Merge pull request #3307 from Subv/gsp_new_frame

HLE: Convert GSP_GPU to ServiceFramework.
This commit is contained in:
Sebastian Valle 2017-12-21 10:31:41 -05:00 committed by GitHub
commit ae42267cc7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 655 additions and 519 deletions

View File

@ -236,8 +236,10 @@ add_library(core STATIC
hle/service/fs/archive.h hle/service/fs/archive.h
hle/service/fs/fs_user.cpp hle/service/fs/fs_user.cpp
hle/service/fs/fs_user.h hle/service/fs/fs_user.h
hle/service/gsp_gpu.cpp hle/service/gsp/gsp.cpp
hle/service/gsp_gpu.h hle/service/gsp/gsp.h
hle/service/gsp/gsp_gpu.cpp
hle/service/gsp/gsp_gpu.h
hle/service/gsp_lcd.cpp hle/service/gsp_lcd.cpp
hle/service/gsp_lcd.h hle/service/gsp_lcd.h
hle/service/hid/hid.cpp hle/service/hid/hid.cpp

View File

@ -11,7 +11,7 @@
#include "core/hle/kernel/kernel.h" #include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/shared_memory.h"
#include "core/hle/result.h" #include "core/hle/result.h"
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp.h"
#include "core/hle/service/hid/hid.h" #include "core/hle/service/hid/hid.h"
#include "core/memory.h" #include "core/memory.h"

View File

@ -0,0 +1,35 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <vector>
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/service/gsp/gsp.h"
namespace Service {
namespace GSP {
static std::weak_ptr<GSP_GPU> gsp_gpu;
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) {
auto gpu = gsp_gpu.lock();
ASSERT(gpu != nullptr);
return gpu->GetFrameBufferInfo(thread_id, screen_index);
}
void SignalInterrupt(InterruptId interrupt_id) {
auto gpu = gsp_gpu.lock();
ASSERT(gpu != nullptr);
return gpu->SignalInterrupt(interrupt_id);
}
void InstallInterfaces(SM::ServiceManager& service_manager) {
auto gpu = std::make_shared<GSP_GPU>();
gpu->InstallAsService(service_manager);
gsp_gpu = gpu;
}
} // namespace GSP
} // namespace Service

View File

@ -0,0 +1,32 @@
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <string>
#include "common/common_types.h"
#include "core/hle/result.h"
#include "core/hle/service/gsp/gsp_gpu.h"
namespace Service {
namespace GSP {
/**
* Retrieves the framebuffer info stored in the GSP shared memory for the
* specified screen index and thread id.
* @param thread_id GSP thread id of the process that accesses the structure that we are requesting.
* @param screen_index Index of the screen we are requesting (Top = 0, Bottom = 1).
* @returns FramebufferUpdate Information about the specified framebuffer.
*/
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index);
/**
* Signals that the specified interrupt type has occurred to userland code
* @param interrupt_id ID of interrupt that is being signalled
*/
void SignalInterrupt(InterruptId interrupt_id);
void InstallInterfaces(SM::ServiceManager& service_manager);
} // namespace GSP
} // namespace Service

View File

@ -2,15 +2,18 @@
// Licensed under GPLv2 or any later version // Licensed under GPLv2 or any later version
// Refer to the license.txt file included. // Refer to the license.txt file included.
#include <vector>
#include "common/bit_field.h" #include "common/bit_field.h"
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/swap.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/ipc.h" #include "core/hle/ipc.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/event.h" #include "core/hle/kernel/event.h"
#include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/shared_memory.h"
#include "core/hle/result.h" #include "core/hle/result.h"
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp_gpu.h"
#include "core/hw/gpu.h" #include "core/hw/gpu.h"
#include "core/hw/hw.h" #include "core/hw/hw.h"
#include "core/hw/lcd.h" #include "core/hw/lcd.h"
@ -48,32 +51,25 @@ constexpr ResultCode ERR_REGS_INVALID_SIZE(ErrorDescription::InvalidSize, ErrorM
ErrorSummary::InvalidArgument, ErrorSummary::InvalidArgument,
ErrorLevel::Usage); // 0xE0E02BEC ErrorLevel::Usage); // 0xE0E02BEC
/// Event triggered when GSP interrupt has been signalled
Kernel::SharedPtr<Kernel::Event> g_interrupt_event;
/// GSP shared memoryings
Kernel::SharedPtr<Kernel::SharedMemory> g_shared_memory;
/// Thread index into interrupt relay queue
u32 g_thread_id = 0;
static bool gpu_right_acquired = false;
static bool first_initialization = true;
/// Gets a pointer to a thread command buffer in GSP shared memory /// Gets a pointer to a thread command buffer in GSP shared memory
static inline u8* GetCommandBuffer(u32 thread_id) { static inline u8* GetCommandBuffer(Kernel::SharedPtr<Kernel::SharedMemory> shared_memory,
return g_shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer))); u32 thread_id) {
return shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer)));
} }
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) { FrameBufferUpdate* GSP_GPU::GetFrameBufferInfo(u32 thread_id, u32 screen_index) {
DEBUG_ASSERT_MSG(screen_index < 2, "Invalid screen index"); DEBUG_ASSERT_MSG(screen_index < 2, "Invalid screen index");
// For each thread there are two FrameBufferUpdate fields // For each thread there are two FrameBufferUpdate fields
u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate); u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate);
u8* ptr = g_shared_memory->GetPointer(offset); u8* ptr = shared_memory->GetPointer(offset);
return reinterpret_cast<FrameBufferUpdate*>(ptr); return reinterpret_cast<FrameBufferUpdate*>(ptr);
} }
/// Gets a pointer to the interrupt relay queue for a given thread index /// Gets a pointer to the interrupt relay queue for a given thread index
static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) { static inline InterruptRelayQueue* GetInterruptRelayQueue(
u8* ptr = g_shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id); Kernel::SharedPtr<Kernel::SharedMemory> shared_memory, u32 thread_id) {
u8* ptr = shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id);
return reinterpret_cast<InterruptRelayQueue*>(ptr); return reinterpret_cast<InterruptRelayQueue*>(ptr);
} }
@ -95,10 +91,10 @@ static void WriteSingleHWReg(u32 base_address, u32 data) {
* *
* @param base_address The address of the first register in the sequence * @param base_address The address of the first register in the sequence
* @param size_in_bytes The number of registers to update (size of data) * @param size_in_bytes The number of registers to update (size of data)
* @param data_vaddr A pointer to the source data * @param data A vector containing the source data
* @return RESULT_SUCCESS if the parameters are valid, error code otherwise * @return RESULT_SUCCESS if the parameters are valid, error code otherwise
*/ */
static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, VAddr data_vaddr) { static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, const std::vector<u8>& data) {
// This magic number is verified to be done by the gsp module // This magic number is verified to be done by the gsp module
const u32 max_size_in_bytes = 0x80; const u32 max_size_in_bytes = 0x80;
@ -112,11 +108,14 @@ static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, VAddr data_va
LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes); LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
return ERR_REGS_MISALIGNED; return ERR_REGS_MISALIGNED;
} else { } else {
size_t offset = 0;
while (size_in_bytes > 0) { while (size_in_bytes > 0) {
WriteSingleHWReg(base_address, Memory::Read32(data_vaddr)); u32 value;
std::memcpy(&value, &data[offset], sizeof(u32));
WriteSingleHWReg(base_address, value);
size_in_bytes -= 4; size_in_bytes -= 4;
data_vaddr += 4; offset += 4;
base_address += 4; base_address += 4;
} }
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -134,12 +133,12 @@ static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, VAddr data_va
* *
* @param base_address The address of the first register in the sequence * @param base_address The address of the first register in the sequence
* @param size_in_bytes The number of registers to update (size of data) * @param size_in_bytes The number of registers to update (size of data)
* @param data_vaddr A virtual address to the source data to use for updates * @param data A vector containing the data to write
* @param masks_vaddr A virtual address to the masks * @param masks A vector containing the masks
* @return RESULT_SUCCESS if the parameters are valid, error code otherwise * @return RESULT_SUCCESS if the parameters are valid, error code otherwise
*/ */
static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, VAddr data_vaddr, static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes,
VAddr masks_vaddr) { const std::vector<u8>& data, const std::vector<u8>& masks) {
// This magic number is verified to be done by the gsp module // This magic number is verified to be done by the gsp module
const u32 max_size_in_bytes = 0x80; const u32 max_size_in_bytes = 0x80;
@ -153,23 +152,24 @@ static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, VAddr
LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes); LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes);
return ERR_REGS_MISALIGNED; return ERR_REGS_MISALIGNED;
} else { } else {
size_t offset = 0;
while (size_in_bytes > 0) { while (size_in_bytes > 0) {
const u32 reg_address = base_address + REGS_BEGIN; const u32 reg_address = base_address + REGS_BEGIN;
u32 reg_value; u32 reg_value;
HW::Read<u32>(reg_value, reg_address); HW::Read<u32>(reg_value, reg_address);
u32 data = Memory::Read32(data_vaddr); u32 value, mask;
u32 mask = Memory::Read32(masks_vaddr); std::memcpy(&value, &data[offset], sizeof(u32));
std::memcpy(&mask, &masks[offset], sizeof(u32));
// Update the current value of the register only for set mask bits // Update the current value of the register only for set mask bits
reg_value = (reg_value & ~mask) | (data & mask); reg_value = (reg_value & ~mask) | (value & mask);
WriteSingleHWReg(base_address, reg_value); WriteSingleHWReg(base_address, reg_value);
size_in_bytes -= 4; size_in_bytes -= 4;
data_vaddr += 4; offset += 4;
masks_vaddr += 4;
base_address += 4; base_address += 4;
} }
return RESULT_SUCCESS; return RESULT_SUCCESS;
@ -181,78 +181,59 @@ static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, VAddr
} }
} }
/** void GSP_GPU::WriteHWRegs(Kernel::HLERequestContext& ctx) {
* GSP_GPU::WriteHWRegs service function IPC::RequestParser rp(ctx, 0x1, 2, 2);
* u32 reg_addr = rp.Pop<u32>();
* Writes sequential GSP GPU hardware registers u32 size = rp.Pop<u32>();
* std::vector<u8> src_data = rp.PopStaticBuffer();
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to write sequentially
* 4 : pointer to source data array
*/
static void WriteHWRegs(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
VAddr src = cmd_buff[4];
cmd_buff[1] = WriteHWRegs(reg_addr, size, src).raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(GSP::WriteHWRegs(reg_addr, size, src_data));
} }
/** void GSP_GPU::WriteHWRegsWithMask(Kernel::HLERequestContext& ctx) {
* GSP_GPU::WriteHWRegsWithMask service function IPC::RequestParser rp(ctx, 0x2, 2, 4);
* u32 reg_addr = rp.Pop<u32>();
* Updates sequential GSP GPU hardware registers using masks u32 size = rp.Pop<u32>();
*
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to update sequentially
* 4 : pointer to source data array
* 6 : pointer to mask array
*/
static void WriteHWRegsWithMask(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
VAddr src_data = cmd_buff[4]; std::vector<u8> src_data = rp.PopStaticBuffer();
VAddr mask_data = cmd_buff[6]; std::vector<u8> mask_data = rp.PopStaticBuffer();
cmd_buff[1] = WriteHWRegsWithMask(reg_addr, size, src_data, mask_data).raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(GSP::WriteHWRegsWithMask(reg_addr, size, src_data, mask_data));
} }
/// Read a GSP GPU hardware register void GSP_GPU::ReadHWRegs(Kernel::HLERequestContext& ctx) {
static void ReadHWRegs(Interface* self) { IPC::RequestParser rp(ctx, 0x4, 2, 0);
u32* cmd_buff = Kernel::GetCommandBuffer(); u32 reg_addr = rp.Pop<u32>();
u32 reg_addr = cmd_buff[1]; u32 input_size = rp.Pop<u32>();
u32 size = cmd_buff[2];
// TODO: Return proper error codes static constexpr u32 MaxReadSize = 0x80;
if (reg_addr + size >= 0x420000) { u32 size = std::min(input_size, MaxReadSize);
LOG_ERROR(Service_GSP, "Read address out of range! (address=0x%08x, size=0x%08x)", reg_addr,
size); if ((reg_addr % 4) != 0 || reg_addr >= 0x420000) {
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(ERR_REGS_OUTOFRANGE_OR_MISALIGNED);
LOG_ERROR(Service_GSP, "Invalid address 0x%08x", reg_addr);
return; return;
} }
// size should be word-aligned // size should be word-aligned
if ((size % 4) != 0) { if ((size % 4) != 0) {
IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(ERR_REGS_MISALIGNED);
LOG_ERROR(Service_GSP, "Invalid size 0x%08x", size); LOG_ERROR(Service_GSP, "Invalid size 0x%08x", size);
return; return;
} }
VAddr dst_vaddr = cmd_buff[0x41]; std::vector<u8> buffer(size);
for (u32 offset = 0; offset < size; ++offset) {
while (size > 0) { HW::Read<u8>(buffer[offset], REGS_BEGIN + reg_addr + offset);
u32 value;
HW::Read<u32>(value, reg_addr + REGS_BEGIN);
Memory::Write32(dst_vaddr, value);
size -= 4;
dst_vaddr += 4;
reg_addr += 4;
} }
IPC::RequestBuilder rb = rp.MakeBuilder(1, 2);
rb.Push(RESULT_SUCCESS);
rb.PushStaticBuffer(std::move(buffer), 0);
} }
ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) { ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) {
@ -300,115 +281,77 @@ ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) {
return RESULT_SUCCESS; return RESULT_SUCCESS;
} }
/** void GSP_GPU::SetBufferSwap(Kernel::HLERequestContext& ctx) {
* GSP_GPU::SetBufferSwap service function IPC::RequestParser rp(ctx, 0x5, 8, 0);
* u32 screen_id = rp.Pop<u32>();
* Updates GPU display framebuffer configuration using the specified parameters. auto fb_info = rp.PopRaw<FrameBufferInfo>();
*
* Inputs:
* 1 : Screen ID (0 = top screen, 1 = bottom screen)
* 2-7 : FrameBufferInfo structure
* Outputs:
* 1: Result code
*/
static void SetBufferSwap(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 screen_id = cmd_buff[1];
FrameBufferInfo* fb_info = (FrameBufferInfo*)&cmd_buff[2];
cmd_buff[1] = SetBufferSwap(screen_id, *fb_info).raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(GSP::SetBufferSwap(screen_id, fb_info));
} }
/** void GSP_GPU::FlushDataCache(Kernel::HLERequestContext& ctx) {
* GSP_GPU::FlushDataCache service function IPC::RequestParser rp(ctx, 0x9, 2, 2);
* u32 address = rp.Pop<u32>();
* This Function is a no-op, We aren't emulating the CPU cache any time soon. u32 size = rp.Pop<u32>();
* auto process = rp.PopObject<Kernel::Process>();
* Inputs:
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void FlushDataCache(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
// TODO(purpasmart96): Verify return header on HW // TODO(purpasmart96): Verify return header on HW
cmd_buff[1] = RESULT_SUCCESS.raw; // No error IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address, LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=%u", address,
size, process); size, process->process_id);
} }
/** void GSP_GPU::SetAxiConfigQoSMode(Kernel::HLERequestContext& ctx) {
* GSP_GPU::SetAxiConfigQoSMode service function IPC::RequestParser rp(ctx, 0x10, 1, 0);
* Inputs: u32 mode = rp.Pop<u32>();
* 1 : Mode, unused in emulator
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void SetAxiConfigQoSMode(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 mode = cmd_buff[1];
cmd_buff[1] = RESULT_SUCCESS.raw; // No error IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
LOG_DEBUG(Service_GSP, "(STUBBED) called mode=0x%08X", mode); LOG_DEBUG(Service_GSP, "(STUBBED) called mode=0x%08X", mode);
} }
/** void GSP_GPU::RegisterInterruptRelayQueue(Kernel::HLERequestContext& ctx) {
* GSP_GPU::RegisterInterruptRelayQueue service function IPC::RequestParser rp(ctx, 0x13, 1, 2);
* Inputs: u32 flags = rp.Pop<u32>();
* 1 : "Flags" field, purpose is unknown
* 3 : Handle to GSP synchronization event
* Outputs:
* 1 : Result of function, 0x2A07 on success, otherwise error code
* 2 : Thread index into GSP command buffer
* 4 : Handle to GSP shared memory
*/
static void RegisterInterruptRelayQueue(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 flags = cmd_buff[1];
g_interrupt_event = Kernel::g_handle_table.Get<Kernel::Event>(cmd_buff[3]); interrupt_event = rp.PopObject<Kernel::Event>();
// TODO(mailwl): return right error code instead assert // TODO(mailwl): return right error code instead assert
ASSERT_MSG((g_interrupt_event != nullptr), "handle is not valid!"); ASSERT_MSG((interrupt_event != nullptr), "handle is not valid!");
g_interrupt_event->name = "GSP_GPU::interrupt_event"; interrupt_event->name = "GSP_GSP_GPU::interrupt_event";
IPC::RequestBuilder rb = rp.MakeBuilder(2, 2);
if (first_initialization) { if (first_initialization) {
// This specific code is required for a successful initialization, rather than 0 // This specific code is required for a successful initialization, rather than 0
first_initialization = false; first_initialization = false;
cmd_buff[1] = RESULT_FIRST_INITIALIZATION.raw; rb.Push(RESULT_FIRST_INITIALIZATION);
} else { } else {
cmd_buff[1] = RESULT_SUCCESS.raw; rb.Push(RESULT_SUCCESS);
} }
cmd_buff[2] = g_thread_id++; // Thread ID
cmd_buff[4] = Kernel::g_handle_table.Create(g_shared_memory).Unwrap(); // GSP shared memory
g_interrupt_event->Signal(); // TODO(bunnei): Is this correct? rb.Push(thread_id);
rb.PushCopyObjects(shared_memory);
thread_id++;
interrupt_event->Signal(); // TODO(bunnei): Is this correct?
LOG_WARNING(Service_GSP, "called, flags=0x%08X", flags); LOG_WARNING(Service_GSP, "called, flags=0x%08X", flags);
} }
/** void GSP_GPU::UnregisterInterruptRelayQueue(Kernel::HLERequestContext& ctx) {
* GSP_GPU::UnregisterInterruptRelayQueue service function IPC::RequestParser rp(ctx, 0x14, 0, 0);
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void UnregisterInterruptRelayQueue(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
g_thread_id = 0; thread_id = 0;
g_interrupt_event = nullptr; interrupt_event = nullptr;
cmd_buff[1] = RESULT_SUCCESS.raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
LOG_WARNING(Service_GSP, "(STUBBED) called"); LOG_WARNING(Service_GSP, "(STUBBED) called");
} }
@ -419,20 +362,21 @@ static void UnregisterInterruptRelayQueue(Interface* self) {
* @todo This should probably take a thread_id parameter and only signal this thread? * @todo This should probably take a thread_id parameter and only signal this thread?
* @todo This probably does not belong in the GSP module, instead move to video_core * @todo This probably does not belong in the GSP module, instead move to video_core
*/ */
void SignalInterrupt(InterruptId interrupt_id) { void GSP_GPU::SignalInterrupt(InterruptId interrupt_id) {
if (!gpu_right_acquired) { if (!gpu_right_acquired) {
return; return;
} }
if (nullptr == g_interrupt_event) { if (nullptr == interrupt_event) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!"); LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!");
return; return;
} }
if (nullptr == g_shared_memory) { if (nullptr == shared_memory) {
LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!"); LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!");
return; return;
} }
for (int thread_id = 0; thread_id < 0x4; ++thread_id) { for (int thread_id = 0; thread_id < 0x4; ++thread_id) {
InterruptRelayQueue* interrupt_relay_queue = GetInterruptRelayQueue(thread_id); InterruptRelayQueue* interrupt_relay_queue =
GetInterruptRelayQueue(shared_memory, thread_id);
u8 next = interrupt_relay_queue->index; u8 next = interrupt_relay_queue->index;
next += interrupt_relay_queue->number_interrupts; next += interrupt_relay_queue->number_interrupts;
next = next % 0x34; // 0x34 is the number of interrupt slots next = next % 0x34; // 0x34 is the number of interrupt slots
@ -450,12 +394,12 @@ void SignalInterrupt(InterruptId interrupt_id) {
if (screen_id != -1) { if (screen_id != -1) {
FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id); FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id);
if (info->is_dirty) { if (info->is_dirty) {
SetBufferSwap(screen_id, info->framebuffer_info[info->index]); GSP::SetBufferSwap(screen_id, info->framebuffer_info[info->index]);
info->is_dirty.Assign(false); info->is_dirty.Assign(false);
} }
} }
} }
g_interrupt_event->Signal(); interrupt_event->Signal();
} }
MICROPROFILE_DEFINE(GPU_GSP_DMA, "GPU", "GSP DMA", MP_RGB(100, 0, 255)); MICROPROFILE_DEFINE(GPU_GSP_DMA, "GPU", "GSP DMA", MP_RGB(100, 0, 255));
@ -592,20 +536,10 @@ static void ExecuteCommand(const Command& command, u32 thread_id) {
(void*)&command); (void*)&command);
} }
/** void GSP_GPU::SetLcdForceBlack(Kernel::HLERequestContext& ctx) {
* GSP_GPU::SetLcdForceBlack service function IPC::RequestParser rp(ctx, 0xB, 1, 0);
*
* Enable or disable REG_LCDCOLORFILL with the color black.
*
* Inputs:
* 1: Black color fill flag (0 = don't fill, !0 = fill)
* Outputs:
* 1: Result code
*/
static void SetLcdForceBlack(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
bool enable_black = cmd_buff[1] != 0; bool enable_black = rp.Pop<bool>();
LCD::Regs::ColorFill data = {0}; LCD::Regs::ColorFill data = {0};
// Since data is already zeroed, there is no need to explicitly set // Since data is already zeroed, there is no need to explicitly set
@ -615,14 +549,16 @@ static void SetLcdForceBlack(Interface* self) {
LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_top), data.raw); // Top LCD LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_top), data.raw); // Top LCD
LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_bottom), data.raw); // Bottom LCD LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_bottom), data.raw); // Bottom LCD
cmd_buff[1] = RESULT_SUCCESS.raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
} }
/// This triggers handling of the GX command written to the command buffer in shared memory. void GSP_GPU::TriggerCmdReqQueue(Kernel::HLERequestContext& ctx) {
static void TriggerCmdReqQueue(Interface* self) { IPC::RequestParser rp(ctx, 0xC, 0, 0);
// Iterate through each thread's command queue... // Iterate through each thread's command queue...
for (unsigned thread_id = 0; thread_id < 0x4; ++thread_id) { for (unsigned thread_id = 0; thread_id < 0x4; ++thread_id) {
CommandBuffer* command_buffer = (CommandBuffer*)GetCommandBuffer(thread_id); CommandBuffer* command_buffer = (CommandBuffer*)GetCommandBuffer(shared_memory, thread_id);
// Iterate through each command... // Iterate through each command...
for (unsigned i = 0; i < command_buffer->number_commands; ++i) { for (unsigned i = 0; i < command_buffer->number_commands; ++i) {
@ -636,31 +572,12 @@ static void TriggerCmdReqQueue(Interface* self) {
} }
} }
u32* cmd_buff = Kernel::GetCommandBuffer(); IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
cmd_buff[1] = 0; // No error rb.Push(RESULT_SUCCESS);
} }
/** void GSP_GPU::ImportDisplayCaptureInfo(Kernel::HLERequestContext& ctx) {
* GSP_GPU::ImportDisplayCaptureInfo service function IPC::RequestParser rp(ctx, 0x18, 0, 0);
*
* Returns information about the current framebuffer state
*
* Inputs:
* 0: Header 0x00180000
* Outputs:
* 0: Header Code[0x00180240]
* 1: Result code
* 2: Left framebuffer virtual address for the main screen
* 3: Right framebuffer virtual address for the main screen
* 4: Main screen framebuffer format
* 5: Main screen framebuffer width
* 6: Left framebuffer virtual address for the bottom screen
* 7: Right framebuffer virtual address for the bottom screen
* 8: Bottom screen framebuffer format
* 9: Bottom screen framebuffer width
*/
static void ImportDisplayCaptureInfo(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
// TODO(Subv): We're always returning the framebuffer structures for thread_id = 0, // TODO(Subv): We're always returning the framebuffer structures for thread_id = 0,
// because we only support a single running application at a time. // because we only support a single running application at a time.
@ -671,133 +588,120 @@ static void ImportDisplayCaptureInfo(Interface* self) {
FrameBufferUpdate* top_screen = GetFrameBufferInfo(thread_id, 0); FrameBufferUpdate* top_screen = GetFrameBufferInfo(thread_id, 0);
FrameBufferUpdate* bottom_screen = GetFrameBufferInfo(thread_id, 1); FrameBufferUpdate* bottom_screen = GetFrameBufferInfo(thread_id, 1);
cmd_buff[0] = IPC::MakeHeader(0x18, 0x9, 0); struct CaptureInfoEntry {
cmd_buff[1] = RESULT_SUCCESS.raw; u32_le address_left;
u32_le address_right;
u32_le format;
u32_le stride;
};
CaptureInfoEntry top_entry, bottom_entry;
// Top Screen // Top Screen
cmd_buff[2] = top_screen->framebuffer_info[top_screen->index].address_left; top_entry.address_left = top_screen->framebuffer_info[top_screen->index].address_left;
cmd_buff[3] = top_screen->framebuffer_info[top_screen->index].address_right; top_entry.address_right = top_screen->framebuffer_info[top_screen->index].address_right;
cmd_buff[4] = top_screen->framebuffer_info[top_screen->index].format; top_entry.format = top_screen->framebuffer_info[top_screen->index].format;
cmd_buff[5] = top_screen->framebuffer_info[top_screen->index].stride; top_entry.stride = top_screen->framebuffer_info[top_screen->index].stride;
// Bottom Screen // Bottom Screen
cmd_buff[6] = bottom_screen->framebuffer_info[bottom_screen->index].address_left; bottom_entry.address_left = bottom_screen->framebuffer_info[bottom_screen->index].address_left;
cmd_buff[7] = bottom_screen->framebuffer_info[bottom_screen->index].address_right; bottom_entry.address_right =
cmd_buff[8] = bottom_screen->framebuffer_info[bottom_screen->index].format; bottom_screen->framebuffer_info[bottom_screen->index].address_right;
cmd_buff[9] = bottom_screen->framebuffer_info[bottom_screen->index].stride; bottom_entry.format = bottom_screen->framebuffer_info[bottom_screen->index].format;
bottom_entry.stride = bottom_screen->framebuffer_info[bottom_screen->index].stride;
IPC::RequestBuilder rb = rp.MakeBuilder(9, 0);
rb.Push(RESULT_SUCCESS);
rb.PushRaw(top_entry);
rb.PushRaw(bottom_entry);
LOG_WARNING(Service_GSP, "called"); LOG_WARNING(Service_GSP, "called");
} }
/** void GSP_GPU::AcquireRight(Kernel::HLERequestContext& ctx) {
* GSP_GPU::AcquireRight service function IPC::RequestParser rp(ctx, 0x16, 1, 2);
* Outputs:
* 1: Result code u32 flag = rp.Pop<u32>();
*/ auto process = rp.PopObject<Kernel::Process>();
static void AcquireRight(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
gpu_right_acquired = true; gpu_right_acquired = true;
cmd_buff[1] = RESULT_SUCCESS.raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
LOG_WARNING(Service_GSP, "called"); LOG_WARNING(Service_GSP, "called flag=%08X process=%u", flag, process->process_id);
} }
/** void GSP_GPU::ReleaseRight(Kernel::HLERequestContext& ctx) {
* GSP_GPU::ReleaseRight service function IPC::RequestParser rp(ctx, 0x17, 0, 0);
* Outputs:
* 1: Result code
*/
static void ReleaseRight(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
gpu_right_acquired = false; gpu_right_acquired = false;
cmd_buff[1] = RESULT_SUCCESS.raw; IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
rb.Push(RESULT_SUCCESS);
LOG_WARNING(Service_GSP, "called"); LOG_WARNING(Service_GSP, "called");
} }
/** void GSP_GPU::StoreDataCache(Kernel::HLERequestContext& ctx) {
* GSP_GPU::StoreDataCache service function IPC::RequestParser rp(ctx, 0x1F, 2, 2);
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 0 : Header code [0x001F0082]
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
static void StoreDataCache(Interface* self) {
u32* cmd_buff = Kernel::GetCommandBuffer();
u32 address = cmd_buff[1];
u32 size = cmd_buff[2];
u32 process = cmd_buff[4];
cmd_buff[0] = IPC::MakeHeader(0x1F, 0x1, 0); u32 address = rp.Pop<u32>();
cmd_buff[1] = RESULT_SUCCESS.raw; // No error u32 size = rp.Pop<u32>();
auto process = rp.PopObject<Kernel::Process>();
LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address, IPC::RequestBuilder rb = rp.MakeBuilder(1, 0);
size, process); rb.Push(RESULT_SUCCESS);
LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=%u", address,
size, process->process_id);
} }
const Interface::FunctionInfo FunctionTable[] = { GSP_GPU::GSP_GPU() : ServiceFramework("gsp::Gpu", 2) {
{0x00010082, WriteHWRegs, "WriteHWRegs"}, static const FunctionInfo functions[] = {
{0x00020084, WriteHWRegsWithMask, "WriteHWRegsWithMask"}, {0x00010082, &GSP_GPU::WriteHWRegs, "WriteHWRegs"},
{0x00030082, nullptr, "WriteHWRegRepeat"}, {0x00020084, &GSP_GPU::WriteHWRegsWithMask, "WriteHWRegsWithMask"},
{0x00040080, ReadHWRegs, "ReadHWRegs"}, {0x00030082, nullptr, "WriteHWRegRepeat"},
{0x00050200, SetBufferSwap, "SetBufferSwap"}, {0x00040080, &GSP_GPU::ReadHWRegs, "ReadHWRegs"},
{0x00060082, nullptr, "SetCommandList"}, {0x00050200, &GSP_GPU::SetBufferSwap, "SetBufferSwap"},
{0x000700C2, nullptr, "RequestDma"}, {0x00060082, nullptr, "SetCommandList"},
{0x00080082, FlushDataCache, "FlushDataCache"}, {0x000700C2, nullptr, "RequestDma"},
{0x00090082, nullptr, "InvalidateDataCache"}, {0x00080082, &GSP_GPU::FlushDataCache, "FlushDataCache"},
{0x000A0044, nullptr, "RegisterInterruptEvents"}, {0x00090082, nullptr, "InvalidateDataCache"},
{0x000B0040, SetLcdForceBlack, "SetLcdForceBlack"}, {0x000A0044, nullptr, "RegisterInterruptEvents"},
{0x000C0000, TriggerCmdReqQueue, "TriggerCmdReqQueue"}, {0x000B0040, &GSP_GPU::SetLcdForceBlack, "SetLcdForceBlack"},
{0x000D0140, nullptr, "SetDisplayTransfer"}, {0x000C0000, &GSP_GPU::TriggerCmdReqQueue, "TriggerCmdReqQueue"},
{0x000E0180, nullptr, "SetTextureCopy"}, {0x000D0140, nullptr, "SetDisplayTransfer"},
{0x000F0200, nullptr, "SetMemoryFill"}, {0x000E0180, nullptr, "SetTextureCopy"},
{0x00100040, SetAxiConfigQoSMode, "SetAxiConfigQoSMode"}, {0x000F0200, nullptr, "SetMemoryFill"},
{0x00110040, nullptr, "SetPerfLogMode"}, {0x00100040, &GSP_GPU::SetAxiConfigQoSMode, "SetAxiConfigQoSMode"},
{0x00120000, nullptr, "GetPerfLog"}, {0x00110040, nullptr, "SetPerfLogMode"},
{0x00130042, RegisterInterruptRelayQueue, "RegisterInterruptRelayQueue"}, {0x00120000, nullptr, "GetPerfLog"},
{0x00140000, UnregisterInterruptRelayQueue, "UnregisterInterruptRelayQueue"}, {0x00130042, &GSP_GPU::RegisterInterruptRelayQueue, "RegisterInterruptRelayQueue"},
{0x00150002, nullptr, "TryAcquireRight"}, {0x00140000, &GSP_GPU::UnregisterInterruptRelayQueue, "UnregisterInterruptRelayQueue"},
{0x00160042, AcquireRight, "AcquireRight"}, {0x00150002, nullptr, "TryAcquireRight"},
{0x00170000, ReleaseRight, "ReleaseRight"}, {0x00160042, &GSP_GPU::AcquireRight, "AcquireRight"},
{0x00180000, ImportDisplayCaptureInfo, "ImportDisplayCaptureInfo"}, {0x00170000, &GSP_GPU::ReleaseRight, "ReleaseRight"},
{0x00190000, nullptr, "SaveVramSysArea"}, {0x00180000, &GSP_GPU::ImportDisplayCaptureInfo, "ImportDisplayCaptureInfo"},
{0x001A0000, nullptr, "RestoreVramSysArea"}, {0x00190000, nullptr, "SaveVramSysArea"},
{0x001B0000, nullptr, "ResetGpuCore"}, {0x001A0000, nullptr, "RestoreVramSysArea"},
{0x001C0040, nullptr, "SetLedForceOff"}, {0x001B0000, nullptr, "ResetGpuCore"},
{0x001D0040, nullptr, "SetTestCommand"}, {0x001C0040, nullptr, "SetLedForceOff"},
{0x001E0080, nullptr, "SetInternalPriorities"}, {0x001D0040, nullptr, "SetTestCommand"},
{0x001F0082, StoreDataCache, "StoreDataCache"}, {0x001E0080, nullptr, "SetInternalPriorities"},
}; {0x001F0082, &GSP_GPU::StoreDataCache, "StoreDataCache"},
};
RegisterHandlers(functions);
GSP_GPU::GSP_GPU() { interrupt_event = nullptr;
Register(FunctionTable);
g_interrupt_event = nullptr;
using Kernel::MemoryPermission; using Kernel::MemoryPermission;
g_shared_memory = Kernel::SharedMemory::Create(nullptr, 0x1000, MemoryPermission::ReadWrite, shared_memory = Kernel::SharedMemory::Create(nullptr, 0x1000, MemoryPermission::ReadWrite,
MemoryPermission::ReadWrite, 0, MemoryPermission::ReadWrite, 0,
Kernel::MemoryRegion::BASE, "GSP:SharedMemory"); Kernel::MemoryRegion::BASE, "GSP:SharedMemory");
g_thread_id = 0; thread_id = 0;
gpu_right_acquired = false; gpu_right_acquired = false;
first_initialization = true; first_initialization = true;
} };
GSP_GPU::~GSP_GPU() {
g_interrupt_event = nullptr;
g_shared_memory = nullptr;
gpu_right_acquired = false;
}
} // namespace GSP } // namespace GSP
} // namespace Service } // namespace Service

View File

@ -0,0 +1,368 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <string>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
namespace Kernel {
class Event;
class SharedMemory;
} // namespace Kernel
namespace Service {
namespace GSP {
/// GSP interrupt ID
enum class InterruptId : u8 {
PSC0 = 0x00,
PSC1 = 0x01,
PDC0 = 0x02, // Seems called every vertical screen line
PDC1 = 0x03, // Seems called every frame
PPF = 0x04,
P3D = 0x05,
DMA = 0x06,
};
/// GSP command ID
enum class CommandId : u32 {
REQUEST_DMA = 0x00,
/// Submits a commandlist for execution by the GPU.
SUBMIT_GPU_CMDLIST = 0x01,
// Fills a given memory range with a particular value
SET_MEMORY_FILL = 0x02,
// Copies an image and optionally performs color-conversion or scaling.
// This is highly similar to the GameCube's EFB copy feature
SET_DISPLAY_TRANSFER = 0x03,
// Conceptionally similar to SET_DISPLAY_TRANSFER and presumable uses the same hardware path
SET_TEXTURE_COPY = 0x04,
/// Flushes up to 3 cache regions in a single command.
CACHE_FLUSH = 0x05,
};
/// GSP thread interrupt relay queue
struct InterruptRelayQueue {
// Index of last interrupt in the queue
u8 index;
// Number of interrupts remaining to be processed by the userland code
u8 number_interrupts;
// Error code - zero on success, otherwise an error has occurred
u8 error_code;
u8 padding1;
u32 missed_PDC0;
u32 missed_PDC1;
InterruptId slot[0x34]; ///< Interrupt ID slots
};
static_assert(sizeof(InterruptRelayQueue) == 0x40, "InterruptRelayQueue struct has incorrect size");
struct FrameBufferInfo {
u32 active_fb; // 0 = first, 1 = second
u32 address_left;
u32 address_right;
u32 stride; // maps to 0x1EF00X90 ?
u32 format; // maps to 0x1EF00X70 ?
u32 shown_fb; // maps to 0x1EF00X78 ?
u32 unknown;
};
static_assert(sizeof(FrameBufferInfo) == 0x1c, "Struct has incorrect size");
struct FrameBufferUpdate {
BitField<0, 1, u8> index; // Index used for GSP::SetBufferSwap
BitField<0, 1, u8> is_dirty; // true if GSP should update GPU framebuffer registers
u16 pad1;
FrameBufferInfo framebuffer_info[2];
u32 pad2;
};
static_assert(sizeof(FrameBufferUpdate) == 0x40, "Struct has incorrect size");
// TODO: Not sure if this padding is correct.
// Chances are the second block is stored at offset 0x24 rather than 0x20.
#ifndef _MSC_VER
static_assert(offsetof(FrameBufferUpdate, framebuffer_info[1]) == 0x20,
"FrameBufferInfo element has incorrect alignment");
#endif
/// GSP command
struct Command {
BitField<0, 8, CommandId> id;
union {
struct {
u32 source_address;
u32 dest_address;
u32 size;
} dma_request;
struct {
u32 address;
u32 size;
u32 flags;
u32 unused[3];
u32 do_flush;
} submit_gpu_cmdlist;
struct {
u32 start1;
u32 value1;
u32 end1;
u32 start2;
u32 value2;
u32 end2;
u16 control1;
u16 control2;
} memory_fill;
struct {
u32 in_buffer_address;
u32 out_buffer_address;
u32 in_buffer_size;
u32 out_buffer_size;
u32 flags;
} display_transfer;
struct {
u32 in_buffer_address;
u32 out_buffer_address;
u32 size;
u32 in_width_gap;
u32 out_width_gap;
u32 flags;
} texture_copy;
struct {
struct {
u32 address;
u32 size;
} regions[3];
} cache_flush;
u8 raw_data[0x1C];
};
};
static_assert(sizeof(Command) == 0x20, "Command struct has incorrect size");
/// GSP shared memory GX command buffer header
struct CommandBuffer {
union {
u32 hex;
// Current command index. This index is updated by GSP module after loading the command
// data, right before the command is processed. When this index is updated by GSP module,
// the total commands field is decreased by one as well.
BitField<0, 8, u32> index;
// Total commands to process, must not be value 0 when GSP module handles commands. This
// must be <=15 when writing a command to shared memory. This is incremented by the
// application when writing a command to shared memory, after increasing this value
// TriggerCmdReqQueue is only used if this field is value 1.
BitField<8, 8, u32> number_commands;
};
u32 unk[7];
Command commands[0xF];
};
static_assert(sizeof(CommandBuffer) == 0x200, "CommandBuffer struct has incorrect size");
class GSP_GPU final : public ServiceFramework<GSP_GPU> {
public:
GSP_GPU();
~GSP_GPU() = default;
/**
* Signals that the specified interrupt type has occurred to userland code
* @param interrupt_id ID of interrupt that is being signalled
*/
void SignalInterrupt(InterruptId interrupt_id);
/**
* Retrieves the framebuffer info stored in the GSP shared memory for the
* specified screen index and thread id.
* @param thread_id GSP thread id of the process that accesses the structure that we are
* requesting.
* @param screen_index Index of the screen we are requesting (Top = 0, Bottom = 1).
* @returns FramebufferUpdate Information about the specified framebuffer.
*/
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index);
private:
/**
* GSP_GPU::WriteHWRegs service function
*
* Writes sequential GSP GPU hardware registers
*
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to write sequentially
* 4 : pointer to source data array
*/
void WriteHWRegs(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::WriteHWRegsWithMask service function
*
* Updates sequential GSP GPU hardware registers using masks
*
* Inputs:
* 1 : address of first GPU register
* 2 : number of registers to update sequentially
* 4 : pointer to source data array
* 6 : pointer to mask array
*/
void WriteHWRegsWithMask(Kernel::HLERequestContext& ctx);
/// Read a GSP GPU hardware register
void ReadHWRegs(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::SetBufferSwap service function
*
* Updates GPU display framebuffer configuration using the specified parameters.
*
* Inputs:
* 1 : Screen ID (0 = top screen, 1 = bottom screen)
* 2-7 : FrameBufferInfo structure
* Outputs:
* 1: Result code
*/
void SetBufferSwap(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::FlushDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
void FlushDataCache(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::SetLcdForceBlack service function
*
* Enable or disable REG_LCDCOLORFILL with the color black.
*
* Inputs:
* 1: Black color fill flag (0 = don't fill, !0 = fill)
* Outputs:
* 1: Result code
*/
void SetLcdForceBlack(Kernel::HLERequestContext& ctx);
/// This triggers handling of the GX command written to the command buffer in shared memory.
void TriggerCmdReqQueue(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::SetAxiConfigQoSMode service function
* Inputs:
* 1 : Mode, unused in emulator
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
void SetAxiConfigQoSMode(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::RegisterInterruptRelayQueue service function
* Inputs:
* 1 : "Flags" field, purpose is unknown
* 3 : Handle to GSP synchronization event
* Outputs:
* 1 : Result of function, 0x2A07 on success, otherwise error code
* 2 : Thread index into GSP command buffer
* 4 : Handle to GSP shared memory
*/
void RegisterInterruptRelayQueue(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::UnregisterInterruptRelayQueue service function
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
void UnregisterInterruptRelayQueue(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::AcquireRight service function
* Outputs:
* 1: Result code
*/
void AcquireRight(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::ReleaseRight service function
* Outputs:
* 1: Result code
*/
void ReleaseRight(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::ImportDisplayCaptureInfo service function
*
* Returns information about the current framebuffer state
*
* Inputs:
* 0: Header 0x00180000
* Outputs:
* 0: Header Code[0x00180240]
* 1: Result code
* 2: Left framebuffer virtual address for the main screen
* 3: Right framebuffer virtual address for the main screen
* 4: Main screen framebuffer format
* 5: Main screen framebuffer width
* 6: Left framebuffer virtual address for the bottom screen
* 7: Right framebuffer virtual address for the bottom screen
* 8: Bottom screen framebuffer format
* 9: Bottom screen framebuffer width
*/
void ImportDisplayCaptureInfo(Kernel::HLERequestContext& ctx);
/**
* GSP_GPU::StoreDataCache service function
*
* This Function is a no-op, We aren't emulating the CPU cache any time soon.
*
* Inputs:
* 0 : Header code [0x001F0082]
* 1 : Address
* 2 : Size
* 3 : Value 0, some descriptor for the KProcess Handle
* 4 : KProcess handle
* Outputs:
* 1 : Result of function, 0 on success, otherwise error code
*/
void StoreDataCache(Kernel::HLERequestContext& ctx);
/// Event triggered when GSP interrupt has been signalled
Kernel::SharedPtr<Kernel::Event> interrupt_event;
/// GSP shared memoryings
Kernel::SharedPtr<Kernel::SharedMemory> shared_memory;
/// Thread index into interrupt relay queue
u32 thread_id = 0;
bool gpu_right_acquired = false;
bool first_initialization = true;
};
ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info);
} // namespace GSP
} // namespace Service

View File

@ -1,205 +0,0 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <cstddef>
#include <string>
#include "common/bit_field.h"
#include "common/common_types.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
namespace Service {
namespace GSP {
/// GSP interrupt ID
enum class InterruptId : u8 {
PSC0 = 0x00,
PSC1 = 0x01,
PDC0 = 0x02, // Seems called every vertical screen line
PDC1 = 0x03, // Seems called every frame
PPF = 0x04,
P3D = 0x05,
DMA = 0x06,
};
/// GSP command ID
enum class CommandId : u32 {
REQUEST_DMA = 0x00,
/// Submits a commandlist for execution by the GPU.
SUBMIT_GPU_CMDLIST = 0x01,
// Fills a given memory range with a particular value
SET_MEMORY_FILL = 0x02,
// Copies an image and optionally performs color-conversion or scaling.
// This is highly similar to the GameCube's EFB copy feature
SET_DISPLAY_TRANSFER = 0x03,
// Conceptionally similar to SET_DISPLAY_TRANSFER and presumable uses the same hardware path
SET_TEXTURE_COPY = 0x04,
/// Flushes up to 3 cache regions in a single command.
CACHE_FLUSH = 0x05,
};
/// GSP thread interrupt relay queue
struct InterruptRelayQueue {
// Index of last interrupt in the queue
u8 index;
// Number of interrupts remaining to be processed by the userland code
u8 number_interrupts;
// Error code - zero on success, otherwise an error has occurred
u8 error_code;
u8 padding1;
u32 missed_PDC0;
u32 missed_PDC1;
InterruptId slot[0x34]; ///< Interrupt ID slots
};
static_assert(sizeof(InterruptRelayQueue) == 0x40, "InterruptRelayQueue struct has incorrect size");
struct FrameBufferInfo {
BitField<0, 1, u32> active_fb; // 0 = first, 1 = second
u32 address_left;
u32 address_right;
u32 stride; // maps to 0x1EF00X90 ?
u32 format; // maps to 0x1EF00X70 ?
u32 shown_fb; // maps to 0x1EF00X78 ?
u32 unknown;
};
static_assert(sizeof(FrameBufferInfo) == 0x1c, "Struct has incorrect size");
struct FrameBufferUpdate {
BitField<0, 1, u8> index; // Index used for GSP::SetBufferSwap
BitField<0, 1, u8> is_dirty; // true if GSP should update GPU framebuffer registers
u16 pad1;
FrameBufferInfo framebuffer_info[2];
u32 pad2;
};
static_assert(sizeof(FrameBufferUpdate) == 0x40, "Struct has incorrect size");
// TODO: Not sure if this padding is correct.
// Chances are the second block is stored at offset 0x24 rather than 0x20.
#ifndef _MSC_VER
static_assert(offsetof(FrameBufferUpdate, framebuffer_info[1]) == 0x20,
"FrameBufferInfo element has incorrect alignment");
#endif
/// GSP command
struct Command {
BitField<0, 8, CommandId> id;
union {
struct {
u32 source_address;
u32 dest_address;
u32 size;
} dma_request;
struct {
u32 address;
u32 size;
u32 flags;
u32 unused[3];
u32 do_flush;
} submit_gpu_cmdlist;
struct {
u32 start1;
u32 value1;
u32 end1;
u32 start2;
u32 value2;
u32 end2;
u16 control1;
u16 control2;
} memory_fill;
struct {
u32 in_buffer_address;
u32 out_buffer_address;
u32 in_buffer_size;
u32 out_buffer_size;
u32 flags;
} display_transfer;
struct {
u32 in_buffer_address;
u32 out_buffer_address;
u32 size;
u32 in_width_gap;
u32 out_width_gap;
u32 flags;
} texture_copy;
struct {
struct {
u32 address;
u32 size;
} regions[3];
} cache_flush;
u8 raw_data[0x1C];
};
};
static_assert(sizeof(Command) == 0x20, "Command struct has incorrect size");
/// GSP shared memory GX command buffer header
struct CommandBuffer {
union {
u32 hex;
// Current command index. This index is updated by GSP module after loading the command
// data, right before the command is processed. When this index is updated by GSP module,
// the total commands field is decreased by one as well.
BitField<0, 8, u32> index;
// Total commands to process, must not be value 0 when GSP module handles commands. This
// must be <=15 when writing a command to shared memory. This is incremented by the
// application when writing a command to shared memory, after increasing this value
// TriggerCmdReqQueue is only used if this field is value 1.
BitField<8, 8, u32> number_commands;
};
u32 unk[7];
Command commands[0xF];
};
static_assert(sizeof(CommandBuffer) == 0x200, "CommandBuffer struct has incorrect size");
class GSP_GPU final : public Interface {
public:
GSP_GPU();
~GSP_GPU() override;
std::string GetPortName() const override {
return "gsp::Gpu";
}
};
/**
* Signals that the specified interrupt type has occurred to userland code
* @param interrupt_id ID of interrupt that is being signalled
*/
void SignalInterrupt(InterruptId interrupt_id);
ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info);
/**
* Retrieves the framebuffer info stored in the GSP shared memory for the
* specified screen index and thread id.
* @param thread_id GSP thread id of the process that accesses the structure that we are requesting.
* @param screen_index Index of the screen we are requesting (Top = 0, Bottom = 1).
* @returns FramebufferUpdate Information about the specified framebuffer.
*/
FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index);
} // namespace GSP
} // namespace Service

View File

@ -27,7 +27,7 @@
#include "core/hle/service/err_f.h" #include "core/hle/service/err_f.h"
#include "core/hle/service/frd/frd.h" #include "core/hle/service/frd/frd.h"
#include "core/hle/service/fs/archive.h" #include "core/hle/service/fs/archive.h"
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp.h"
#include "core/hle/service/gsp_lcd.h" #include "core/hle/service/gsp_lcd.h"
#include "core/hle/service/hid/hid.h" #include "core/hle/service/hid/hid.h"
#include "core/hle/service/http_c.h" #include "core/hle/service/http_c.h"
@ -276,6 +276,7 @@ void Init() {
CFG::Init(); CFG::Init();
DLP::Init(); DLP::Init();
FRD::Init(); FRD::Init();
GSP::InstallInterfaces(*SM::g_service_manager);
HID::Init(); HID::Init();
IR::InstallInterfaces(*SM::g_service_manager); IR::InstallInterfaces(*SM::g_service_manager);
MVD::Init(); MVD::Init();
@ -289,7 +290,6 @@ void Init() {
AddService(new CSND::CSND_SND); AddService(new CSND::CSND_SND);
AddService(new DSP_DSP::Interface); AddService(new DSP_DSP::Interface);
AddService(new GSP::GSP_GPU);
AddService(new GSP::GSP_LCD); AddService(new GSP::GSP_LCD);
AddService(new HTTP::HTTP_C); AddService(new HTTP::HTTP_C);
AddService(new PM::PM_APP); AddService(new PM::PM_APP);

View File

@ -12,7 +12,7 @@
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/core_timing.h" #include "core/core_timing.h"
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp.h"
#include "core/hw/gpu.h" #include "core/hw/gpu.h"
#include "core/hw/hw.h" #include "core/hw/hw.h"
#include "core/memory.h" #include "core/memory.h"

View File

@ -10,7 +10,7 @@
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/microprofile.h" #include "common/microprofile.h"
#include "common/vector_math.h" #include "common/vector_math.h"
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp.h"
#include "core/hw/gpu.h" #include "core/hw/gpu.h"
#include "core/memory.h" #include "core/memory.h"
#include "core/tracer/recorder.h" #include "core/tracer/recorder.h"

View File

@ -7,7 +7,7 @@
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
#include <vector> #include <vector>
#include "core/hle/service/gsp_gpu.h" #include "core/hle/service/gsp/gsp.h"
class GraphicsDebugger { class GraphicsDebugger {
public: public: