ArmInterface: return ref instead of copy for GetTimer ()

* ArmInterface: return ref instead of copy for GetTimer

* ArmInterface: add const ref GetTimer

* ArmInterface: return raw pointer instead of shared_ptr in GetTimer

* remove more unnecessary shared_ptr usage

* Fix save states

* fix unit tests
This commit is contained in:
Ben 2020-04-22 07:44:58 +02:00 committed by GitHub
parent 38c3c9c74b
commit 39463f1f6d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 46 additions and 32 deletions

@ -228,8 +228,12 @@ public:
virtual void PurgeState() = 0; virtual void PurgeState() = 0;
std::shared_ptr<Core::Timing::Timer> GetTimer() { Core::Timing::Timer& GetTimer() {
return timer; return *timer;
}
const Core::Timing::Timer& GetTimer() const {
return *timer;
} }
u32 GetID() const { u32 GetID() const {

@ -137,10 +137,10 @@ public:
} }
void AddTicks(std::uint64_t ticks) override { void AddTicks(std::uint64_t ticks) override {
parent.GetTimer()->AddTicks(ticks); parent.GetTimer().AddTicks(ticks);
} }
std::uint64_t GetTicksRemaining() override { std::uint64_t GetTicksRemaining() override {
s64 ticks = parent.GetTimer()->GetDowncount(); s64 ticks = parent.GetTimer().GetDowncount();
return static_cast<u64>(ticks <= 0 ? 0 : ticks); return static_cast<u64>(ticks <= 0 ? 0 : ticks);
} }

@ -3865,7 +3865,7 @@ SWI_INST : {
if (inst_base->cond == ConditionCode::AL || CondPassed(cpu, inst_base->cond)) { if (inst_base->cond == ConditionCode::AL || CondPassed(cpu, inst_base->cond)) {
DEBUG_ASSERT(cpu->system != nullptr); DEBUG_ASSERT(cpu->system != nullptr);
swi_inst* const inst_cream = (swi_inst*)inst_base->component; swi_inst* const inst_cream = (swi_inst*)inst_base->component;
cpu->system->GetRunningCore().GetTimer()->AddTicks(num_instrs); cpu->system->GetRunningCore().GetTimer().AddTicks(num_instrs);
cpu->NumInstrsToExecute = cpu->NumInstrsToExecute =
num_instrs >= cpu->NumInstrsToExecute ? 0 : cpu->NumInstrsToExecute - num_instrs; num_instrs >= cpu->NumInstrsToExecute ? 0 : cpu->NumInstrsToExecute - num_instrs;
num_instrs = 0; num_instrs = 0;

@ -144,14 +144,14 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
// So we have to get those cores to the same global time first // So we have to get those cores to the same global time first
u64 global_ticks = timing->GetGlobalTicks(); u64 global_ticks = timing->GetGlobalTicks();
s64 max_delay = 0; s64 max_delay = 0;
std::shared_ptr<ARM_Interface> current_core_to_execute = nullptr; ARM_Interface* current_core_to_execute = nullptr;
for (auto& cpu_core : cpu_cores) { for (auto& cpu_core : cpu_cores) {
if (cpu_core->GetTimer()->GetTicks() < global_ticks) { if (cpu_core->GetTimer().GetTicks() < global_ticks) {
s64 delay = global_ticks - cpu_core->GetTimer()->GetTicks(); s64 delay = global_ticks - cpu_core->GetTimer().GetTicks();
cpu_core->GetTimer()->Advance(delay); cpu_core->GetTimer().Advance(delay);
if (max_delay < delay) { if (max_delay < delay) {
max_delay = delay; max_delay = delay;
current_core_to_execute = cpu_core; current_core_to_execute = cpu_core.get();
} }
} }
} }
@ -159,12 +159,14 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
if (max_delay > 0) { if (max_delay > 0) {
LOG_TRACE(Core_ARM11, "Core {} running (delayed) for {} ticks", LOG_TRACE(Core_ARM11, "Core {} running (delayed) for {} ticks",
current_core_to_execute->GetID(), current_core_to_execute->GetID(),
current_core_to_execute->GetTimer()->GetDowncount()); current_core_to_execute->GetTimer().GetDowncount());
running_core = current_core_to_execute.get(); if (running_core != current_core_to_execute) {
kernel->SetRunningCPU(current_core_to_execute); running_core = current_core_to_execute;
kernel->SetRunningCPU(running_core);
}
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) { if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", current_core_to_execute->GetID()); LOG_TRACE(Core_ARM11, "Core {} idling", current_core_to_execute->GetID());
current_core_to_execute->GetTimer()->Idle(); current_core_to_execute->GetTimer().Idle();
PrepareReschedule(); PrepareReschedule();
} else { } else {
if (tight_loop) { if (tight_loop) {
@ -179,21 +181,21 @@ System::ResultStatus System::RunLoop(bool tight_loop) {
// TODO: Make special check for idle since we can easily revert the time of idle cores // TODO: Make special check for idle since we can easily revert the time of idle cores
s64 max_slice = Timing::MAX_SLICE_LENGTH; s64 max_slice = Timing::MAX_SLICE_LENGTH;
for (const auto& cpu_core : cpu_cores) { for (const auto& cpu_core : cpu_cores) {
max_slice = std::min(max_slice, cpu_core->GetTimer()->GetMaxSliceLength()); max_slice = std::min(max_slice, cpu_core->GetTimer().GetMaxSliceLength());
} }
for (auto& cpu_core : cpu_cores) { for (auto& cpu_core : cpu_cores) {
cpu_core->GetTimer()->Advance(max_slice); cpu_core->GetTimer().Advance(max_slice);
} }
for (auto& cpu_core : cpu_cores) { for (auto& cpu_core : cpu_cores) {
LOG_TRACE(Core_ARM11, "Core {} running for {} ticks", cpu_core->GetID(), LOG_TRACE(Core_ARM11, "Core {} running for {} ticks", cpu_core->GetID(),
cpu_core->GetTimer()->GetDowncount()); cpu_core->GetTimer().GetDowncount());
running_core = cpu_core.get(); running_core = cpu_core.get();
kernel->SetRunningCPU(cpu_core); kernel->SetRunningCPU(running_core);
// If we don't have a currently active thread then don't execute instructions, // If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread // instead advance to the next event and try to yield to the next thread
if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) { if (kernel->GetCurrentThreadManager().GetCurrentThread() == nullptr) {
LOG_TRACE(Core_ARM11, "Core {} idling", cpu_core->GetID()); LOG_TRACE(Core_ARM11, "Core {} idling", cpu_core->GetID());
cpu_core->GetTimer()->Idle(); cpu_core->GetTimer().Idle();
PrepareReschedule(); PrepareReschedule();
} else { } else {
if (tight_loop) { if (tight_loop) {
@ -371,7 +373,7 @@ System::ResultStatus System::Init(Frontend::EmuWindow& emu_window, u32 system_mo
running_core = cpu_cores[0].get(); running_core = cpu_cores[0].get();
kernel->SetCPUs(cpu_cores); kernel->SetCPUs(cpu_cores);
kernel->SetRunningCPU(cpu_cores[0]); kernel->SetRunningCPU(cpu_cores[0].get());
if (Settings::values.enable_dsp_lle) { if (Settings::values.enable_dsp_lle) {
dsp_core = std::make_unique<AudioCore::DspLle>(*memory, dsp_core = std::make_unique<AudioCore::DspLle>(*memory,

@ -26,7 +26,7 @@ Timing::Timing(std::size_t num_cores, u32 cpu_clock_percentage) {
timers[i] = std::make_shared<Timer>(); timers[i] = std::make_shared<Timer>();
} }
UpdateClockSpeed(cpu_clock_percentage); UpdateClockSpeed(cpu_clock_percentage);
current_timer = timers[0]; current_timer = timers[0].get();
} }
void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) { void Timing::UpdateClockSpeed(u32 cpu_clock_percentage) {
@ -50,12 +50,12 @@ TimingEventType* Timing::RegisterEvent(const std::string& name, TimedCallback ca
void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata, void Timing::ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata,
std::size_t core_id) { std::size_t core_id) {
ASSERT(event_type != nullptr); ASSERT(event_type != nullptr);
std::shared_ptr<Timing::Timer> timer; Timing::Timer* timer = nullptr;
if (core_id == std::numeric_limits<std::size_t>::max()) { if (core_id == std::numeric_limits<std::size_t>::max()) {
timer = current_timer; timer = current_timer;
} else { } else {
ASSERT(core_id < timers.size()); ASSERT(core_id < timers.size());
timer = timers.at(core_id); timer = timers.at(core_id).get();
} }
s64 timeout = timer->GetTicks() + cycles_into_future; s64 timeout = timer->GetTicks() + cycles_into_future;
@ -103,7 +103,7 @@ void Timing::RemoveEvent(const TimingEventType* event_type) {
} }
void Timing::SetCurrentTimer(std::size_t core_id) { void Timing::SetCurrentTimer(std::size_t core_id) {
current_timer = timers[core_id]; current_timer = timers[core_id].get();
} }
s64 Timing::GetTicks() const { s64 Timing::GetTicks() const {

@ -281,20 +281,28 @@ private:
std::unordered_map<std::string, TimingEventType> event_types = {}; std::unordered_map<std::string, TimingEventType> event_types = {};
std::vector<std::shared_ptr<Timer>> timers; std::vector<std::shared_ptr<Timer>> timers;
std::shared_ptr<Timer> current_timer; Timer* current_timer = nullptr;
// Stores a scaling for the internal clockspeed. Changing this number results in // Stores a scaling for the internal clockspeed. Changing this number results in
// under/overclocking the guest cpu // under/overclocking the guest cpu
double cpu_clock_scale = 1.0; double cpu_clock_scale = 1.0;
template <class Archive> template <class Archive>
void serialize(Archive& ar, const unsigned int) { void serialize(Archive& ar, const unsigned int file_version) {
// event_types set during initialization of other things // event_types set during initialization of other things
ar& global_timer; ar& global_timer;
ar& timers; ar& timers;
ar& current_timer; if (file_version == 0) {
std::shared_ptr<Timer> x;
ar& x;
current_timer = x.get();
} else {
ar& current_timer;
}
} }
friend class boost::serialization::access; friend class boost::serialization::access;
}; };
} // namespace Core } // namespace Core
BOOST_CLASS_VERSION(Core::Timing, 1)

@ -93,7 +93,7 @@ void KernelSystem::SetCPUs(std::vector<std::shared_ptr<ARM_Interface>> cpus) {
} }
} }
void KernelSystem::SetRunningCPU(std::shared_ptr<ARM_Interface> cpu) { void KernelSystem::SetRunningCPU(ARM_Interface* cpu) {
if (current_process) { if (current_process) {
stored_processes[current_cpu->GetID()] = current_process; stored_processes[current_cpu->GetID()] = current_process;
} }

@ -218,7 +218,7 @@ public:
void SetCPUs(std::vector<std::shared_ptr<ARM_Interface>> cpu); void SetCPUs(std::vector<std::shared_ptr<ARM_Interface>> cpu);
void SetRunningCPU(std::shared_ptr<ARM_Interface> cpu); void SetRunningCPU(ARM_Interface* cpu);
ThreadManager& GetThreadManager(u32 core_id); ThreadManager& GetThreadManager(u32 core_id);
const ThreadManager& GetThreadManager(u32 core_id) const; const ThreadManager& GetThreadManager(u32 core_id) const;
@ -257,7 +257,7 @@ public:
/// Map of named ports managed by the kernel, which can be retrieved using the ConnectToPort /// Map of named ports managed by the kernel, which can be retrieved using the ConnectToPort
std::unordered_map<std::string, std::shared_ptr<ClientPort>> named_ports; std::unordered_map<std::string, std::shared_ptr<ClientPort>> named_ports;
std::shared_ptr<ARM_Interface> current_cpu; ARM_Interface* current_cpu = nullptr;
Memory::MemorySystem& memory; Memory::MemorySystem& memory;

@ -1254,10 +1254,10 @@ void SVC::SleepThread(s64 nanoseconds) {
/// This returns the total CPU ticks elapsed since the CPU was powered-on /// This returns the total CPU ticks elapsed since the CPU was powered-on
s64 SVC::GetSystemTick() { s64 SVC::GetSystemTick() {
// TODO: Use globalTicks here? // TODO: Use globalTicks here?
s64 result = system.GetRunningCore().GetTimer()->GetTicks(); s64 result = system.GetRunningCore().GetTimer().GetTicks();
// Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end. // Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end.
// Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b // Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
system.GetRunningCore().GetTimer()->AddTicks(150); system.GetRunningCore().GetTimer().AddTicks(150);
return result; return result;
} }