// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/assert.h" #include "common/common_types.h" #include "common/vector_math.h" #include "video_core/regs_texturing.h" #include "video_core/swrasterizer/texturing.h" namespace Pica::Rasterizer { using TevStageConfig = TexturingRegs::TevStageConfig; int GetWrappedTexCoord(TexturingRegs::TextureConfig::WrapMode mode, int val, unsigned size) { switch (mode) { case TexturingRegs::TextureConfig::ClampToEdge2: // For negative coordinate, ClampToEdge2 behaves the same as Repeat if (val < 0) { return static_cast(static_cast(val) % size); } // [[fallthrough]] case TexturingRegs::TextureConfig::ClampToEdge: val = std::max(val, 0); val = std::min(val, static_cast(size) - 1); return val; case TexturingRegs::TextureConfig::ClampToBorder: return val; case TexturingRegs::TextureConfig::ClampToBorder2: // For ClampToBorder2, the case of positive coordinate beyond the texture size is already // handled outside. Here we only handle the negative coordinate in the same way as Repeat. case TexturingRegs::TextureConfig::Repeat2: case TexturingRegs::TextureConfig::Repeat3: case TexturingRegs::TextureConfig::Repeat: return static_cast(static_cast(val) % size); case TexturingRegs::TextureConfig::MirroredRepeat: { unsigned int coord = (static_cast(val) % (2 * size)); if (coord >= size) coord = 2 * size - 1 - coord; return static_cast(coord); } default: LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode {:x}", (int)mode); UNIMPLEMENTED(); return 0; } }; Common::Vec3 GetColorModifier(TevStageConfig::ColorModifier factor, const Common::Vec4& values) { using ColorModifier = TevStageConfig::ColorModifier; switch (factor) { case ColorModifier::SourceColor: return values.rgb(); case ColorModifier::OneMinusSourceColor: return (Common::Vec3(255, 255, 255) - values.rgb()).Cast(); case ColorModifier::SourceAlpha: return values.aaa(); case ColorModifier::OneMinusSourceAlpha: return (Common::Vec3(255, 255, 255) - values.aaa()).Cast(); case ColorModifier::SourceRed: return values.rrr(); case ColorModifier::OneMinusSourceRed: return (Common::Vec3(255, 255, 255) - values.rrr()).Cast(); case ColorModifier::SourceGreen: return values.ggg(); case ColorModifier::OneMinusSourceGreen: return (Common::Vec3(255, 255, 255) - values.ggg()).Cast(); case ColorModifier::SourceBlue: return values.bbb(); case ColorModifier::OneMinusSourceBlue: return (Common::Vec3(255, 255, 255) - values.bbb()).Cast(); } UNREACHABLE(); }; u8 GetAlphaModifier(TevStageConfig::AlphaModifier factor, const Common::Vec4& values) { using AlphaModifier = TevStageConfig::AlphaModifier; switch (factor) { case AlphaModifier::SourceAlpha: return values.a(); case AlphaModifier::OneMinusSourceAlpha: return 255 - values.a(); case AlphaModifier::SourceRed: return values.r(); case AlphaModifier::OneMinusSourceRed: return 255 - values.r(); case AlphaModifier::SourceGreen: return values.g(); case AlphaModifier::OneMinusSourceGreen: return 255 - values.g(); case AlphaModifier::SourceBlue: return values.b(); case AlphaModifier::OneMinusSourceBlue: return 255 - values.b(); } UNREACHABLE(); }; Common::Vec3 ColorCombine(TevStageConfig::Operation op, const Common::Vec3 input[3]) { using Operation = TevStageConfig::Operation; switch (op) { case Operation::Replace: return input[0]; case Operation::Modulate: return ((input[0] * input[1]) / 255).Cast(); case Operation::Add: { auto result = input[0] + input[1]; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); return result.Cast(); } case Operation::AddSigned: { // TODO(bunnei): Verify that the color conversion from (float) 0.5f to // (byte) 128 is correct auto result = input[0].Cast() + input[1].Cast() - Common::MakeVec(128, 128, 128); result.r() = std::clamp(result.r(), 0, 255); result.g() = std::clamp(result.g(), 0, 255); result.b() = std::clamp(result.b(), 0, 255); return result.Cast(); } case Operation::Lerp: return ((input[0] * input[2] + input[1] * (Common::MakeVec(255, 255, 255) - input[2]).Cast()) / 255) .Cast(); case Operation::Subtract: { auto result = input[0].Cast() - input[1].Cast(); result.r() = std::max(0, result.r()); result.g() = std::max(0, result.g()); result.b() = std::max(0, result.b()); return result.Cast(); } case Operation::MultiplyThenAdd: { auto result = (input[0] * input[1] + 255 * input[2].Cast()) / 255; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); return result.Cast(); } case Operation::AddThenMultiply: { auto result = input[0] + input[1]; result.r() = std::min(255, result.r()); result.g() = std::min(255, result.g()); result.b() = std::min(255, result.b()); result = (result * input[2].Cast()) / 255; return result.Cast(); } case Operation::Dot3_RGB: case Operation::Dot3_RGBA: { // Not fully accurate. Worst case scenario seems to yield a +/-3 error. Some HW results // indicate that the per-component computation can't have a higher precision than 1/256, // while dot3_rgb((0x80,g0,b0), (0x7F,g1,b1)) and dot3_rgb((0x80,g0,b0), (0x80,g1,b1)) give // different results. int result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 + ((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 + ((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256; result = std::max(0, std::min(255, result)); return {(u8)result, (u8)result, (u8)result}; } default: LOG_ERROR(HW_GPU, "Unknown color combiner operation {}", (int)op); UNIMPLEMENTED(); return {0, 0, 0}; } }; u8 AlphaCombine(TevStageConfig::Operation op, const std::array& input) { switch (op) { using Operation = TevStageConfig::Operation; case Operation::Replace: return input[0]; case Operation::Modulate: return input[0] * input[1] / 255; case Operation::Add: return std::min(255, input[0] + input[1]); case Operation::AddSigned: { // TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct auto result = static_cast(input[0]) + static_cast(input[1]) - 128; return static_cast(std::clamp(result, 0, 255)); } case Operation::Lerp: return (input[0] * input[2] + input[1] * (255 - input[2])) / 255; case Operation::Subtract: return std::max(0, (int)input[0] - (int)input[1]); case Operation::MultiplyThenAdd: return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255); case Operation::AddThenMultiply: return (std::min(255, (input[0] + input[1])) * input[2]) / 255; default: LOG_ERROR(HW_GPU, "Unknown alpha combiner operation {}", (int)op); UNIMPLEMENTED(); return 0; } }; } // namespace Pica::Rasterizer