/* $FreeBSD: rev 288217 $ */ /* $NetBSD: common.c,v 1.29 2014/01/08 20:25:34 joerg Exp $ */ /*- * Copyright (c) 1998-2014 Dag-Erling Smorgrav * Copyright (c) 2008, 2010 Joerg Sonnenberger * Copyright (c) 2013 Michael Gmelin * Copyright (c) 2019 Duncan Overbruck * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "compat.h" #include #include #include #include #include #include #include #include #if defined(HAVE_INTTYPES_H) || defined(NETBSD) #include #endif #include #include #include #include #include #include #include #include #include #include #ifndef MSG_NOSIGNAL #include #endif #ifdef WITH_SSL #include #endif #include #include "fetch.h" #include "common.h" #ifdef __clang__ #pragma clang diagnostic ignored "-Wformat-nonliteral" #endif /*** Local data **************************************************************/ /* * Error messages for resolver errors */ static struct fetcherr netdb_errlist[] = { #ifdef EAI_NODATA { EAI_NODATA, FETCH_RESOLV, "Host not found" }, #endif { EAI_AGAIN, FETCH_TEMP, "Transient resolver failure" }, { EAI_FAIL, FETCH_RESOLV, "Non-recoverable resolver failure" }, { EAI_NONAME, FETCH_RESOLV, "No address record" }, { -1, FETCH_UNKNOWN, "Unknown resolver error" } }; /*** Error-reporting functions ***********************************************/ /* * Map error code to string */ static struct fetcherr * fetch_finderr(struct fetcherr *p, int e) { while (p->num != -1 && p->num != e) p++; return (p); } /* * Set error code */ void fetch_seterr(struct fetcherr *p, int e) { p = fetch_finderr(p, e); fetchLastErrCode = p->cat; snprintf(fetchLastErrString, MAXERRSTRING, "%s", p->string); } /* * Set error code according to errno */ void fetch_syserr(void) { switch (errno) { case 0: fetchLastErrCode = FETCH_OK; break; case EPERM: case EACCES: case EROFS: #ifdef EAUTH case EAUTH: #endif #ifdef ENEEDAUTH case ENEEDAUTH: #endif fetchLastErrCode = FETCH_AUTH; break; case ENOENT: case EISDIR: /* XXX */ fetchLastErrCode = FETCH_UNAVAIL; break; case ENOMEM: fetchLastErrCode = FETCH_MEMORY; break; case EBUSY: case EAGAIN: fetchLastErrCode = FETCH_TEMP; break; case EEXIST: fetchLastErrCode = FETCH_EXISTS; break; case ENOSPC: fetchLastErrCode = FETCH_FULL; break; case EADDRINUSE: case EADDRNOTAVAIL: case ENETDOWN: case ENETUNREACH: case ENETRESET: case EHOSTUNREACH: fetchLastErrCode = FETCH_NETWORK; break; case ECONNABORTED: case ECONNRESET: fetchLastErrCode = FETCH_ABORT; break; case ETIMEDOUT: fetchLastErrCode = FETCH_TIMEOUT; break; case ECONNREFUSED: case EHOSTDOWN: fetchLastErrCode = FETCH_DOWN; break; default: fetchLastErrCode = FETCH_UNKNOWN; } snprintf(fetchLastErrString, MAXERRSTRING, "%s", strerror(errno)); } /* * Emit status message */ void fetch_info(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); fputc('\n', stderr); } /*** Network-related utility functions ***************************************/ /* * Return the default port for a scheme */ int fetch_default_port(const char *scheme) { struct servent *se; if (strcasecmp(scheme, SCHEME_FTP) == 0) return (FTP_DEFAULT_PORT); if (strcasecmp(scheme, SCHEME_HTTP) == 0) return (HTTP_DEFAULT_PORT); if (strcasecmp(scheme, SCHEME_HTTPS) == 0) return (HTTPS_DEFAULT_PORT); if (strcasecmp(scheme, SCHEME_SOCKS5) == 0) return (SOCKS5_DEFAULT_PORT); if ((se = getservbyname(scheme, "tcp")) != NULL) return (ntohs(se->s_port)); return (0); } /* * Return the default proxy port for a scheme */ int fetch_default_proxy_port(const char *scheme) { if (strcasecmp(scheme, SCHEME_FTP) == 0) return (FTP_DEFAULT_PROXY_PORT); if (strcasecmp(scheme, SCHEME_HTTP) == 0) return (HTTP_DEFAULT_PROXY_PORT); return (0); } /* * Create a connection for an existing descriptor. */ conn_t * fetch_reopen(int sd) { conn_t *conn; /* allocate and fill connection structure */ if ((conn = calloc(1, sizeof(*conn))) == NULL) return (NULL); conn->ftp_home = NULL; conn->cache_url = NULL; conn->next_buf = NULL; conn->next_len = 0; conn->sd = sd; return (conn); } /* * Bind a socket to a specific local address */ int fetch_bind(int sd, int af, const char *addr) { struct addrinfo hints, *res, *res0; int rv = -1; memset(&hints, 0, sizeof(hints)); hints.ai_family = af; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; if (getaddrinfo(addr, NULL, &hints, &res0)) return (-1); for (res = res0; res; res = res->ai_next) { if (bind(sd, res->ai_addr, res->ai_addrlen) == 0) { rv = 0; break; } } freeaddrinfo(res0); return rv; } int fetch_socks5(conn_t *conn, struct url *url, struct url *socks, int verbose) { char buf[262]; uint8_t auth; size_t alen; ssize_t dlen; alen = strlen(url->host); if (alen > 255) { if (verbose) fetch_info("socks5 only supports addresses <= 255 bytes"); errno = EINVAL; return -1; } auth = (*socks->user != '\0' && *socks->pwd != '\0') ? SOCKS5_USER_PASS : SOCKS5_NO_AUTH; buf[0] = SOCKS5_VERSION; buf[1] = 0x01; /* number of auth methods */ buf[2] = auth; if (fetch_write(conn, buf, 3) != 3) return -1; if (fetch_read(conn, buf, 2) != 2) return -1; if (buf[0] != SOCKS5_VERSION) { if (verbose) fetch_info("socks5 version not recognized"); errno = EINVAL; return -1; } if ((uint8_t)buf[1] == SOCKS5_NO_METHOD) { if (verbose) fetch_info("no acceptable socks5 authentication method"); errno = EPERM; return -1; } switch (buf[1]) { case SOCKS5_USER_PASS: if (verbose) fetch_info("authenticate socks5 user '%s'", socks->user); buf[0] = SOCKS5_PASS_VERSION; buf[1] = strlen(socks->user); if (fetch_write(conn, buf, 2) != 2) return -1; if (fetch_write(conn, socks->user, buf[1]) == -1) return -1; buf[0] = strlen(socks->pwd); if (fetch_write(conn, buf, 1) != 1) return -1; if (fetch_write(conn, socks->pwd, buf[0]) == -1) return -1; if (fetch_read(conn, buf, 2) != 2) return -1; if (buf[0] != SOCKS5_PASS_VERSION) { if (verbose) fetch_info("socks5 password version not recognized"); errno = EINVAL; return -1; } if (verbose) fetch_info("socks5 authentication response %d", buf[1]); if (buf[1] != SOCKS5_AUTH_SUCCESS) { if (verbose) fetch_info("socks5 authentication failed"); errno = EPERM; return -1; } break; } if (verbose) fetch_info("connecting socks5 to %s:%d", url->host, url->port); /* write request */ dlen = 0; buf[dlen++] = SOCKS5_VERSION; buf[dlen++] = SOCKS5_TCP_STREAM; buf[dlen++] = 0x00; buf[dlen++] = SOCKS5_ATYPE_DOMAIN; buf[dlen++] = alen; memcpy(&buf[dlen], url->host, alen); dlen += alen; buf[dlen++] = (url->port >> 0x08); buf[dlen++] = (url->port & 0xFF); if (fetch_write(conn, buf, dlen) != dlen) return -1; /* read answer */ if (fetch_read(conn, buf, 4) != 4) return -1; if (buf[0] != SOCKS5_VERSION) { if (verbose) fetch_info("socks5 version not recognized"); errno = EINVAL; return -1; } /* answer status */ if (buf[1] != SOCKS5_REPLY_SUCCESS) { if (verbose) fetch_info("socks5 response status %d", buf[1]); switch (buf[1]) { case SOCKS5_REPLY_DENY: errno = EACCES; break; case SOCKS5_REPLY_NO_NET: errno = ENETUNREACH; break; case SOCKS5_REPLY_NO_HOST: errno = EHOSTUNREACH; break; case SOCKS5_REPLY_REFUSED: errno = ECONNREFUSED; break; case SOCKS5_REPLY_TIMEOUT: errno = ETIMEDOUT; break; case SOCKS5_REPLY_CMD_NOTSUP: errno = ENOTSUP; break; case SOCKS5_REPLY_ADR_NOTSUP: errno = ENOTSUP; break; } return -1; } switch (buf[3]) { case SOCKS5_ATYPE_IPV4: if (fetch_read(conn, buf, 4) != 4) return -1; break; case SOCKS5_ATYPE_DOMAIN: if (fetch_read(conn, buf, 1) != 1 && fetch_read(conn, buf, buf[0]) != buf[0]) return -1; break; case SOCKS5_ATYPE_IPV6: if (fetch_read(conn, buf, 16) != 16) return -1; break; default: return -1; } // port if (fetch_read(conn, buf, 2) != 2) return -1; return 0; } static int get_conn_timeout(void) { static int result = -2; char *conn_timeout; if (result != -2) { return result; } conn_timeout = getenv("CONNECTION_TIMEOUT"); if (conn_timeout) { char *char_read = conn_timeout; long from_env = strtol(conn_timeout, &char_read, 10); if (from_env < -1 || char_read == conn_timeout) { from_env = fetchConnTimeout; } result = from_env > INT_MAX ? INT_MAX: from_env; } else { result = fetchConnTimeout; } return result; } /* * Happy Eyeballs (RFC8305): * * Connect to the addresses in res0, alternating between * address family, starting with ipv6 and waits `fetchConnDelay` * between each connection attempt. * * If a connection is established within the attempts, * use this connection and close all others. * * If `connect(3)` returns `ENETUNREACH`, don't attempt more * connections with the failing address family. * * If there are no more addresses to attempt, wait for * CONNECTION_TIMEOUT milliseconds if given, where value * -1 means waiting for response indefinitely, else * `fetchConnTimeout` and return the first established * connection. * * If no connection was established within the timeouts, * close all sockets and return -1 and set errno to * `ETIMEDOUT`. */ #define UNREACH_IPV6 0x01 #define UNREACH_IPV4 0x10 static int happy_eyeballs_connect(struct addrinfo *res0, int verbose) { static int unreach = 0; int connTimeout = get_conn_timeout(); struct pollfd *pfd; struct addrinfo *res; const char *bindaddr; int optval; socklen_t optlen = sizeof(optval); int rv = -1; int err = 0; int timeout = fetchConnDelay; unsigned int attempts = 0, waiting = 0; unsigned int i, n4, n6, i4, i6, done = 0; bindaddr = getenv("FETCH_BIND_ADDRESS"); for (n4 = n6 = 0, res = res0; res; res = res->ai_next) switch (res->ai_family) { case AF_INET6: n6++; break; case AF_INET: n4++; break; } #ifdef FULL_DEBUG fetch_info("got %d A and %d AAAA records", n4, n6); #endif i4 = i6 = 0; if (unreach & UNREACH_IPV6 || getenv("FORCE_IPV4")) i6 = n6; if (unreach & UNREACH_IPV4 || getenv("FORCE_IPV6")) i4 = n4; if (n6+n4 == 0 || i6+i4 == n6+n4) { netdb_seterr(EAI_FAIL); return -1; } if (!(pfd = calloc(n4+n6, sizeof (struct pollfd)))) { fetch_syserr(); return -1; } res = NULL; for (;;) { int sd = -1; int ret; unsigned short family = 0; #ifdef FULL_DEBUG if (verbose) fetch_info("happy eyeballs state: i4=%u n4=%u i6=%u n6=%u" " attempts=%u waiting=%u", i4, n4, i6, n6, attempts, waiting); #endif if (i6+i4 < n6+n4) { /* first round when res == NULL, prefer ipv6 */ if (res == NULL || res->ai_family == AF_INET) { /* prefer ipv6 */ if (i6 < n6) family = AF_INET6; else if (i4 < n4) family = AF_INET; } else { /* prefer ipv4 */ if (i4 < n4) family = AF_INET; else if (i6 < n6) family = AF_INET6; } } else { timeout = connTimeout; /* no more connections to try */ if (verbose) fetch_info("attempted to connect to all addresses, waiting..."); done = 1; goto wait; } for (i = 0, res = res0; res; res = res->ai_next) { if (res->ai_family == family) { if (family == AF_INET && i == i4) { i4++; break; } if (family == AF_INET6 && i == i6) { i6++; break; } i++; } } if (res == NULL) { netdb_seterr(EAI_FAIL); goto out; } if ((sd = socket(res->ai_family, res->ai_socktype | SOCK_NONBLOCK, res->ai_protocol)) == -1) continue; if (bindaddr != NULL && *bindaddr != '\0' && fetch_bind(sd, res->ai_family, bindaddr) != 0) { fetch_info("failed to bind to '%s'", bindaddr); close(sd); continue; } if (verbose) { char hbuf[1025]; if (getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf), NULL, 0, NI_NUMERICHOST) == 0) fetch_info("connecting to %s", hbuf); } if (connect(sd, res->ai_addr, res->ai_addrlen) == -1) { if (errno == EINPROGRESS) { pfd[attempts].fd = sd; } else if (errno == ENETUNREACH) { close(sd); if (family == AF_INET) { i4 = n4; unreach |= UNREACH_IPV4; } else { i6 = n6; unreach |= UNREACH_IPV6; } continue; } else if (errno == EADDRNOTAVAIL) { err = errno; close(sd); continue; } else { err = errno; rv = -1; close(sd); break; } } else { /* XXX: does this actually happen? */ rv = sd; break; } attempts++; waiting++; wait: if (!attempts) { netdb_seterr(EAI_FAIL); rv = -1; goto out; } for (i = 0; i < attempts; i++) { pfd[i].revents = pfd[i].events = 0; if (pfd[i].fd != -1) pfd[i].events = POLLOUT; } if (!waiting) break; if ((ret = poll(pfd, attempts, timeout ? timeout : -1)) == -1) { err = errno; rv = -1; break; } else if (ret > 0) { sd = -1; for (i = 0; i < attempts; i++) { if (pfd[i].revents & POLLHUP) { /* connection failed, save errno */ if ((getsockopt(pfd[i].fd, SOL_SOCKET, SO_ERROR, &optval, &optlen)) == 0) err = optval; close(pfd[i].fd); pfd[i].fd = -1; waiting--; } else if (pfd[i].revents & POLLOUT) { /* connection established */ err = 0; sd = pfd[i].fd; break; } } if (sd != -1) { rv = sd; break; } } else if (done) { err = ETIMEDOUT; rv = -1; break; } } out: for (i = 0; i < attempts; i++) if ((rv == -1 || rv != pfd[i].fd) && pfd[i].fd != -1) close(pfd[i].fd); free(pfd); if (rv != -1) { if (fcntl(rv, F_SETFL, fcntl(rv, F_GETFL, 0) & ~O_NONBLOCK) == -1) { err = errno; close(rv); rv = -1; } } if ((errno = err)) fetch_syserr(); return rv; } /* * Establish a TCP connection to the specified port on the specified host. */ conn_t * fetch_connect(struct url *url, int af, int verbose) { conn_t *conn; char pbuf[10]; struct url *socks_url, *connurl; const char *socks_proxy; struct addrinfo hints, *res0; int sd, error; socks_url = NULL; socks_proxy = getenv("SOCKS_PROXY"); if (socks_proxy != NULL && *socks_proxy != '\0') { if (!(socks_url = fetchParseURL(socks_proxy))) return NULL; if (strcasecmp(socks_url->scheme, SCHEME_SOCKS5) != 0) { if (verbose) fetch_info("SOCKS_PROXY scheme '%s' not supported", socks_url->scheme); return NULL; } if (!socks_url->port) socks_url->port = fetch_default_port(socks_url->scheme); connurl = socks_url; } else { connurl = url; } if (verbose) fetch_info("looking up %s", connurl->host); /* look up host name and set up socket address structure */ snprintf(pbuf, sizeof(pbuf), "%d", connurl->port); memset(&hints, 0, sizeof(hints)); hints.ai_family = af; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; if ((error = getaddrinfo(connurl->host, pbuf, &hints, &res0)) != 0) { netdb_seterr(error); return (NULL); } if (verbose) fetch_info("connecting to %s:%d", connurl->host, connurl->port); sd = happy_eyeballs_connect(res0, verbose); freeaddrinfo(res0); if (sd == -1) return (NULL); if ((conn = fetch_reopen(sd)) == NULL) { fetch_syserr(); close(sd); return NULL; } if (socks_url) { if (strcasecmp(socks_url->scheme, SCHEME_SOCKS5) == 0) { if (fetch_socks5(conn, url, socks_url, verbose) != 0) { fetch_syserr(); close(sd); free(conn); return NULL; } } } conn->cache_url = fetchCopyURL(url); conn->cache_af = af; return (conn); } static pthread_mutex_t cache_mtx = PTHREAD_MUTEX_INITIALIZER; static conn_t *connection_cache; static int cache_global_limit = 0; static int cache_per_host_limit = 0; /* * Initialise cache with the given limits. */ void fetchConnectionCacheInit(int global_limit, int per_host_limit) { if (global_limit < 0) cache_global_limit = INT_MAX; else if (per_host_limit > global_limit) cache_global_limit = per_host_limit; else cache_global_limit = global_limit; if (per_host_limit < 0) cache_per_host_limit = INT_MAX; else cache_per_host_limit = per_host_limit; } /* * Flush cache and free all associated resources. */ void fetchConnectionCacheClose(void) { conn_t *conn; while ((conn = connection_cache) != NULL) { connection_cache = conn->next_cached; (*conn->cache_close)(conn); } } /* * Check connection cache for an existing entry matching * protocol/host/port/user/password/family. */ conn_t * fetch_cache_get(const struct url *url, int af) { conn_t *conn, *last_conn = NULL; pthread_mutex_lock(&cache_mtx); for (conn = connection_cache; conn; conn = conn->next_cached) { if (conn->cache_url->port == url->port && strcmp(conn->cache_url->scheme, url->scheme) == 0 && strcmp(conn->cache_url->host, url->host) == 0 && strcmp(conn->cache_url->user, url->user) == 0 && strcmp(conn->cache_url->pwd, url->pwd) == 0 && (conn->cache_af == AF_UNSPEC || af == AF_UNSPEC || conn->cache_af == af)) { if (last_conn != NULL) last_conn->next_cached = conn->next_cached; else connection_cache = conn->next_cached; pthread_mutex_unlock(&cache_mtx); return conn; } } pthread_mutex_unlock(&cache_mtx); return NULL; } /* * Put the connection back into the cache for reuse. * If the connection is freed due to LRU or if the cache * is explicitly closed, the given callback is called. */ void fetch_cache_put(conn_t *conn, int (*closecb)(conn_t *)) { conn_t *iter, *last; int global_count, host_count; if (conn->cache_url == NULL || cache_global_limit == 0) { (*closecb)(conn); return; } pthread_mutex_lock(&cache_mtx); global_count = host_count = 0; last = NULL; for (iter = connection_cache; iter; last = iter, iter = iter->next_cached) { ++global_count; if (strcmp(conn->cache_url->host, iter->cache_url->host) == 0) ++host_count; if (global_count < cache_global_limit && host_count < cache_per_host_limit) continue; --global_count; if (last != NULL) last->next_cached = iter->next_cached; else connection_cache = iter->next_cached; (*iter->cache_close)(iter); } conn->cache_close = closecb; conn->next_cached = connection_cache; connection_cache = conn; pthread_mutex_unlock(&cache_mtx); } #ifdef WITH_SSL #ifndef HAVE_STRNSTR /* * Find the first occurrence of find in s, where the search is limited to the * first slen characters of s. */ static char * strnstr(const char *s, const char *find, size_t slen) { char c, sc; size_t len; if ((c = *find++) != '\0') { len = strlen(find); do { do { if (slen-- < 1 || (sc = *s++) == '\0') return (NULL); } while (sc != c); if (len > slen) return (NULL); } while (strncmp(s, find, len) != 0); s--; } return ((char *)__UNCONST(s)); } #endif /* * Convert characters A-Z to lowercase (intentionally avoid any locale * specific conversions). */ static char fetch_ssl_tolower(char in) { if (in >= 'A' && in <= 'Z') return (in + 32); else return (in); } /* * isalpha implementation that intentionally avoids any locale specific * conversions. */ static int fetch_ssl_isalpha(char in) { return ((in >= 'A' && in <= 'Z') || (in >= 'a' && in <= 'z')); } /* * Check if passed hostnames a and b are equal. */ static int fetch_ssl_hname_equal(const char *a, size_t alen, const char *b, size_t blen) { size_t i; if (alen != blen) return (0); for (i = 0; i < alen; ++i) { if (fetch_ssl_tolower(a[i]) != fetch_ssl_tolower(b[i])) return (0); } return (1); } /* * Check if domain label is traditional, meaning that only A-Z, a-z, 0-9 * and '-' (hyphen) are allowed. Hyphens have to be surrounded by alpha- * numeric characters. Double hyphens (like they're found in IDN a-labels * 'xn--') are not allowed. Empty labels are invalid. */ static int fetch_ssl_is_trad_domain_label(const char *l, size_t len, int wcok) { size_t i; if (!len || l[0] == '-' || l[len-1] == '-') return (0); for (i = 0; i < len; ++i) { if (!isdigit(l[i]) && !fetch_ssl_isalpha(l[i]) && !(l[i] == '*' && wcok) && !(l[i] == '-' && l[i - 1] != '-')) return (0); } return (1); } /* * Check if host name consists only of numbers. This might indicate an IP * address, which is not a good idea for CN wildcard comparison. */ static int fetch_ssl_hname_is_only_numbers(const char *hostname, size_t len) { size_t i; for (i = 0; i < len; ++i) { if (!((hostname[i] >= '0' && hostname[i] <= '9') || hostname[i] == '.')) return (0); } return (1); } /* * Check if the host name h passed matches the pattern passed in m which * is usually part of subjectAltName or CN of a certificate presented to * the client. This includes wildcard matching. The algorithm is based on * RFC6125, sections 6.4.3 and 7.2, which clarifies RFC2818 and RFC3280. */ static int fetch_ssl_hname_match(const char *h, size_t hlen, const char *m, size_t mlen) { int delta, hdotidx, mdot1idx, wcidx; const char *hdot, *mdot1, *mdot2; const char *wc; /* wildcard */ if (!(h && *h && m && *m)) return (0); if ((wc = strnstr(m, "*", mlen)) == NULL) return (fetch_ssl_hname_equal(h, hlen, m, mlen)); wcidx = wc - m; /* hostname should not be just dots and numbers */ if (fetch_ssl_hname_is_only_numbers(h, hlen)) return (0); /* only one wildcard allowed in pattern */ if (strnstr(wc + 1, "*", mlen - wcidx - 1) != NULL) return (0); /* * there must be at least two more domain labels and * wildcard has to be in the leftmost label (RFC6125) */ mdot1 = strnstr(m, ".", mlen); if (mdot1 == NULL || mdot1 < wc || (mlen - (mdot1 - m)) < 4) return (0); mdot1idx = mdot1 - m; mdot2 = strnstr(mdot1 + 1, ".", mlen - mdot1idx - 1); if (mdot2 == NULL || (mlen - (mdot2 - m)) < 2) return (0); /* hostname must contain a dot and not be the 1st char */ hdot = strnstr(h, ".", hlen); if (hdot == NULL || hdot == h) return (0); hdotidx = hdot - h; /* * host part of hostname must be at least as long as * pattern it's supposed to match */ if (hdotidx < mdot1idx) return (0); /* * don't allow wildcards in non-traditional domain names * (IDN, A-label, U-label...) */ if (!fetch_ssl_is_trad_domain_label(h, hdotidx, 0) || !fetch_ssl_is_trad_domain_label(m, mdot1idx, 1)) return (0); /* match domain part (part after first dot) */ if (!fetch_ssl_hname_equal(hdot, hlen - hdotidx, mdot1, mlen - mdot1idx)) return (0); /* match part left of wildcard */ if (!fetch_ssl_hname_equal(h, wcidx, m, wcidx)) return (0); /* match part right of wildcard */ delta = mdot1idx - wcidx - 1; if (!fetch_ssl_hname_equal(hdot - delta, delta, mdot1 - delta, delta)) return (0); /* all tests succeded, it's a match */ return (1); } /* * Get numeric host address info - returns NULL if host was not an IP * address. The caller is responsible for deallocation using * freeaddrinfo(3). */ static struct addrinfo * fetch_ssl_get_numeric_addrinfo(const char *hostname, size_t len) { struct addrinfo hints, *res; char *host; host = (char *)malloc(len + 1); memcpy(host, hostname, len); host[len] = '\0'; memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; hints.ai_flags = AI_NUMERICHOST; /* port is not relevant for this purpose */ if (getaddrinfo(host, "443", &hints, &res) != 0) { free(host); return NULL; } free(host); return res; } /* * Compare ip address in addrinfo with address passes. */ static int fetch_ssl_ipaddr_match_bin(const struct addrinfo *lhost, const char *rhost, size_t rhostlen) { const void *left; if (lhost->ai_family == AF_INET && rhostlen == 4) { left = (void *)&((struct sockaddr_in*)(void *) lhost->ai_addr)->sin_addr.s_addr; #ifdef INET6 } else if (lhost->ai_family == AF_INET6 && rhostlen == 16) { left = (void *)&((struct sockaddr_in6 *)(void *) lhost->ai_addr)->sin6_addr; #endif } else return (0); return (!memcmp(left, (const void *)rhost, rhostlen) ? 1 : 0); } /* * Compare ip address in addrinfo with host passed. If host is not an IP * address, comparison will fail. */ static int fetch_ssl_ipaddr_match(const struct addrinfo *laddr, const char *r, size_t rlen) { struct addrinfo *raddr; int ret; char *rip; ret = 0; if ((raddr = fetch_ssl_get_numeric_addrinfo(r, rlen)) == NULL) return 0; /* not a numeric host */ if (laddr->ai_family == raddr->ai_family) { if (laddr->ai_family == AF_INET) { rip = (char *)&((struct sockaddr_in *)(void *) raddr->ai_addr)->sin_addr.s_addr; ret = fetch_ssl_ipaddr_match_bin(laddr, rip, 4); #ifdef INET6 } else if (laddr->ai_family == AF_INET6) { rip = (char *)&((struct sockaddr_in6 *)(void *) raddr->ai_addr)->sin6_addr; ret = fetch_ssl_ipaddr_match_bin(laddr, rip, 16); #endif } } freeaddrinfo(raddr); return (ret); } /* * Verify server certificate by subjectAltName. */ static int fetch_ssl_verify_altname(STACK_OF(GENERAL_NAME) *altnames, const char *host, struct addrinfo *ip) { const GENERAL_NAME *name; size_t nslen; int i; const char *ns; for (i = 0; i < sk_GENERAL_NAME_num(altnames); ++i) { name = sk_GENERAL_NAME_value(altnames, i); ns = (const char *)ASN1_STRING_get0_data(name->d.ia5); nslen = (size_t)ASN1_STRING_length(name->d.ia5); if (name->type == GEN_DNS && ip == NULL && fetch_ssl_hname_match(host, strlen(host), ns, nslen)) return (1); else if (name->type == GEN_IPADD && ip != NULL && fetch_ssl_ipaddr_match_bin(ip, ns, nslen)) return (1); } return (0); } /* * Verify server certificate by CN. */ static int fetch_ssl_verify_cn(X509_NAME *subject, const char *host, struct addrinfo *ip) { ASN1_STRING *namedata; X509_NAME_ENTRY *nameentry; int cnlen, lastpos, loc, ret; unsigned char *cn; ret = 0; lastpos = -1; loc = -1; cn = NULL; /* get most specific CN (last entry in list) and compare */ while ((lastpos = X509_NAME_get_index_by_NID(subject, NID_commonName, lastpos)) != -1) loc = lastpos; if (loc > -1) { nameentry = X509_NAME_get_entry(subject, loc); namedata = X509_NAME_ENTRY_get_data(nameentry); cnlen = ASN1_STRING_to_UTF8(&cn, namedata); if (ip == NULL && fetch_ssl_hname_match(host, strlen(host), (const char *)cn, cnlen)) ret = 1; else if (ip != NULL && fetch_ssl_ipaddr_match(ip, (const char *)cn, cnlen)) ret = 1; OPENSSL_free(cn); } return (ret); } /* * Verify that server certificate subjectAltName/CN matches * hostname. First check, if there are alternative subject names. If yes, * those have to match. Only if those don't exist it falls back to * checking the subject's CN. */ static int fetch_ssl_verify_hname(X509 *cert, const char *host) { struct addrinfo *ip; STACK_OF(GENERAL_NAME) *altnames; X509_NAME *subject; int ret; ret = 0; ip = fetch_ssl_get_numeric_addrinfo(host, strlen(host)); altnames = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL); if (altnames != NULL) { ret = fetch_ssl_verify_altname(altnames, host, ip); } else { subject = X509_get_subject_name(cert); if (subject != NULL) ret = fetch_ssl_verify_cn(subject, host, ip); } if (ip != NULL) freeaddrinfo(ip); if (altnames != NULL) GENERAL_NAMES_free(altnames); return (ret); } /* * Configure transport security layer based on environment. */ static void fetch_ssl_setup_transport_layer(SSL_CTX *ctx, int verbose) { long ssl_ctx_options; ssl_ctx_options = SSL_OP_ALL | SSL_OP_NO_SSLv2 | SSL_OP_NO_TICKET; if (getenv("SSL_ALLOW_SSL3") == NULL) ssl_ctx_options |= SSL_OP_NO_SSLv3; if (getenv("SSL_NO_TLS1") != NULL) ssl_ctx_options |= SSL_OP_NO_TLSv1; if (getenv("SSL_NO_TLS1_1") != NULL) ssl_ctx_options |= SSL_OP_NO_TLSv1_1; if (getenv("SSL_NO_TLS1_2") != NULL) ssl_ctx_options |= SSL_OP_NO_TLSv1_2; if (verbose) fetch_info("SSL options: %lx", ssl_ctx_options); SSL_CTX_set_options(ctx, ssl_ctx_options); } /* * Configure peer verification based on environment. */ static int fetch_ssl_setup_peer_verification(SSL_CTX *ctx, int verbose) { X509_LOOKUP *crl_lookup; X509_STORE *crl_store; const char *ca_cert_file, *ca_cert_path, *crl_file; if (getenv("SSL_NO_VERIFY_PEER") == NULL) { ca_cert_file = getenv("SSL_CA_CERT_FILE"); ca_cert_path = getenv("SSL_CA_CERT_PATH") != NULL ? getenv("SSL_CA_CERT_PATH") : X509_get_default_cert_dir(); if (verbose) { fetch_info("Peer verification enabled"); if (ca_cert_file != NULL) fetch_info("Using CA cert file: %s", ca_cert_file); if (ca_cert_path != NULL) fetch_info("Using CA cert path: %s", ca_cert_path); } SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, fetch_ssl_cb_verify_crt); SSL_CTX_load_verify_locations(ctx, ca_cert_file, ca_cert_path); if ((crl_file = getenv("SSL_CRL_FILE")) != NULL) { if (verbose) fetch_info("Using CRL file: %s", crl_file); crl_store = SSL_CTX_get_cert_store(ctx); crl_lookup = X509_STORE_add_lookup(crl_store, X509_LOOKUP_file()); if (crl_lookup == NULL || !X509_load_crl_file(crl_lookup, crl_file, X509_FILETYPE_PEM)) { fprintf(stderr, "Could not load CRL file %s\n", crl_file); return (0); } X509_STORE_set_flags(crl_store, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); } } return (1); } /* * Configure client certificate based on environment. */ static int fetch_ssl_setup_client_certificate(SSL_CTX *ctx, int verbose) { const char *client_cert_file, *client_key_file; if ((client_cert_file = getenv("SSL_CLIENT_CERT_FILE")) != NULL) { client_key_file = getenv("SSL_CLIENT_KEY_FILE") != NULL ? getenv("SSL_CLIENT_KEY_FILE") : client_cert_file; if (verbose) { fetch_info("Using client cert file: %s", client_cert_file); fetch_info("Using client key file: %s", client_key_file); } if (SSL_CTX_use_certificate_chain_file(ctx, client_cert_file) != 1) { fprintf(stderr, "Could not load client certificate %s\n", client_cert_file); return (0); } if (SSL_CTX_use_PrivateKey_file(ctx, client_key_file, SSL_FILETYPE_PEM) != 1) { fprintf(stderr, "Could not load client key %s\n", client_key_file); return (0); } } return (1); } /* * Callback for SSL certificate verification, this is called on server * cert verification. It takes no decision, but informs the user in case * verification failed. */ int fetch_ssl_cb_verify_crt(int verified, X509_STORE_CTX *ctx) { X509 *crt; X509_NAME *name; char *str; str = NULL; if (!verified) { if ((crt = X509_STORE_CTX_get_current_cert(ctx)) != NULL && (name = X509_get_subject_name(crt)) != NULL) str = X509_NAME_oneline(name, 0, 0); fprintf(stderr, "Certificate verification failed for %s\n", str != NULL ? str : "no relevant certificate"); OPENSSL_free(str); } return (verified); } static pthread_once_t ssl_init_once = PTHREAD_ONCE_INIT; static void ssl_init(void) { /* Init the SSL library and context */ SSL_load_error_strings(); SSL_library_init(); } #endif /* * Enable SSL on a connection. */ int fetch_ssl(conn_t *conn, const struct url *URL, int verbose) { #ifdef WITH_SSL int ret; X509_NAME *name; char *str; (void)pthread_once(&ssl_init_once, ssl_init); conn->ssl_ctx = SSL_CTX_new(SSLv23_client_method()); if (conn->ssl_ctx == NULL) { fprintf(stderr, "failed to create SSL context\n"); ERR_print_errors_fp(stderr); return -1; } SSL_CTX_set_mode(conn->ssl_ctx, SSL_MODE_AUTO_RETRY); fetch_ssl_setup_transport_layer(conn->ssl_ctx, verbose); if (!fetch_ssl_setup_peer_verification(conn->ssl_ctx, verbose)) return (-1); if (!fetch_ssl_setup_client_certificate(conn->ssl_ctx, verbose)) return (-1); conn->ssl = SSL_new(conn->ssl_ctx); if (conn->ssl == NULL) { fprintf(stderr, "SSL context creation failed\n"); return (-1); } SSL_set_connect_state(conn->ssl); if (!SSL_set_fd(conn->ssl, conn->sd)) { fprintf(stderr, "SSL_set_fd failed\n"); return (-1); } #if OPENSSL_VERSION_NUMBER >= 0x0090806fL && !defined(OPENSSL_NO_TLSEXT) if (!SSL_set_tlsext_host_name(conn->ssl, (char *)(uintptr_t)URL->host)) { fprintf(stderr, "TLS server name indication extension failed for host %s\n", URL->host); return (-1); } #endif if ((ret = SSL_connect(conn->ssl)) <= 0){ fprintf(stderr, "SSL_connect returned %d\n", SSL_get_error(conn->ssl, ret)); return (-1); } conn->ssl_cert = SSL_get_peer_certificate(conn->ssl); if (conn->ssl_cert == NULL) { fprintf(stderr, "No server SSL certificate\n"); return (-1); } if (getenv("SSL_NO_VERIFY_HOSTNAME") == NULL) { if (verbose) fetch_info("Verify hostname"); if (!fetch_ssl_verify_hname(conn->ssl_cert, URL->host)) { fprintf(stderr, "SSL certificate subject doesn't match host %s\n", URL->host); return (-1); } } if (verbose) { fetch_info("%s connection established using %s", SSL_get_version(conn->ssl), SSL_get_cipher(conn->ssl)); conn->ssl_cert = SSL_get_peer_certificate(conn->ssl); name = X509_get_subject_name(conn->ssl_cert); str = X509_NAME_oneline(name, 0, 0); fetch_info("Certificate subject: %s", str); OPENSSL_free(str); name = X509_get_issuer_name(conn->ssl_cert); str = X509_NAME_oneline(name, 0, 0); fetch_info("Certificate issuer: %s", str); OPENSSL_free(str); } return (0); #else (void)conn; (void)verbose; fprintf(stderr, "SSL support disabled\n"); return (-1); #endif } /* * Read a character from a connection w/ timeout */ ssize_t fetch_read(conn_t *conn, char *buf, size_t len) { struct timeval now, timeout, waittv; fd_set readfds; ssize_t rlen; int r; if (!buf) return -1; if (len == 0) return 0; if (conn->next_len != 0) { if (conn->next_len < len) len = conn->next_len; memmove(buf, conn->next_buf, len); conn->next_len -= len; conn->next_buf += len; return len; } if (fetchTimeout) { FD_ZERO(&readfds); gettimeofday(&timeout, NULL); timeout.tv_sec += fetchTimeout; } for (;;) { while (fetchTimeout && !FD_ISSET(conn->sd, &readfds)) { FD_SET(conn->sd, &readfds); gettimeofday(&now, NULL); waittv.tv_sec = timeout.tv_sec - now.tv_sec; waittv.tv_usec = timeout.tv_usec - now.tv_usec; if (waittv.tv_usec < 0) { waittv.tv_usec += 1000000; waittv.tv_sec--; } if (waittv.tv_sec < 0) { errno = ETIMEDOUT; fetch_syserr(); return (-1); } errno = 0; #ifdef WITH_SSL if (conn->ssl && SSL_pending(conn->ssl)) break; #endif r = select(conn->sd + 1, &readfds, NULL, NULL, &waittv); if (r == -1) { if (errno == EINTR && fetchRestartCalls) continue; fetch_syserr(); return (-1); } } #ifdef WITH_SSL if (conn->ssl != NULL) rlen = SSL_read(conn->ssl, buf, len); else #endif rlen = read(conn->sd, buf, len); if (rlen >= 0) break; if (errno != EINTR || !fetchRestartCalls) return (-1); } return (rlen); } /* * Read a line of text from a connection w/ timeout */ #define MIN_BUF_SIZE 1024 int fetch_getln(conn_t *conn) { char *tmp, *next; size_t tmpsize; ssize_t len; if (conn->buf == NULL) { if ((conn->buf = malloc(MIN_BUF_SIZE)) == NULL) { errno = ENOMEM; return (-1); } conn->bufsize = MIN_BUF_SIZE; } conn->buflen = 0; next = NULL; do { /* * conn->bufsize != conn->buflen at this point, * so the buffer can be NUL-terminated below for * the case of len == 0. */ len = fetch_read(conn, conn->buf + conn->buflen, conn->bufsize - conn->buflen); if (len == -1) return (-1); if (len == 0) break; next = memchr(conn->buf + conn->buflen, '\n', len); conn->buflen += len; if (conn->buflen == conn->bufsize && next == NULL) { tmp = conn->buf; tmpsize = conn->bufsize * 2; if (tmpsize < conn->bufsize) { errno = ENOMEM; return (-1); } if ((tmp = realloc(tmp, tmpsize)) == NULL) { errno = ENOMEM; return (-1); } conn->buf = tmp; conn->bufsize = tmpsize; } } while (next == NULL); if (next != NULL) { *next = '\0'; conn->next_buf = next + 1; conn->next_len = conn->buflen - (conn->next_buf - conn->buf); conn->buflen = next - conn->buf; } else { conn->buf[conn->buflen] = '\0'; conn->next_len = 0; } return (0); } /* * Write a vector to a connection w/ timeout * Note: can modify the iovec. */ ssize_t fetch_write(conn_t *conn, const void *buf, size_t len) { struct timeval now, timeout, waittv; fd_set writefds; ssize_t wlen, total; int r; #ifndef MSG_NOSIGNAL static int killed_sigpipe; #endif #ifndef MSG_NOSIGNAL if (!killed_sigpipe) { signal(SIGPIPE, SIG_IGN); killed_sigpipe = 1; } #endif if (fetchTimeout) { FD_ZERO(&writefds); gettimeofday(&timeout, NULL); timeout.tv_sec += fetchTimeout; } total = 0; while (len) { while (fetchTimeout && !FD_ISSET(conn->sd, &writefds)) { FD_SET(conn->sd, &writefds); gettimeofday(&now, NULL); waittv.tv_sec = timeout.tv_sec - now.tv_sec; waittv.tv_usec = timeout.tv_usec - now.tv_usec; if (waittv.tv_usec < 0) { waittv.tv_usec += 1000000; waittv.tv_sec--; } if (waittv.tv_sec < 0) { errno = ETIMEDOUT; fetch_syserr(); return (-1); } errno = 0; r = select(conn->sd + 1, NULL, &writefds, NULL, &waittv); if (r == -1) { if (errno == EINTR && fetchRestartCalls) continue; return (-1); } } errno = 0; #ifdef WITH_SSL if (conn->ssl != NULL) wlen = SSL_write(conn->ssl, buf, len); else #endif #ifndef MSG_NOSIGNAL wlen = send(conn->sd, buf, len, 0); #else wlen = send(conn->sd, buf, len, MSG_NOSIGNAL); #endif if (wlen == 0) { /* we consider a short write a failure */ errno = EPIPE; fetch_syserr(); return (-1); } if (wlen < 0) { if (errno == EINTR && fetchRestartCalls) continue; return (-1); } total += wlen; buf = (const char *)buf + wlen; len -= wlen; } return (total); } /* * Close connection */ int fetch_close(conn_t *conn) { int ret; #ifdef WITH_SSL if (conn->ssl) { SSL_shutdown(conn->ssl); SSL_set_connect_state(conn->ssl); SSL_free(conn->ssl); conn->ssl = NULL; } if (conn->ssl_ctx) { SSL_CTX_free(conn->ssl_ctx); conn->ssl_ctx = NULL; } if (conn->ssl_cert) { X509_free(conn->ssl_cert); conn->ssl_cert = NULL; } #endif ret = close(conn->sd); if (conn->cache_url) fetchFreeURL(conn->cache_url); free(conn->ftp_home); free(conn->buf); free(conn); return (ret); } /*** Directory-related utility functions *************************************/ int fetch_add_entry(struct url_list *ue, struct url *base, const char *name, int pre_quoted) { struct url *tmp; char *tmp_name; size_t base_doc_len, name_len, i; unsigned char c; if (strchr(name, '/') != NULL || strcmp(name, "..") == 0 || strcmp(name, ".") == 0) return 0; if (strcmp(base->doc, "/") == 0) base_doc_len = 0; else base_doc_len = strlen(base->doc); name_len = 1; for (i = 0; name[i] != '\0'; ++i) { if ((!pre_quoted && name[i] == '%') || !fetch_urlpath_safe(name[i])) name_len += 3; else ++name_len; } tmp_name = malloc( base_doc_len + name_len + 1); if (tmp_name == NULL) { errno = ENOMEM; fetch_syserr(); return (-1); } if (ue->length + 1 >= ue->alloc_size) { tmp = realloc(ue->urls, (ue->alloc_size * 2 + 1) * sizeof(*tmp)); if (tmp == NULL) { free(tmp_name); errno = ENOMEM; fetch_syserr(); return (-1); } ue->alloc_size = ue->alloc_size * 2 + 1; ue->urls = tmp; } tmp = ue->urls + ue->length; strcpy(tmp->scheme, base->scheme); strcpy(tmp->user, base->user); strcpy(tmp->pwd, base->pwd); strcpy(tmp->host, base->host); tmp->port = base->port; tmp->doc = tmp_name; memcpy(tmp->doc, base->doc, base_doc_len); tmp->doc[base_doc_len] = '/'; for (i = base_doc_len + 1; *name != '\0'; ++name) { if ((!pre_quoted && *name == '%') || !fetch_urlpath_safe(*name)) { tmp->doc[i++] = '%'; c = (unsigned char)*name / 16; if (c < 10) tmp->doc[i++] = '0' + c; else tmp->doc[i++] = 'a' - 10 + c; c = (unsigned char)*name % 16; if (c < 10) tmp->doc[i++] = '0' + c; else tmp->doc[i++] = 'a' - 10 + c; } else { tmp->doc[i++] = *name; } } tmp->doc[i] = '\0'; tmp->offset = 0; tmp->length = 0; tmp->last_modified = -1; ++ue->length; return (0); } void fetchInitURLList(struct url_list *ue) { ue->length = ue->alloc_size = 0; ue->urls = NULL; } int fetchAppendURLList(struct url_list *dst, const struct url_list *src) { size_t i, j, len; len = dst->length + src->length; if (len > dst->alloc_size) { struct url *tmp; tmp = realloc(dst->urls, len * sizeof(*tmp)); if (tmp == NULL) { errno = ENOMEM; fetch_syserr(); return (-1); } dst->alloc_size = len; dst->urls = tmp; } for (i = 0, j = dst->length; i < src->length; ++i, ++j) { dst->urls[j] = src->urls[i]; dst->urls[j].doc = strdup(src->urls[i].doc); if (dst->urls[j].doc == NULL) { while (i-- > 0) free(dst->urls[j].doc); fetch_syserr(); return -1; } } dst->length = len; return 0; } void fetchFreeURLList(struct url_list *ue) { size_t i; for (i = 0; i < ue->length; ++i) free(ue->urls[i].doc); free(ue->urls); ue->length = ue->alloc_size = 0; } /*** Authentication-related utility functions ********************************/ static const char * fetch_read_word(FILE *f) { static char word[1024]; if (fscanf(f, " %1023s ", word) != 1) return (NULL); return (word); } /* * Get authentication data for a URL from .netrc */ int fetch_netrc_auth(struct url *url) { char fn[PATH_MAX]; const char *word; char *p; FILE *f; if ((p = getenv("NETRC")) != NULL) { if (snprintf(fn, sizeof(fn), "%s", p) >= (int)sizeof(fn)) { fetch_info("$NETRC specifies a file name " "longer than PATH_MAX"); return (-1); } } else { if ((p = getenv("HOME")) != NULL) { struct passwd *pwd; if ((pwd = getpwuid(getuid())) == NULL || (p = pwd->pw_dir) == NULL) return (-1); } if (snprintf(fn, sizeof(fn), "%s/.netrc", p) >= (int)sizeof(fn)) return (-1); } if ((f = fopen(fn, "r")) == NULL) return (-1); while ((word = fetch_read_word(f)) != NULL) { if (strcmp(word, "default") == 0) break; if (strcmp(word, "machine") == 0 && (word = fetch_read_word(f)) != NULL && strcasecmp(word, url->host) == 0) { break; } } if (word == NULL) goto ferr; while ((word = fetch_read_word(f)) != NULL) { if (strcmp(word, "login") == 0) { if ((word = fetch_read_word(f)) == NULL) goto ferr; if (snprintf(url->user, sizeof(url->user), "%s", word) > (int)sizeof(url->user)) { fetch_info("login name in .netrc is too long"); url->user[0] = '\0'; } } else if (strcmp(word, "password") == 0) { if ((word = fetch_read_word(f)) == NULL) goto ferr; if (snprintf(url->pwd, sizeof(url->pwd), "%s", word) > (int)sizeof(url->pwd)) { fetch_info("password in .netrc is too long"); url->pwd[0] = '\0'; } } else if (strcmp(word, "account") == 0) { if ((word = fetch_read_word(f)) == NULL) goto ferr; /* XXX not supported! */ } else { break; } } fclose(f); return (0); ferr: fclose(f); return (-1); } /* * The no_proxy environment variable specifies a set of domains for * which the proxy should not be consulted; the contents is a comma-, * or space-separated list of domain names. A single asterisk will * override all proxy variables and no transactions will be proxied * (for compatability with lynx and curl, see the discussion at * ). */ int fetch_no_proxy_match(const char *host) { const char *no_proxy, *p, *q; size_t h_len, d_len; if ((no_proxy = getenv("NO_PROXY")) == NULL && (no_proxy = getenv("no_proxy")) == NULL) return (0); /* asterisk matches any hostname */ if (strcmp(no_proxy, "*") == 0) return (1); h_len = strlen(host); p = no_proxy; do { /* position p at the beginning of a domain suffix */ while (*p == ',' || isspace((unsigned char)*p)) p++; /* position q at the first separator character */ for (q = p; *q; ++q) if (*q == ',' || isspace((unsigned char)*q)) break; d_len = q - p; if (d_len > 0 && h_len > d_len && strncasecmp(host + h_len - d_len, p, d_len) == 0) { /* domain name matches */ return (1); } p = q + 1; } while (*q); return (0); } struct fetchIO { void *io_cookie; ssize_t (*io_read)(void *, void *, size_t); ssize_t (*io_write)(void *, const void *, size_t); void (*io_close)(void *); }; void fetchIO_close(fetchIO *f) { if (f->io_close != NULL) (*f->io_close)(f->io_cookie); free(f); } fetchIO * fetchIO_unopen(void *io_cookie, ssize_t (*io_read)(void *, void *, size_t), ssize_t (*io_write)(void *, const void *, size_t), void (*io_close)(void *)) { fetchIO *f; f = malloc(sizeof(*f)); if (f == NULL) return f; f->io_cookie = io_cookie; f->io_read = io_read; f->io_write = io_write; f->io_close = io_close; return f; } ssize_t fetchIO_read(fetchIO *f, void *buf, size_t len) { if (f->io_read == NULL) return EBADF; return (*f->io_read)(f->io_cookie, buf, len); } ssize_t fetchIO_write(fetchIO *f, const void *buf, size_t len) { if (f->io_read == NULL) return EBADF; return (*f->io_write)(f->io_cookie, buf, len); }