xbps/lib/portableproplib/prop_number.c
2021-02-04 22:42:57 +01:00

585 lines
14 KiB
C

/* $NetBSD: prop_number.c,v 1.27 2014/09/05 05:19:24 matt Exp $ */
/*-
* Copyright (c) 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <prop/prop_number.h>
#include "prop_object_impl.h"
#include "prop_rb_impl.h"
#include <errno.h>
#include <stdlib.h>
struct _prop_number_value {
union {
int64_t pnu_signed;
uint64_t pnu_unsigned;
} pnv_un;
#define pnv_signed pnv_un.pnu_signed
#define pnv_unsigned pnv_un.pnu_unsigned
unsigned int pnv_is_unsigned :1,
:31;
};
struct _prop_number {
struct _prop_object pn_obj;
struct rb_node pn_link;
struct _prop_number_value pn_value;
};
_PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
static _prop_object_free_rv_t
_prop_number_free(prop_stack_t, prop_object_t *);
static bool _prop_number_externalize(
struct _prop_object_externalize_context *,
void *);
static _prop_object_equals_rv_t
_prop_number_equals(prop_object_t, prop_object_t,
void **, void **,
prop_object_t *, prop_object_t *);
static void _prop_number_lock(void);
static void _prop_number_unlock(void);
static const struct _prop_object_type _prop_object_type_number = {
.pot_type = PROP_TYPE_NUMBER,
.pot_free = _prop_number_free,
.pot_extern = _prop_number_externalize,
.pot_equals = _prop_number_equals,
.pot_lock = _prop_number_lock,
.pot_unlock = _prop_number_unlock,
};
#define prop_object_is_number(x) \
((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
/*
* Number objects are immutable, and we are likely to have many number
* objects that have the same value. So, to save memory, we unique'ify
* numbers so we only have one copy of each.
*/
static int
_prop_number_compare_values(const struct _prop_number_value *pnv1,
const struct _prop_number_value *pnv2)
{
/* Signed numbers are sorted before unsigned numbers. */
if (pnv1->pnv_is_unsigned) {
if (! pnv2->pnv_is_unsigned)
return (1);
if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
return (-1);
if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
return (1);
return (0);
}
if (pnv2->pnv_is_unsigned)
return (-1);
if (pnv1->pnv_signed < pnv2->pnv_signed)
return (-1);
if (pnv1->pnv_signed > pnv2->pnv_signed)
return (1);
return (0);
}
static int
/*ARGSUSED*/
_prop_number_rb_compare_nodes(void *ctx _PROP_ARG_UNUSED,
const void *n1, const void *n2)
{
const struct _prop_number *pn1 = n1;
const struct _prop_number *pn2 = n2;
return _prop_number_compare_values(&pn1->pn_value, &pn2->pn_value);
}
static int
/*ARGSUSED*/
_prop_number_rb_compare_key(void *ctx _PROP_ARG_UNUSED,
const void *n, const void *v)
{
const struct _prop_number *pn = n;
const struct _prop_number_value *pnv = v;
return _prop_number_compare_values(&pn->pn_value, pnv);
}
static const rb_tree_ops_t _prop_number_rb_tree_ops = {
.rbto_compare_nodes = _prop_number_rb_compare_nodes,
.rbto_compare_key = _prop_number_rb_compare_key,
.rbto_node_offset = offsetof(struct _prop_number, pn_link),
.rbto_context = NULL
};
static struct rb_tree _prop_number_tree;
_PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
/* ARGSUSED */
static _prop_object_free_rv_t
_prop_number_free(prop_stack_t stack, prop_object_t *obj)
{
prop_number_t pn = *obj;
_prop_rb_tree_remove_node(&_prop_number_tree, pn);
_PROP_POOL_PUT(_prop_number_pool, pn);
return (_PROP_OBJECT_FREE_DONE);
}
_PROP_ONCE_DECL(_prop_number_init_once)
static int
_prop_number_init(void)
{
_PROP_MUTEX_INIT(_prop_number_tree_mutex);
_prop_rb_tree_init(&_prop_number_tree, &_prop_number_rb_tree_ops);
return 0;
}
static void
_prop_number_lock(void)
{
/* XXX: init necessary? */
_PROP_ONCE_RUN(_prop_number_init_once, _prop_number_init);
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
}
static void
_prop_number_unlock(void)
{
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
}
static bool
_prop_number_externalize(struct _prop_object_externalize_context *ctx,
void *v)
{
prop_number_t pn = v;
char tmpstr[32];
/*
* For unsigned numbers, we output in hex. For signed numbers,
* we output in decimal.
*/
if (pn->pn_value.pnv_is_unsigned)
snprintf(tmpstr, sizeof(tmpstr), "%" PRIu64,
pn->pn_value.pnv_unsigned);
else
snprintf(tmpstr, sizeof(tmpstr), "%" PRIi64,
pn->pn_value.pnv_signed);
if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
_prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
_prop_object_externalize_end_tag(ctx, "integer") == false)
return (false);
return (true);
}
/* ARGSUSED */
static _prop_object_equals_rv_t
_prop_number_equals(prop_object_t v1, prop_object_t v2,
void **stored_pointer1, void **stored_pointer2,
prop_object_t *next_obj1, prop_object_t *next_obj2)
{
prop_number_t num1 = v1;
prop_number_t num2 = v2;
/*
* There is only ever one copy of a number object at any given
* time, so we can reduce this to a simple pointer equality check
* in the common case.
*/
if (num1 == num2)
return (_PROP_OBJECT_EQUALS_TRUE);
/*
* If the numbers are the same signed-ness, then we know they
* cannot be equal because they would have had pointer equality.
*/
if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
return (_PROP_OBJECT_EQUALS_FALSE);
/*
* We now have one signed value and one unsigned value. We can
* compare them iff:
* - The unsigned value is not larger than the signed value
* can represent.
* - The signed value is not smaller than the unsigned value
* can represent.
*/
if (num1->pn_value.pnv_is_unsigned) {
/*
* num1 is unsigned and num2 is signed.
*/
if (num1->pn_value.pnv_unsigned > INT64_MAX)
return (_PROP_OBJECT_EQUALS_FALSE);
if (num2->pn_value.pnv_signed < 0)
return (_PROP_OBJECT_EQUALS_FALSE);
} else {
/*
* num1 is signed and num2 is unsigned.
*/
if (num1->pn_value.pnv_signed < 0)
return (_PROP_OBJECT_EQUALS_FALSE);
if (num2->pn_value.pnv_unsigned > INT64_MAX)
return (_PROP_OBJECT_EQUALS_FALSE);
}
if (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed)
return _PROP_OBJECT_EQUALS_TRUE;
else
return _PROP_OBJECT_EQUALS_FALSE;
}
static prop_number_t
_prop_number_alloc(const struct _prop_number_value *pnv)
{
prop_number_t opn, pn, rpn;
_PROP_ONCE_RUN(_prop_number_init_once, _prop_number_init);
/*
* Check to see if this already exists in the tree. If it does,
* we just retain it and return it.
*/
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
opn = _prop_rb_tree_find(&_prop_number_tree, pnv);
if (opn != NULL) {
prop_object_retain(opn);
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
return (opn);
}
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
/*
* Not in the tree. Create it now.
*/
pn = _PROP_POOL_GET(_prop_number_pool);
if (pn == NULL)
return (NULL);
_prop_object_init(&pn->pn_obj, &_prop_object_type_number);
pn->pn_value = *pnv;
/*
* We dropped the mutex when we allocated the new object, so
* we have to check again if it is in the tree.
*/
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
opn = _prop_rb_tree_find(&_prop_number_tree, pnv);
if (opn != NULL) {
prop_object_retain(opn);
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
_PROP_POOL_PUT(_prop_number_pool, pn);
return (opn);
}
rpn = _prop_rb_tree_insert_node(&_prop_number_tree, pn);
_PROP_ASSERT(rpn == pn);
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
return (rpn);
}
/*
* prop_number_create_integer --
* Create a prop_number_t and initialize it with the
* provided integer value.
*/
prop_number_t
prop_number_create_integer(int64_t val)
{
struct _prop_number_value pnv;
memset(&pnv, 0, sizeof(pnv));
pnv.pnv_signed = val;
pnv.pnv_is_unsigned = false;
return (_prop_number_alloc(&pnv));
}
/*
* prop_number_create_unsigned_integer --
* Create a prop_number_t and initialize it with the
* provided unsigned integer value.
*/
prop_number_t
prop_number_create_unsigned_integer(uint64_t val)
{
struct _prop_number_value pnv;
memset(&pnv, 0, sizeof(pnv));
pnv.pnv_unsigned = val;
pnv.pnv_is_unsigned = true;
return (_prop_number_alloc(&pnv));
}
/*
* prop_number_copy --
* Copy a prop_number_t.
*/
prop_number_t
prop_number_copy(prop_number_t opn)
{
if (! prop_object_is_number(opn))
return (NULL);
/*
* Because we only ever allocate one object for any given
* value, this can be reduced to a simple retain operation.
*/
prop_object_retain(opn);
return (opn);
}
/*
* prop_number_unsigned --
* Returns true if the prop_number_t has an unsigned value.
*/
bool
prop_number_unsigned(prop_number_t pn)
{
return (pn->pn_value.pnv_is_unsigned);
}
/*
* prop_number_size --
* Return the size, in bits, required to hold the value of
* the specified number.
*/
int
prop_number_size(prop_number_t pn)
{
struct _prop_number_value *pnv;
if (! prop_object_is_number(pn))
return (0);
pnv = &pn->pn_value;
if (pnv->pnv_is_unsigned) {
if (pnv->pnv_unsigned > UINT32_MAX)
return (64);
if (pnv->pnv_unsigned > UINT16_MAX)
return (32);
if (pnv->pnv_unsigned > UINT8_MAX)
return (16);
return (8);
}
if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
return (64);
if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
return (32);
if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
return (16);
return (8);
}
/*
* prop_number_integer_value --
* Get the integer value of a prop_number_t.
*/
int64_t
prop_number_integer_value(prop_number_t pn)
{
/*
* XXX Impossible to distinguish between "not a prop_number_t"
* XXX and "prop_number_t has a value of 0".
*/
if (! prop_object_is_number(pn))
return (0);
return (pn->pn_value.pnv_signed);
}
/*
* prop_number_unsigned_integer_value --
* Get the unsigned integer value of a prop_number_t.
*/
uint64_t
prop_number_unsigned_integer_value(prop_number_t pn)
{
/*
* XXX Impossible to distinguish between "not a prop_number_t"
* XXX and "prop_number_t has a value of 0".
*/
if (! prop_object_is_number(pn))
return (0);
return (pn->pn_value.pnv_unsigned);
}
/*
* prop_number_equals --
* Return true if two numbers are equivalent.
*/
bool
prop_number_equals(prop_number_t num1, prop_number_t num2)
{
if (!prop_object_is_number(num1) || !prop_object_is_number(num2))
return (false);
return (prop_object_equals(num1, num2));
}
/*
* prop_number_equals_integer --
* Return true if the number is equivalent to the specified integer.
*/
bool
prop_number_equals_integer(prop_number_t pn, int64_t val)
{
if (! prop_object_is_number(pn))
return (false);
if (pn->pn_value.pnv_is_unsigned &&
(pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
return (false);
return (pn->pn_value.pnv_signed == val);
}
/*
* prop_number_equals_unsigned_integer --
* Return true if the number is equivalent to the specified
* unsigned integer.
*/
bool
prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
{
if (! prop_object_is_number(pn))
return (false);
if (! pn->pn_value.pnv_is_unsigned &&
(pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
return (false);
return (pn->pn_value.pnv_unsigned == val);
}
static bool
_prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
struct _prop_number_value *pnv)
{
char *cp;
_PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
sizeof(uint64_t));
errno = 0;
pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
return (false);
pnv->pnv_is_unsigned = true;
ctx->poic_cp = cp;
return (true);
}
static bool
_prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
struct _prop_number_value *pnv)
{
char *cp;
_PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
errno = 0;
pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
errno == ERANGE)
return (false);
pnv->pnv_is_unsigned = false;
ctx->poic_cp = cp;
return (true);
}
/*
* _prop_number_internalize --
* Parse a <number>...</number> and return the object created from
* the external representation.
*/
/* ARGSUSED */
bool
_prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
struct _prop_object_internalize_context *ctx)
{
struct _prop_number_value pnv;
memset(&pnv, 0, sizeof(pnv));
/* No attributes, no empty elements. */
if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
return (true);
/*
* If the first character is '-', then we treat as signed.
* If the first two characters are "0x" (i.e. the number is
* in hex), then we treat as unsigned. Otherwise, we try
* signed first, and if that fails (presumably due to ERANGE),
* then we switch to unsigned.
*/
if (ctx->poic_cp[0] == '-') {
if (_prop_number_internalize_signed(ctx, &pnv) == false)
return (true);
} else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
return (true);
} else {
if (_prop_number_internalize_signed(ctx, &pnv) == false &&
_prop_number_internalize_unsigned(ctx, &pnv) == false)
return (true);
}
if (_prop_object_internalize_find_tag(ctx, "integer",
_PROP_TAG_TYPE_END) == false)
return (true);
*obj = _prop_number_alloc(&pnv);
return (true);
}