6256b34ccc
* Add proplib-0.4.1 source and use it in XBPS. This is to avoid an external dependency, so that we depend on the features of the internal library. This also means that proplib is not required anymore. * Added support to read/write gzip compressed plists by default, thanks to proplib-0.4 that gained new functionality. That means that from now, XBPS will be able to write compressed gzip plist files for all metadata related work. This will vastly reduce bandwidth required for fetching remote repo's pkg index file and binary packages. --HG-- extra : convert_revision : xtraeme%40gmail.com-20100420122238-zcb85rudt9p34e10
577 lines
14 KiB
C
577 lines
14 KiB
C
/* $NetBSD: prop_number.c,v 1.20 2008/11/30 00:17:07 haad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <prop/prop_number.h>
|
|
#include "prop_object_impl.h"
|
|
#include "prop_rb_impl.h"
|
|
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
|
|
struct _prop_number {
|
|
struct _prop_object pn_obj;
|
|
struct rb_node pn_link;
|
|
struct _prop_number_value {
|
|
union {
|
|
int64_t pnu_signed;
|
|
uint64_t pnu_unsigned;
|
|
} pnv_un;
|
|
#define pnv_signed pnv_un.pnu_signed
|
|
#define pnv_unsigned pnv_un.pnu_unsigned
|
|
unsigned int pnv_is_unsigned :1,
|
|
:31;
|
|
} pn_value;
|
|
};
|
|
|
|
#define RBNODE_TO_PN(n) \
|
|
((struct _prop_number *) \
|
|
((uintptr_t)n - offsetof(struct _prop_number, pn_link)))
|
|
|
|
_PROP_POOL_INIT(_prop_number_pool, sizeof(struct _prop_number), "propnmbr")
|
|
|
|
static _prop_object_free_rv_t
|
|
_prop_number_free(prop_stack_t, prop_object_t *);
|
|
static bool _prop_number_externalize(
|
|
struct _prop_object_externalize_context *,
|
|
void *);
|
|
static _prop_object_equals_rv_t
|
|
_prop_number_equals(prop_object_t, prop_object_t,
|
|
void **, void **,
|
|
prop_object_t *, prop_object_t *);
|
|
|
|
static void _prop_number_lock(void);
|
|
static void _prop_number_unlock(void);
|
|
|
|
static const struct _prop_object_type _prop_object_type_number = {
|
|
.pot_type = PROP_TYPE_NUMBER,
|
|
.pot_free = _prop_number_free,
|
|
.pot_extern = _prop_number_externalize,
|
|
.pot_equals = _prop_number_equals,
|
|
.pot_lock = _prop_number_lock,
|
|
.pot_unlock = _prop_number_unlock,
|
|
};
|
|
|
|
#define prop_object_is_number(x) \
|
|
((x) != NULL && (x)->pn_obj.po_type == &_prop_object_type_number)
|
|
|
|
/*
|
|
* Number objects are immutable, and we are likely to have many number
|
|
* objects that have the same value. So, to save memory, we unique'ify
|
|
* numbers so we only have one copy of each.
|
|
*/
|
|
|
|
static int
|
|
_prop_number_compare_values(const struct _prop_number_value *pnv1,
|
|
const struct _prop_number_value *pnv2)
|
|
{
|
|
|
|
/* Signed numbers are sorted before unsigned numbers. */
|
|
|
|
if (pnv1->pnv_is_unsigned) {
|
|
if (! pnv2->pnv_is_unsigned)
|
|
return (1);
|
|
if (pnv1->pnv_unsigned < pnv2->pnv_unsigned)
|
|
return (-1);
|
|
if (pnv1->pnv_unsigned > pnv2->pnv_unsigned)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
if (pnv2->pnv_is_unsigned)
|
|
return (-1);
|
|
if (pnv1->pnv_signed < pnv2->pnv_signed)
|
|
return (-1);
|
|
if (pnv1->pnv_signed > pnv2->pnv_signed)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
_prop_number_rb_compare_nodes(const struct rb_node *n1,
|
|
const struct rb_node *n2)
|
|
{
|
|
const prop_number_t pn1 = RBNODE_TO_PN(n1);
|
|
const prop_number_t pn2 = RBNODE_TO_PN(n2);
|
|
|
|
return (_prop_number_compare_values(&pn1->pn_value, &pn2->pn_value));
|
|
}
|
|
|
|
static int
|
|
_prop_number_rb_compare_key(const struct rb_node *n,
|
|
const void *v)
|
|
{
|
|
const prop_number_t pn = RBNODE_TO_PN(n);
|
|
const struct _prop_number_value *pnv = v;
|
|
|
|
return (_prop_number_compare_values(&pn->pn_value, pnv));
|
|
}
|
|
|
|
static const struct rb_tree_ops _prop_number_rb_tree_ops = {
|
|
.rbto_compare_nodes = _prop_number_rb_compare_nodes,
|
|
.rbto_compare_key = _prop_number_rb_compare_key,
|
|
};
|
|
|
|
static struct rb_tree _prop_number_tree;
|
|
static bool _prop_number_tree_initialized;
|
|
|
|
_PROP_MUTEX_DECL_STATIC(_prop_number_tree_mutex)
|
|
|
|
/* ARGSUSED */
|
|
static _prop_object_free_rv_t
|
|
_prop_number_free(prop_stack_t stack, prop_object_t *obj)
|
|
{
|
|
prop_number_t pn = *obj;
|
|
|
|
_prop_rb_tree_remove_node(&_prop_number_tree, &pn->pn_link);
|
|
|
|
_PROP_POOL_PUT(_prop_number_pool, pn);
|
|
|
|
return (_PROP_OBJECT_FREE_DONE);
|
|
}
|
|
|
|
static void
|
|
_prop_number_lock()
|
|
{
|
|
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
|
|
}
|
|
|
|
static void
|
|
_prop_number_unlock()
|
|
{
|
|
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
|
|
}
|
|
|
|
static bool
|
|
_prop_number_externalize(struct _prop_object_externalize_context *ctx,
|
|
void *v)
|
|
{
|
|
prop_number_t pn = v;
|
|
char tmpstr[32];
|
|
|
|
/*
|
|
* For the record:
|
|
* The original implementation used hex for signed numbers,
|
|
* but we changed it to be human readable.
|
|
*/
|
|
if (pn->pn_value.pnv_is_unsigned)
|
|
sprintf(tmpstr, "%" PRIu64, pn->pn_value.pnv_unsigned);
|
|
else
|
|
sprintf(tmpstr, "%" PRIi64, pn->pn_value.pnv_signed);
|
|
|
|
if (_prop_object_externalize_start_tag(ctx, "integer") == false ||
|
|
_prop_object_externalize_append_cstring(ctx, tmpstr) == false ||
|
|
_prop_object_externalize_end_tag(ctx, "integer") == false)
|
|
return (false);
|
|
|
|
return (true);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static _prop_object_equals_rv_t
|
|
_prop_number_equals(prop_object_t v1, prop_object_t v2,
|
|
void **stored_pointer1, void **stored_pointer2,
|
|
prop_object_t *next_obj1, prop_object_t *next_obj2)
|
|
{
|
|
prop_number_t num1 = v1;
|
|
prop_number_t num2 = v2;
|
|
|
|
/*
|
|
* There is only ever one copy of a number object at any given
|
|
* time, so we can reduce this to a simple pointer equality check
|
|
* in the common case.
|
|
*/
|
|
if (num1 == num2)
|
|
return (_PROP_OBJECT_EQUALS_TRUE);
|
|
|
|
/*
|
|
* If the numbers are the same signed-ness, then we know they
|
|
* cannot be equal because they would have had pointer equality.
|
|
*/
|
|
if (num1->pn_value.pnv_is_unsigned == num2->pn_value.pnv_is_unsigned)
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
|
|
/*
|
|
* We now have one signed value and one unsigned value. We can
|
|
* compare them iff:
|
|
* - The unsigned value is not larger than the signed value
|
|
* can represent.
|
|
* - The signed value is not smaller than the unsigned value
|
|
* can represent.
|
|
*/
|
|
if (num1->pn_value.pnv_is_unsigned) {
|
|
/*
|
|
* num1 is unsigned and num2 is signed.
|
|
*/
|
|
if (num1->pn_value.pnv_unsigned > INT64_MAX)
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
if (num2->pn_value.pnv_signed < 0)
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
} else {
|
|
/*
|
|
* num1 is signed and num2 is unsigned.
|
|
*/
|
|
if (num1->pn_value.pnv_signed < 0)
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
if (num2->pn_value.pnv_unsigned > INT64_MAX)
|
|
return (_PROP_OBJECT_EQUALS_FALSE);
|
|
}
|
|
|
|
if (num1->pn_value.pnv_signed == num2->pn_value.pnv_signed)
|
|
return _PROP_OBJECT_EQUALS_TRUE;
|
|
else
|
|
return _PROP_OBJECT_EQUALS_FALSE;
|
|
}
|
|
|
|
static prop_number_t
|
|
_prop_number_alloc(const struct _prop_number_value *pnv)
|
|
{
|
|
prop_number_t opn, pn;
|
|
struct rb_node *n;
|
|
bool rv;
|
|
|
|
/*
|
|
* Check to see if this already exists in the tree. If it does,
|
|
* we just retain it and return it.
|
|
*/
|
|
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
|
|
if (! _prop_number_tree_initialized) {
|
|
_prop_rb_tree_init(&_prop_number_tree,
|
|
&_prop_number_rb_tree_ops);
|
|
_prop_number_tree_initialized = true;
|
|
} else {
|
|
n = _prop_rb_tree_find(&_prop_number_tree, pnv);
|
|
if (n != NULL) {
|
|
opn = RBNODE_TO_PN(n);
|
|
prop_object_retain(opn);
|
|
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
|
|
return (opn);
|
|
}
|
|
}
|
|
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
|
|
|
|
/*
|
|
* Not in the tree. Create it now.
|
|
*/
|
|
|
|
pn = _PROP_POOL_GET(_prop_number_pool);
|
|
if (pn == NULL)
|
|
return (NULL);
|
|
|
|
_prop_object_init(&pn->pn_obj, &_prop_object_type_number);
|
|
|
|
pn->pn_value = *pnv;
|
|
|
|
/*
|
|
* We dropped the mutex when we allocated the new object, so
|
|
* we have to check again if it is in the tree.
|
|
*/
|
|
_PROP_MUTEX_LOCK(_prop_number_tree_mutex);
|
|
n = _prop_rb_tree_find(&_prop_number_tree, pnv);
|
|
if (n != NULL) {
|
|
opn = RBNODE_TO_PN(n);
|
|
prop_object_retain(opn);
|
|
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
|
|
_PROP_POOL_PUT(_prop_number_pool, pn);
|
|
return (opn);
|
|
}
|
|
rv = _prop_rb_tree_insert_node(&_prop_number_tree, &pn->pn_link);
|
|
_PROP_ASSERT(rv == true);
|
|
_PROP_MUTEX_UNLOCK(_prop_number_tree_mutex);
|
|
return (pn);
|
|
}
|
|
|
|
/*
|
|
* prop_number_create_integer --
|
|
* Create a prop_number_t and initialize it with the
|
|
* provided integer value.
|
|
*/
|
|
prop_number_t
|
|
prop_number_create_integer(int64_t val)
|
|
{
|
|
struct _prop_number_value pnv;
|
|
|
|
memset(&pnv, 0, sizeof(pnv));
|
|
pnv.pnv_signed = val;
|
|
pnv.pnv_is_unsigned = false;
|
|
|
|
return (_prop_number_alloc(&pnv));
|
|
}
|
|
|
|
/*
|
|
* prop_number_create_unsigned_integer --
|
|
* Create a prop_number_t and initialize it with the
|
|
* provided unsigned integer value.
|
|
*/
|
|
prop_number_t
|
|
prop_number_create_unsigned_integer(uint64_t val)
|
|
{
|
|
struct _prop_number_value pnv;
|
|
|
|
memset(&pnv, 0, sizeof(pnv));
|
|
pnv.pnv_unsigned = val;
|
|
pnv.pnv_is_unsigned = true;
|
|
|
|
return (_prop_number_alloc(&pnv));
|
|
}
|
|
|
|
/*
|
|
* prop_number_copy --
|
|
* Copy a prop_number_t.
|
|
*/
|
|
prop_number_t
|
|
prop_number_copy(prop_number_t opn)
|
|
{
|
|
|
|
if (! prop_object_is_number(opn))
|
|
return (NULL);
|
|
|
|
/*
|
|
* Because we only ever allocate one object for any given
|
|
* value, this can be reduced to a simple retain operation.
|
|
*/
|
|
prop_object_retain(opn);
|
|
return (opn);
|
|
}
|
|
|
|
/*
|
|
* prop_number_unsigned --
|
|
* Returns true if the prop_number_t has an unsigned value.
|
|
*/
|
|
bool
|
|
prop_number_unsigned(prop_number_t pn)
|
|
{
|
|
|
|
return (pn->pn_value.pnv_is_unsigned);
|
|
}
|
|
|
|
/*
|
|
* prop_number_size --
|
|
* Return the size, in bits, required to hold the value of
|
|
* the specified number.
|
|
*/
|
|
int
|
|
prop_number_size(prop_number_t pn)
|
|
{
|
|
struct _prop_number_value *pnv;
|
|
|
|
if (! prop_object_is_number(pn))
|
|
return (0);
|
|
|
|
pnv = &pn->pn_value;
|
|
|
|
if (pnv->pnv_is_unsigned) {
|
|
if (pnv->pnv_unsigned > UINT32_MAX)
|
|
return (64);
|
|
if (pnv->pnv_unsigned > UINT16_MAX)
|
|
return (32);
|
|
if (pnv->pnv_unsigned > UINT8_MAX)
|
|
return (16);
|
|
return (8);
|
|
}
|
|
|
|
if (pnv->pnv_signed > INT32_MAX || pnv->pnv_signed < INT32_MIN)
|
|
return (64);
|
|
if (pnv->pnv_signed > INT16_MAX || pnv->pnv_signed < INT16_MIN)
|
|
return (32);
|
|
if (pnv->pnv_signed > INT8_MAX || pnv->pnv_signed < INT8_MIN)
|
|
return (16);
|
|
return (8);
|
|
}
|
|
|
|
/*
|
|
* prop_number_integer_value --
|
|
* Get the integer value of a prop_number_t.
|
|
*/
|
|
int64_t
|
|
prop_number_integer_value(prop_number_t pn)
|
|
{
|
|
|
|
/*
|
|
* XXX Impossible to distinguish between "not a prop_number_t"
|
|
* XXX and "prop_number_t has a value of 0".
|
|
*/
|
|
if (! prop_object_is_number(pn))
|
|
return (0);
|
|
|
|
return (pn->pn_value.pnv_signed);
|
|
}
|
|
|
|
/*
|
|
* prop_number_unsigned_integer_value --
|
|
* Get the unsigned integer value of a prop_number_t.
|
|
*/
|
|
uint64_t
|
|
prop_number_unsigned_integer_value(prop_number_t pn)
|
|
{
|
|
|
|
/*
|
|
* XXX Impossible to distinguish between "not a prop_number_t"
|
|
* XXX and "prop_number_t has a value of 0".
|
|
*/
|
|
if (! prop_object_is_number(pn))
|
|
return (0);
|
|
|
|
return (pn->pn_value.pnv_unsigned);
|
|
}
|
|
|
|
/*
|
|
* prop_number_equals --
|
|
* Return true if two numbers are equivalent.
|
|
*/
|
|
bool
|
|
prop_number_equals(prop_number_t num1, prop_number_t num2)
|
|
{
|
|
if (!prop_object_is_number(num1) || !prop_object_is_number(num2))
|
|
return (false);
|
|
|
|
return (prop_object_equals(num1, num2));
|
|
}
|
|
|
|
/*
|
|
* prop_number_equals_integer --
|
|
* Return true if the number is equivalent to the specified integer.
|
|
*/
|
|
bool
|
|
prop_number_equals_integer(prop_number_t pn, int64_t val)
|
|
{
|
|
|
|
if (! prop_object_is_number(pn))
|
|
return (false);
|
|
|
|
if (pn->pn_value.pnv_is_unsigned &&
|
|
(pn->pn_value.pnv_unsigned > INT64_MAX || val < 0))
|
|
return (false);
|
|
|
|
return (pn->pn_value.pnv_signed == val);
|
|
}
|
|
|
|
/*
|
|
* prop_number_equals_unsigned_integer --
|
|
* Return true if the number is equivalent to the specified
|
|
* unsigned integer.
|
|
*/
|
|
bool
|
|
prop_number_equals_unsigned_integer(prop_number_t pn, uint64_t val)
|
|
{
|
|
|
|
if (! prop_object_is_number(pn))
|
|
return (false);
|
|
|
|
if (! pn->pn_value.pnv_is_unsigned &&
|
|
(pn->pn_value.pnv_signed < 0 || val > INT64_MAX))
|
|
return (false);
|
|
|
|
return (pn->pn_value.pnv_unsigned == val);
|
|
}
|
|
|
|
static bool
|
|
_prop_number_internalize_unsigned(struct _prop_object_internalize_context *ctx,
|
|
struct _prop_number_value *pnv)
|
|
{
|
|
char *cp;
|
|
|
|
_PROP_ASSERT(/*CONSTCOND*/sizeof(unsigned long long) ==
|
|
sizeof(uint64_t));
|
|
|
|
errno = 0;
|
|
pnv->pnv_unsigned = (uint64_t) strtoull(ctx->poic_cp, &cp, 0);
|
|
if (pnv->pnv_unsigned == UINT64_MAX && errno == ERANGE)
|
|
return (false);
|
|
pnv->pnv_is_unsigned = true;
|
|
ctx->poic_cp = cp;
|
|
|
|
return (true);
|
|
}
|
|
|
|
static bool
|
|
_prop_number_internalize_signed(struct _prop_object_internalize_context *ctx,
|
|
struct _prop_number_value *pnv)
|
|
{
|
|
char *cp;
|
|
|
|
_PROP_ASSERT(/*CONSTCOND*/sizeof(long long) == sizeof(int64_t));
|
|
|
|
errno = 0;
|
|
pnv->pnv_signed = (int64_t) strtoll(ctx->poic_cp, &cp, 0);
|
|
if ((pnv->pnv_signed == INT64_MAX || pnv->pnv_signed == INT64_MIN) &&
|
|
errno == ERANGE)
|
|
return (false);
|
|
pnv->pnv_is_unsigned = false;
|
|
ctx->poic_cp = cp;
|
|
|
|
return (true);
|
|
}
|
|
|
|
/*
|
|
* _prop_number_internalize --
|
|
* Parse a <number>...</number> and return the object created from
|
|
* the external representation.
|
|
*/
|
|
/* ARGSUSED */
|
|
bool
|
|
_prop_number_internalize(prop_stack_t stack, prop_object_t *obj,
|
|
struct _prop_object_internalize_context *ctx)
|
|
{
|
|
struct _prop_number_value pnv;
|
|
|
|
memset(&pnv, 0, sizeof(pnv));
|
|
|
|
/* No attributes, no empty elements. */
|
|
if (ctx->poic_tagattr != NULL || ctx->poic_is_empty_element)
|
|
return (true);
|
|
|
|
/*
|
|
* If the first character is '-', then we treat as signed.
|
|
* If the first two characters are "0x" (i.e. the number is
|
|
* in hex), then we treat as unsigned. Otherwise, we try
|
|
* signed first, and if that fails (presumably due to ERANGE),
|
|
* then we switch to unsigned.
|
|
*/
|
|
if (ctx->poic_cp[0] == '-') {
|
|
if (_prop_number_internalize_signed(ctx, &pnv) == false)
|
|
return (true);
|
|
} else if (ctx->poic_cp[0] == '0' && ctx->poic_cp[1] == 'x') {
|
|
if (_prop_number_internalize_unsigned(ctx, &pnv) == false)
|
|
return (true);
|
|
} else {
|
|
if (_prop_number_internalize_signed(ctx, &pnv) == false &&
|
|
_prop_number_internalize_unsigned(ctx, &pnv) == false)
|
|
return (true);
|
|
}
|
|
|
|
if (_prop_object_internalize_find_tag(ctx, "integer",
|
|
_PROP_TAG_TYPE_END) == false)
|
|
return (true);
|
|
|
|
*obj = _prop_number_alloc(&pnv);
|
|
return (true);
|
|
}
|