)
(* (+ (* a0h b0l)
(* a0l b0h)
(* a1h b1l)
(* a1l b1h)
(* a2h b2l)
(* a2l b2h))
w)
(* a0l b0l)
(* a1l b1l)
(* a2l b2l))
m)))
(vector
(lc 0 1 2 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_00 mod m1
(lc 0 1 2 1 4 7 mrg32k3a-m1 w-sqr1) ; (A*B)_01
(lc 0 1 2 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 0 3 6 mrg32k3a-m1 w-sqr1) ; (A*B)_10
(lc 3 4 5 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 3 4 5 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 0 3 6 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 1 4 7 mrg32k3a-m1 w-sqr1)
(lc 6 7 8 2 5 8 mrg32k3a-m1 w-sqr1)
(lc 9 10 11 9 12 15 mrg32k3a-m2 w-sqr2) ; (A*B)_00 mod m2
(lc 9 10 11 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 9 10 11 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 12 13 14 11 14 17 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 9 12 15 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 10 13 16 mrg32k3a-m2 w-sqr2)
(lc 15 16 17 11 14 17 mrg32k3a-m2 w-sqr2)))
(define (power A e) ; A^e
(cond
((zero? e)
'#(1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1))
((= e 1)
A)
((even? e)
(power (product A A) (quotient e 2)))
(else
(product (power A (- e 1)) A))))
(define (power-power A b) ; A^(2^b)
(if (zero? b)
A
(power-power (product A A) (- b 1))))
(define A ; the MRG32k3a recursion
'#( 0 1403580 4294156359
1 0 0
0 1 0
527612 0 4293573854
1 0 0
0 1 0))
; check arguments
(if (not (and (integer? i)
(exact? i)
(integer? j)
(exact? j)))
(error "i j must be exact integer" i j))
; precompute A^(2^127) and A^(2^76) only once
(if (not mrg32k3a-generators)
(set! mrg32k3a-generators
(list (power-power A 127)
(power-power A 76)
(power A 16))))
; compute M = A^(16 + i*2^127 + j*2^76)
(let ((M (product
(list-ref mrg32k3a-generators 2)
(product
(power (list-ref mrg32k3a-generators 0)
(modulo i (expt 2 28)))
(power (list-ref mrg32k3a-generators 1)
(modulo j (expt 2 28)))))))
(mrg32k3a-pack-state
(vector
(vector-ref M 0)
(vector-ref M 3)
(vector-ref M 6)
(vector-ref M 9)
(vector-ref M 12)
(vector-ref M 15)))))
; True Randomization
; ==================
;
; The value obtained from the system time is feed into a very
; simple pseudo random number generator. This in turn is used
; to obtain numbers to randomize the state of the MRG32k3a
; generator, avoiding period degeneration.
(define (mrg32k3a-randomize-state state)
;; G. Marsaglia's simple 16-bit generator with carry
(let* ((m 65536)
(x (modulo (:random-source-current-time) m)))
(define (random-m)
(let ((y (modulo x m)))
(set! x (+ (* 30903 y) (quotient x m)))
y))
(define (random n) ; m < n < m^2
(modulo (+ (* (random-m) m) (random-m)) n))
; modify the state
(let ((m1 mrg32k3a-m1)
(m2 mrg32k3a-m2)
(s (mrg32k3a-unpack-state state)))
(mrg32k3a-pack-state
(vector
(+ 1 (modulo (+ (vector-ref s 0) (random (- m1 1))) (- m1 1)))
(modulo (+ (vector-ref s 1) (random m1)) m1)
(modulo (+ (vector-ref s 2) (random m1)) m1)
(+ 1 (modulo (+ (vector-ref s 3) (random (- m2 1))) (- m2 1)))
(modulo (+ (vector-ref s 4) (random m2)) m2)
(modulo (+ (vector-ref s 5) (random m2)) m2))))))
; Large Integers
; ==============
;
; To produce large integer random deviates, for n > m-max, we first
; construct large random numbers in the range {0..m-max^k-1} for some
; k such that m-max^k >= n and then use the rejection method to choose
; uniformly from the range {0..n-1}.
(define mrg32k3a-m-max
(mrg32k3a-random-range))
(define (mrg32k3a-random-power state k) ; n = m-max^k, k >= 1
(if (= k 1)
(mrg32k3a-random-integer state mrg32k3a-m-max)
(+ (* (mrg32k3a-random-power state (- k 1)) mrg32k3a-m-max)
(mrg32k3a-random-integer state mrg32k3a-m-max))))
(define (mrg32k3a-random-large state n) ; n > m-max
(do ((k 2 (+ k 1))
(mk (* mrg32k3a-m-max mrg32k3a-m-max) (* mk mrg32k3a-m-max)))
((>= mk n)
(let* ((mk-by-n (quotient mk n))
(a (* mk-by-n n)))
(do ((x (mrg32k3a-random-power state k)
(mrg32k3a-random-power state k)))
((< x a) (quotient x mk-by-n)))))))
; Multiple Precision Reals
; ========================
;
; To produce multiple precision reals we produce a large integer value
; and convert it into a real value. This value is then normalized.
; The precision goal is unit <= 1/(m^k + 1), or 1/unit - 1 <= m^k.
; If you know more about the floating point number types of the
; Scheme system, this can be improved.
(define (mrg32k3a-random-real-mp state unit)
(do ((k 1 (+ k 1))
(u (- (/ 1 unit) 1) (/ u mrg32k3a-m1)))
((<= u 1)
(/ (exact->inexact (+ (mrg32k3a-random-power state k) 1))
(exact->inexact (+ (expt mrg32k3a-m-max k) 1))))))
; Provide the Interface as Specified in the SRFI
; ==============================================
;
; An object of type random-source is a record containing the procedures
; as components. The actual state of the generator is stored in the
; binding-time environment of make-random-source.
(define (make-random-source)
(let ((state (mrg32k3a-pack-state ; make a new copy
(list->vector (vector->list mrg32k3a-initial-state)))))
(:random-source-make
(lambda ()
(mrg32k3a-state-ref state))
(lambda (new-state)
(set! state (mrg32k3a-state-set new-state)))
(lambda ()
(set! state (mrg32k3a-randomize-state state)))
(lambda (i j)
(set! state (mrg32k3a-pseudo-randomize-state i j)))
(lambda ()
(lambda (n)
(cond
((not (and (integer? n) (exact? n) (positive? n)))
(error "range must be exact positive integer" n))
((<= n mrg32k3a-m-max)
(mrg32k3a-random-integer state n))
(else
(mrg32k3a-random-large state n)))))
(lambda args
(cond
((null? args)
(lambda ()
(mrg32k3a-random-real state)))
((null? (cdr args))
(let ((unit (car args)))
(cond
((not (and (real? unit) (< 0 unit 1)))
(error "unit must be real in (0,1)" unit))
((<= (- (/ 1 unit) 1) mrg32k3a-m1)
(lambda ()
(mrg32k3a-random-real state)))
(else
(lambda ()
(mrg32k3a-random-real-mp state unit))))))
(else
(error "illegal arguments" args)))))))
(define random-source?
:random-source?)
(define (random-source-state-ref s)
((:random-source-state-ref s)))
(define (random-source-state-set! s state)
((:random-source-state-set! s) state))
(define (random-source-randomize! s)
((:random-source-randomize! s)))
(define (random-source-pseudo-randomize! s i j)
((:random-source-pseudo-randomize! s) i j))
; ---
(define (random-source-make-integers s)
((:random-source-make-integers s)))
(define (random-source-make-reals s . unit)
(apply (:random-source-make-reals s) unit))
; ---
(define default-random-source
(make-random-source))
(define random-integer
(random-source-make-integers default-random-source))
(define random-real
(random-source-make-reals default-random-source))