citra/src/core/memory.cpp
2018-11-19 11:16:55 -05:00

756 lines
26 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <cstring>
#include "audio_core/dsp_interface.h"
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/lock.h"
#include "core/memory.h"
#include "core/memory_setup.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
namespace Memory {
static std::array<u8, Memory::VRAM_SIZE> vram;
static std::array<u8, Memory::N3DS_EXTRA_RAM_SIZE> n3ds_extra_ram;
std::array<u8, Memory::FCRAM_N3DS_SIZE> fcram;
static PageTable* current_page_table = nullptr;
void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
}
}
PageTable* GetCurrentPageTable() {
return current_page_table;
}
static void MapPages(PageTable& page_table, u32 base, u32 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping {} onto {:08X}-{:08X}", (void*)memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE);
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
FlushMode::FlushAndInvalidate);
u32 end = base + size;
while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:08X}", base);
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
base += 1;
if (memory != nullptr)
memory += PAGE_SIZE;
}
}
void MapMemoryRegion(PageTable& page_table, VAddr base, u32 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
void MapIoRegion(PageTable& page_table, VAddr base, u32 size, MMIORegionPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
page_table.special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
}
void UnmapRegion(PageTable& page_table, VAddr base, u32 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:08X}", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:08X}", base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
}
/**
* Gets the pointer for virtual memory where the page is marked as RasterizerCachedMemory.
* This is used to access the memory where the page pointer is nullptr due to rasterizer cache.
* Since the cache only happens on linear heap or VRAM, we know the exact physical address and
* pointer of such virtual address
*/
static u8* GetPointerForRasterizerCache(VAddr addr) {
if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return fcram.data() + (addr - LINEAR_HEAP_VADDR);
}
if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return fcram.data() + (addr - NEW_LINEAR_HEAP_VADDR);
}
if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return vram.data() + (addr - VRAM_VADDR);
}
UNREACHABLE();
}
/**
* This function should only be called for virtual addreses with attribute `PageType::Special`.
*/
static MMIORegionPointer GetMMIOHandler(const PageTable& page_table, VAddr vaddr) {
for (const auto& region : page_table.special_regions) {
if (vaddr >= region.base && vaddr < (region.base + region.size)) {
return region.handler;
}
}
ASSERT_MSG(false, "Mapped IO page without a handler @ {:08X}", vaddr);
return nullptr; // Should never happen
}
template <typename T>
T ReadMMIO(MMIORegionPointer mmio_handler, VAddr addr);
template <typename T>
T Read(const VAddr vaddr) {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
return 0;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
T value;
std::memcpy(&value, GetPointerForRasterizerCache(vaddr), sizeof(T));
return value;
}
case PageType::Special:
return ReadMMIO<T>(GetMMIOHandler(*current_page_table, vaddr), vaddr);
default:
UNREACHABLE();
}
}
template <typename T>
void WriteMMIO(MMIORegionPointer mmio_handler, VAddr addr, const T data);
template <typename T>
void Write(const VAddr vaddr, const T data) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
// NOTE: Avoid adding any extra logic to this fast-path block
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write{} 0x{:08X} @ 0x{:08X}", sizeof(data) * 8, (u32)data,
vaddr);
return;
case PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:08X}", vaddr);
break;
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
std::memcpy(GetPointerForRasterizerCache(vaddr), &data, sizeof(T));
break;
}
case PageType::Special:
WriteMMIO<T>(GetMMIOHandler(*current_page_table, vaddr), vaddr, data);
break;
default:
UNREACHABLE();
}
}
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table;
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
if (page_pointer)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
return true;
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
return false;
MMIORegionPointer mmio_region = GetMMIOHandler(page_table, vaddr);
if (mmio_region) {
return mmio_region->IsValidAddress(vaddr);
}
return false;
}
bool IsValidPhysicalAddress(const PAddr paddr) {
return GetPhysicalPointer(paddr) != nullptr;
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
return GetPointerForRasterizerCache(vaddr);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x{:08x}", vaddr);
return nullptr;
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
char c = Read8(vaddr);
if (c == '\0')
break;
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
u8* GetPhysicalPointer(PAddr address) {
struct MemoryArea {
PAddr paddr_base;
u32 size;
};
static constexpr MemoryArea memory_areas[] = {
{VRAM_PADDR, VRAM_SIZE},
{DSP_RAM_PADDR, DSP_RAM_SIZE},
{FCRAM_PADDR, FCRAM_N3DS_SIZE},
{N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE},
};
const auto area =
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
// Note: the region end check is inclusive because the user can pass in an address that
// represents an open right bound
return address >= area.paddr_base && address <= area.paddr_base + area.size;
});
if (area == std::end(memory_areas)) {
LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x{:08X}", address);
return nullptr;
}
u32 offset_into_region = address - area->paddr_base;
u8* target_pointer = nullptr;
switch (area->paddr_base) {
case VRAM_PADDR:
target_pointer = vram.data() + offset_into_region;
break;
case DSP_RAM_PADDR:
target_pointer = Core::DSP().GetDspMemory().data() + offset_into_region;
break;
case FCRAM_PADDR:
target_pointer = fcram.data() + offset_into_region;
break;
case N3DS_EXTRA_RAM_PADDR:
target_pointer = n3ds_extra_ram.data() + offset_into_region;
break;
default:
UNREACHABLE();
}
return target_pointer;
}
/// For a rasterizer-accessible PAddr, gets a list of all possible VAddr
static std::vector<VAddr> PhysicalToVirtualAddressForRasterizer(PAddr addr) {
if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
return {addr - VRAM_PADDR + VRAM_VADDR};
}
if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
return {addr - FCRAM_PADDR + LINEAR_HEAP_VADDR, addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR};
}
if (addr >= FCRAM_PADDR_END && addr < FCRAM_N3DS_PADDR_END) {
return {addr - FCRAM_PADDR + NEW_LINEAR_HEAP_VADDR};
}
// While the physical <-> virtual mapping is 1:1 for the regions supported by the cache,
// some games (like Pokemon Super Mystery Dungeon) will try to use textures that go beyond
// the end address of VRAM, causing the Virtual->Physical translation to fail when flushing
// parts of the texture.
LOG_ERROR(HW_Memory, "Trying to use invalid physical address for rasterizer: {:08X}", addr);
return {};
}
void RasterizerMarkRegionCached(PAddr start, u32 size, bool cached) {
if (start == 0) {
return;
}
u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
PAddr paddr = start;
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
for (VAddr vaddr : PhysicalToVirtualAddressForRasterizer(paddr)) {
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::Memory:
page_type = PageType::RasterizerCachedMemory;
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
case PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case PageType::RasterizerCachedMemory: {
page_type = PageType::Memory;
current_page_table->pointers[vaddr >> PAGE_BITS] =
GetPointerForRasterizerCache(vaddr & ~PAGE_MASK);
break;
}
default:
UNREACHABLE();
}
}
}
}
}
void RasterizerFlushRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
}
void RasterizerInvalidateRegion(PAddr start, u32 size) {
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->InvalidateRegion(start, size);
}
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer == nullptr) {
return;
}
VideoCore::g_renderer->Rasterizer()->FlushAndInvalidateRegion(start, size);
}
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here
if (VideoCore::g_renderer == nullptr) {
return;
}
VAddr end = start + size;
auto CheckRegion = [&](VAddr region_start, VAddr region_end, PAddr paddr_region_start) {
if (start >= region_end || end <= region_start) {
// No overlap with region
return;
}
VAddr overlap_start = std::max(start, region_start);
VAddr overlap_end = std::min(end, region_end);
PAddr physical_start = paddr_region_start + (overlap_start - region_start);
u32 overlap_size = overlap_end - overlap_start;
auto* rasterizer = VideoCore::g_renderer->Rasterizer();
switch (mode) {
case FlushMode::Flush:
rasterizer->FlushRegion(physical_start, overlap_size);
break;
case FlushMode::Invalidate:
rasterizer->InvalidateRegion(physical_start, overlap_size);
break;
case FlushMode::FlushAndInvalidate:
rasterizer->FlushAndInvalidateRegion(physical_start, overlap_size);
break;
}
};
CheckRegion(LINEAR_HEAP_VADDR, LINEAR_HEAP_VADDR_END, FCRAM_PADDR);
CheckRegion(NEW_LINEAR_HEAP_VADDR, NEW_LINEAR_HEAP_VADDR_END, FCRAM_PADDR);
CheckRegion(VRAM_VADDR, VRAM_VADDR_END, VRAM_PADDR);
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped ReadBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->ReadBlock(current_vaddr, dest_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
std::memcpy(dest_buffer, GetPointerForRasterizerCache(current_vaddr), copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->WriteBlock(current_vaddr, src_buffer, copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memcpy(GetPointerForRasterizerCache(current_vaddr), src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = dest_addr >> PAGE_BITS;
std::size_t page_offset = dest_addr & PAGE_MASK;
static const std::array<u8, PAGE_SIZE> zeros = {};
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped ZeroBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, dest_addr, size);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memset(dest_ptr, 0, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
handler->WriteBlock(current_vaddr, zeros.data(), copy_amount);
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Invalidate);
std::memset(GetPointerForRasterizerCache(current_vaddr), 0, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
}
void ZeroBlock(const VAddr dest_addr, const std::size_t size) {
ZeroBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), dest_addr, size);
}
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
auto& page_table = process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(process, dest_addr, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
std::vector<u8> buffer(copy_amount);
handler->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(process, dest_addr, buffer.data(), buffer.size());
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(process, dest_addr, GetPointerForRasterizerCache(current_vaddr),
copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
void CopyBlock(VAddr dest_addr, VAddr src_addr, const std::size_t size) {
CopyBlock(*Core::System::GetInstance().Kernel().GetCurrentProcess(), dest_addr, src_addr, size);
}
void CopyBlock(const Kernel::Process& src_process, const Kernel::Process& dest_process,
VAddr src_addr, VAddr dest_addr, std::size_t size) {
auto& page_table = src_process.vm_manager.page_table;
std::size_t remaining_size = size;
std::size_t page_index = src_addr >> PAGE_BITS;
std::size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const std::size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped: {
LOG_ERROR(HW_Memory,
"unmapped CopyBlock @ 0x{:08X} (start address = 0x{:08X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(dest_process, dest_addr, copy_amount);
break;
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
WriteBlock(dest_process, dest_addr, src_ptr, copy_amount);
break;
}
case PageType::Special: {
MMIORegionPointer handler = GetMMIOHandler(page_table, current_vaddr);
DEBUG_ASSERT(handler);
std::vector<u8> buffer(copy_amount);
handler->ReadBlock(current_vaddr, buffer.data(), buffer.size());
WriteBlock(dest_process, dest_addr, buffer.data(), buffer.size());
break;
}
case PageType::RasterizerCachedMemory: {
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
FlushMode::Flush);
WriteBlock(dest_process, dest_addr, GetPointerForRasterizerCache(current_vaddr),
copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
template <>
u8 ReadMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read8(addr);
}
template <>
u16 ReadMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read16(addr);
}
template <>
u32 ReadMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read32(addr);
}
template <>
u64 ReadMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr) {
return mmio_handler->Read64(addr);
}
template <>
void WriteMMIO<u8>(MMIORegionPointer mmio_handler, VAddr addr, const u8 data) {
mmio_handler->Write8(addr, data);
}
template <>
void WriteMMIO<u16>(MMIORegionPointer mmio_handler, VAddr addr, const u16 data) {
mmio_handler->Write16(addr, data);
}
template <>
void WriteMMIO<u32>(MMIORegionPointer mmio_handler, VAddr addr, const u32 data) {
mmio_handler->Write32(addr, data);
}
template <>
void WriteMMIO<u64>(MMIORegionPointer mmio_handler, VAddr addr, const u64 data) {
mmio_handler->Write64(addr, data);
}
u32 GetFCRAMOffset(u8* pointer) {
ASSERT(pointer >= fcram.data() && pointer < fcram.data() + fcram.size());
return pointer - fcram.data();
}
} // namespace Memory