Files
86Box-fork/src/dma.c

1662 lines
34 KiB
C

/*
* 86Box A hypervisor and IBM PC system emulator that specializes in
* running old operating systems and software designed for IBM
* PC systems and compatibles from 1981 through fairly recent
* system designs based on the PCI bus.
*
* This file is part of the 86Box distribution.
*
* Implementation of the Intel DMA controllers.
*
*
*
* Authors: Sarah Walker, <tommowalker@tommowalker.co.uk>
* Miran Grca, <mgrca8@gmail.com>
* Fred N. van Kempen, <decwiz@yahoo.com>
*
* Copyright 2008-2020 Sarah Walker.
* Copyright 2016-2020 Miran Grca.
* Copyright 2017-2020 Fred N. van Kempen.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <wchar.h>
#include <86box/86box.h>
#include "cpu.h"
#include "x86.h"
#include <86box/machine.h>
#include <86box/mca.h>
#include <86box/mem.h>
#include <86box/io.h>
#include <86box/pic.h>
#include <86box/dma.h>
dma_t dma[8];
uint8_t dma_e;
static uint8_t dmaregs[3][16];
static int dma_wp[2];
static uint8_t dma_m;
static uint8_t dma_stat;
static uint8_t dma_stat_rq;
static uint8_t dma_stat_rq_pc;
static uint8_t dma_command[2];
static uint8_t dma_req_is_soft;
static uint8_t dma_advanced;
static uint8_t dma_buffer[65536];
static uint16_t dma_sg_base;
static uint16_t dma16_buffer[65536];
static uint32_t dma_mask;
static struct {
int xfr_command,
xfr_channel;
int byte_ptr;
int is_ps2;
} dma_ps2;
#define DMA_PS2_IOA (1 << 0)
#define DMA_PS2_XFER_MEM_TO_IO (1 << 2)
#define DMA_PS2_XFER_IO_TO_MEM (3 << 2)
#define DMA_PS2_XFER_MASK (3 << 2)
#define DMA_PS2_DEC2 (1 << 4)
#define DMA_PS2_SIZE16 (1 << 6)
#ifdef ENABLE_DMA_LOG
int dma_do_log = ENABLE_DMA_LOG;
static void
dma_log(const char *fmt, ...)
{
va_list ap;
if (dma_do_log) {
va_start(ap, fmt);
pclog_ex(fmt, ap);
va_end(ap);
}
}
#else
#define dma_log(fmt, ...)
#endif
static void dma_ps2_run(int channel);
int
dma_get_drq(int channel)
{
return !!(dma_stat_rq_pc & (1 << channel));
}
void
dma_set_drq(int channel, int set)
{
dma_stat_rq_pc &= ~(1 << channel);
if (set)
dma_stat_rq_pc |= (1 << channel);
}
static int
dma_transfer_size(dma_t *dev)
{
return dev->transfer_mode & 0xff;
}
static void
dma_sg_next_addr(dma_t *dev)
{
int ts = dma_transfer_size(dev);
dma_bm_read(dev->ptr_cur, (uint8_t *)&(dev->addr), 4, ts);
dma_bm_read(dev->ptr_cur + 4, (uint8_t *)&(dev->count), 4, ts);
dma_log("DMA S/G DWORDs: %08X %08X\n", dev->addr, dev->count);
dev->eot = dev->count >> 31;
dev->count &= 0xfffe;
dev->cb = (uint16_t) dev->count;
dev->cc = (int) dev->count;
if (!dev->count)
dev->count = 65536;
if (ts == 2)
dev->addr &= 0xfffffffe;
dev->ab = dev->addr & dma_mask;
dev->ac = dev->addr & dma_mask;
dev->page = dev->page_l = (dev->ac >> 16) & 0xff;
dev->page_h = (dev->ac >> 24) & 0xff;
dev->ptr_cur += 8;
}
static void
dma_block_transfer(int channel)
{
int i, bit16;
bit16 = (channel >= 4);
if (dma_advanced)
bit16 = !!(dma_transfer_size(&(dma[channel])) == 2);
dma_req_is_soft = 1;
for (i = 0; i <= dma[channel].cb; i++) {
if ((dma[channel].mode & 0x8c) == 0x84) {
if (bit16)
dma_channel_write(channel, dma16_buffer[i]);
else
dma_channel_write(channel, dma_buffer[i]);
} else if ((dma[channel].mode & 0x8c) == 0x88) {
if (bit16)
dma16_buffer[i] = dma_channel_read(channel);
else
dma_buffer[i] = dma_channel_read(channel);
}
}
dma_req_is_soft = 0;
}
static void
dma_sg_write(uint16_t port, uint8_t val, void *priv)
{
dma_t *dev = (dma_t *) priv;
dma_log("DMA S/G BYTE write: %04X %02X\n", port, val);
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x00:
dma_log("DMA S/G Cmd : val = %02X, old = %02X\n", val, dev->sg_command);
if ((val & 1) && !(dev->sg_command & 1)) { /*Start*/
#ifdef ENABLE_DMA_LOG
dma_log("DMA S/G start\n");
#endif
dev->ptr_cur = dev->ptr;
dma_sg_next_addr(dev);
dev->sg_status = (dev->sg_status & 0xf7) | 0x01;
}
if (!(val & 1) && (dev->sg_command & 1)) { /*Stop*/
#ifdef ENABLE_DMA_LOG
dma_log("DMA S/G stop\n");
#endif
dev->sg_status &= ~0x81;
}
dev->sg_command = val;
break;
case 0x20:
dev->ptr = (dev->ptr & 0xffffff00) | (val & 0xfc);
dev->ptr %= (mem_size * 1024);
dev->ptr0 = val;
break;
case 0x21:
dev->ptr = (dev->ptr & 0xffff00fc) | (val << 8);
dev->ptr %= (mem_size * 1024);
break;
case 0x22:
dev->ptr = (dev->ptr & 0xff00fffc) | (val << 16);
dev->ptr %= (mem_size * 1024);
break;
case 0x23:
dev->ptr = (dev->ptr & 0x00fffffc) | (val << 24);
dev->ptr %= (mem_size * 1024);
break;
}
}
static void
dma_sg_writew(uint16_t port, uint16_t val, void *priv)
{
dma_t *dev = (dma_t *) priv;
dma_log("DMA S/G WORD write: %04X %04X\n", port, val);
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x00:
dma_sg_write(port, val & 0xff, priv);
break;
case 0x20:
dev->ptr = (dev->ptr & 0xffff0000) | (val & 0xfffc);
dev->ptr %= (mem_size * 1024);
dev->ptr0 = val & 0xff;
break;
case 0x22:
dev->ptr = (dev->ptr & 0x0000fffc) | (val << 16);
dev->ptr %= (mem_size * 1024);
break;
}
}
static void
dma_sg_writel(uint16_t port, uint32_t val, void *priv)
{
dma_t *dev = (dma_t *) priv;
dma_log("DMA S/G DWORD write: %04X %08X\n", port, val);
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x00:
dma_sg_write(port, val & 0xff, priv);
break;
case 0x20:
dev->ptr = (val & 0xfffffffc);
dev->ptr %= (mem_size * 1024);
dev->ptr0 = val & 0xff;
break;
}
}
static uint8_t
dma_sg_read(uint16_t port, void *priv)
{
dma_t *dev = (dma_t *) priv;
uint8_t ret = 0xff;
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x08:
ret = (dev->sg_status & 0x01);
if (dev->eot)
ret |= 0x80;
if ((dev->sg_command & 0xc0) == 0x40)
ret |= 0x20;
if (dev->ab != 0x00000000)
ret |= 0x08;
if (dev->ac != 0x00000000)
ret |= 0x04;
break;
case 0x20:
ret = dev->ptr0;
break;
case 0x21:
ret = dev->ptr >> 8;
break;
case 0x22:
ret = dev->ptr >> 16;
break;
case 0x23:
ret = dev->ptr >> 24;
break;
}
dma_log("DMA S/G BYTE read : %04X %02X\n", port, ret);
return ret;
}
static uint16_t
dma_sg_readw(uint16_t port, void *priv)
{
dma_t *dev = (dma_t *) priv;
uint16_t ret = 0xffff;
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x08:
ret = (uint16_t) dma_sg_read(port, priv);
break;
case 0x20:
ret = dev->ptr0 | (dev->ptr & 0xff00);
break;
case 0x22:
ret = dev->ptr >> 16;
break;
}
dma_log("DMA S/G WORD read : %04X %04X\n", port, ret);
return ret;
}
static uint32_t
dma_sg_readl(uint16_t port, void *priv)
{
dma_t *dev = (dma_t *) priv;
uint32_t ret = 0xffffffff;
port &= 0xff;
if (port < 0x20)
port &= 0xf8;
else
port &= 0xe3;
switch (port) {
case 0x08:
ret = (uint32_t) dma_sg_read(port, priv);
break;
case 0x20:
ret = dev->ptr0 | (dev->ptr & 0xffffff00);
break;
}
dma_log("DMA S/G DWORD read : %04X %08X\n", port, ret);
return ret;
}
static void
dma_ext_mode_write(uint16_t addr, uint8_t val, void *priv)
{
int channel = (val & 0x03);
if (addr == 0x4d6)
channel |= 4;
dma[channel].ext_mode = val & 0x7c;
switch ((val > 2) & 0x03) {
case 0x00:
dma[channel].transfer_mode = 0x0101;
break;
case 0x01:
dma[channel].transfer_mode = 0x0202;
break;
case 0x02: /* 0x02 is reserved. */
/* Logic says this should be an undocumented mode that counts by words,
but is 8-bit I/O, thus only transferring every second byte. */
dma[channel].transfer_mode = 0x0201;
break;
case 0x03:
dma[channel].transfer_mode = 0x0102;
break;
}
}
static uint8_t
dma_sg_int_status_read(uint16_t addr, void *priv)
{
int i;
uint8_t ret = 0x00;
for (i = 0; i < 8; i++) {
if (i != 4)
ret = (!!(dma[i].sg_status & 8)) << i;
}
return ret;
}
static uint8_t
dma_read(uint16_t addr, void *priv)
{
int channel = (addr >> 1) & 3;
uint8_t temp;
switch (addr & 0xf) {
case 0:
case 2:
case 4:
case 6: /*Address registers*/
dma_wp[0] ^= 1;
if (dma_wp[0])
return(dma[channel].ac & 0xff);
return((dma[channel].ac >> 8) & 0xff);
case 1:
case 3:
case 5:
case 7: /*Count registers*/
dma_wp[0] ^= 1;
if (dma_wp[0])
temp = dma[channel].cc & 0xff;
else
temp = dma[channel].cc >> 8;
return(temp);
case 8: /*Status register*/
temp = dma_stat_rq_pc & 0xf;
temp <<= 4;
temp |= dma_stat & 0xf;
dma_stat &= ~0xf;
return(temp);
case 0xd: /*Temporary register*/
return(0);
}
return(dmaregs[0][addr & 0xf]);
}
static void
dma_write(uint16_t addr, uint8_t val, void *priv)
{
int channel = (addr >> 1) & 3;
dmaregs[0][addr & 0xf] = val;
switch (addr & 0xf) {
case 0:
case 2:
case 4:
case 6: /*Address registers*/
dma_wp[0] ^= 1;
if (dma_wp[0])
dma[channel].ab = (dma[channel].ab & 0xffffff00 & dma_mask) | val;
else
dma[channel].ab = (dma[channel].ab & 0xffff00ff & dma_mask) | (val << 8);
dma[channel].ac = dma[channel].ab;
return;
case 1:
case 3:
case 5:
case 7: /*Count registers*/
dma_wp[0] ^= 1;
if (dma_wp[0])
dma[channel].cb = (dma[channel].cb & 0xff00) | val;
else
dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8);
dma[channel].cc = dma[channel].cb;
return;
case 8: /*Control register*/
dma_command[0] = val;
if (val & 0x01)
fatal("Memory-to-memory enable\n");
return;
case 9: /*Request register */
channel = (val & 3);
if (val & 4) {
dma_stat_rq_pc |= (1 << channel);
dma_block_transfer(channel);
} else
dma_stat_rq_pc &= ~(1 << channel);
break;
case 0xa: /*Mask*/
channel = (val & 3);
if (val & 4)
dma_m |= (1 << channel);
else
dma_m &= ~(1 << channel);
return;
case 0xb: /*Mode*/
channel = (val & 3);
dma[channel].mode = val;
if (dma_ps2.is_ps2) {
dma[channel].ps2_mode &= ~0x1c;
if (val & 0x20)
dma[channel].ps2_mode |= 0x10;
if ((val & 0xc) == 8)
dma[channel].ps2_mode |= 4;
else if ((val & 0xc) == 4)
dma[channel].ps2_mode |= 0xc;
}
return;
case 0xc: /*Clear FF*/
dma_wp[0] = 0;
return;
case 0xd: /*Master clear*/
dma_wp[0] = 0;
dma_m |= 0xf;
dma_stat_rq_pc &= ~0x0f;
return;
case 0xe: /*Clear mask*/
dma_m &= 0xf0;
return;
case 0xf: /*Mask write*/
dma_m = (dma_m & 0xf0) | (val & 0xf);
return;
}
}
static uint8_t
dma_ps2_read(uint16_t addr, void *priv)
{
dma_t *dma_c = &dma[dma_ps2.xfr_channel];
uint8_t temp = 0xff;
switch (addr) {
case 0x1a:
switch (dma_ps2.xfr_command) {
case 2: /*Address*/
case 3:
switch (dma_ps2.byte_ptr) {
case 0:
temp = dma_c->ac & 0xff;
dma_ps2.byte_ptr = 1;
break;
case 1:
temp = (dma_c->ac >> 8) & 0xff;
dma_ps2.byte_ptr = 2;
break;
case 2:
temp = (dma_c->ac >> 16) & 0xff;
dma_ps2.byte_ptr = 0;
break;
}
break;
case 4: /*Count*/
case 5:
if (dma_ps2.byte_ptr)
temp = dma_c->cc >> 8;
else
temp = dma_c->cc & 0xff;
dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1;
break;
case 6: /*Read DMA status*/
if (dma_ps2.byte_ptr) {
temp = ((dma_stat_rq & 0xf0) >> 4) | (dma_stat & 0xf0);
dma_stat &= ~0xf0;
dma_stat_rq &= ~0xf0;
} else {
temp = (dma_stat_rq & 0xf) | ((dma_stat & 0xf) << 4);
dma_stat &= ~0xf;
dma_stat_rq &= ~0xf;
}
dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1;
break;
case 7: /*Mode*/
temp = dma_c->ps2_mode;
break;
case 8: /*Arbitration Level*/
temp = dma_c->arb_level;
break;
default:
fatal("Bad XFR Read command %i channel %i\n", dma_ps2.xfr_command, dma_ps2.xfr_channel);
}
break;
}
return(temp);
}
static void
dma_ps2_write(uint16_t addr, uint8_t val, void *priv)
{
dma_t *dma_c = &dma[dma_ps2.xfr_channel];
uint8_t mode;
switch (addr) {
case 0x18:
dma_ps2.xfr_channel = val & 0x7;
dma_ps2.xfr_command = val >> 4;
dma_ps2.byte_ptr = 0;
switch (dma_ps2.xfr_command) {
case 9: /*Set DMA mask*/
dma_m |= (1 << dma_ps2.xfr_channel);
break;
case 0xa: /*Reset DMA mask*/
dma_m &= ~(1 << dma_ps2.xfr_channel);
break;
case 0xb:
if (!(dma_m & (1 << dma_ps2.xfr_channel)))
dma_ps2_run(dma_ps2.xfr_channel);
break;
}
break;
case 0x1a:
switch (dma_ps2.xfr_command) {
case 0: /*I/O address*/
if (dma_ps2.byte_ptr)
dma_c->io_addr = (dma_c->io_addr & 0x00ff) | (val << 8);
else
dma_c->io_addr = (dma_c->io_addr & 0xff00) | val;
dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1;
break;
case 2: /*Address*/
switch (dma_ps2.byte_ptr) {
case 0:
dma_c->ac = (dma_c->ac & 0xffff00) | val;
dma_ps2.byte_ptr = 1;
break;
case 1:
dma_c->ac = (dma_c->ac & 0xff00ff) | (val << 8);
dma_ps2.byte_ptr = 2;
break;
case 2:
dma_c->ac = (dma_c->ac & 0x00ffff) | (val << 16);
dma_ps2.byte_ptr = 0;
break;
}
dma_c->ab = dma_c->ac;
break;
case 4: /*Count*/
if (dma_ps2.byte_ptr)
dma_c->cc = (dma_c->cc & 0xff) | (val << 8);
else
dma_c->cc = (dma_c->cc & 0xff00) | val;
dma_ps2.byte_ptr = (dma_ps2.byte_ptr + 1) & 1;
dma_c->cb = dma_c->cc;
break;
case 7: /*Mode register*/
mode = 0;
if (val & DMA_PS2_DEC2)
mode |= 0x20;
if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_MEM_TO_IO)
mode |= 8;
else if ((val & DMA_PS2_XFER_MASK) == DMA_PS2_XFER_IO_TO_MEM)
mode |= 4;
dma_c->mode = (dma_c->mode & ~0x2c) | mode;
dma_c->ps2_mode = val;
dma_c->size = val & DMA_PS2_SIZE16;
break;
case 8: /*Arbitration Level*/
dma_c->arb_level = val;
break;
default:
fatal("Bad XFR command %i channel %i val %02x\n", dma_ps2.xfr_command, dma_ps2.xfr_channel, val);
}
break;
}
}
static uint8_t
dma16_read(uint16_t addr, void *priv)
{
int channel = ((addr >> 2) & 3) + 4;
uint8_t temp;
addr >>= 1;
switch (addr & 0xf) {
case 0:
case 2:
case 4:
case 6: /*Address registers*/
dma_wp[1] ^= 1;
if (dma_ps2.is_ps2) {
if (dma_wp[1])
return(dma[channel].ac);
return((dma[channel].ac >> 8) & 0xff);
}
if (dma_wp[1])
return((dma[channel].ac >> 1) & 0xff);
return((dma[channel].ac >> 9) & 0xff);
case 1:
case 3:
case 5:
case 7: /*Count registers*/
dma_wp[1] ^= 1;
if (dma_wp[1])
temp = dma[channel].cc & 0xff;
else
temp = dma[channel].cc >> 8;
return(temp);
case 8: /*Status register*/
temp = (dma_stat_rq_pc & 0xf0);
temp |= dma_stat >> 4;
dma_stat &= ~0xf0;
return(temp);
}
return(dmaregs[1][addr & 0xf]);
}
static void
dma16_write(uint16_t addr, uint8_t val, void *priv)
{
int channel = ((addr >> 2) & 3) + 4;
addr >>= 1;
dmaregs[1][addr & 0xf] = val;
switch (addr & 0xf) {
case 0:
case 2:
case 4:
case 6: /*Address registers*/
dma_wp[1] ^= 1;
if (dma_ps2.is_ps2) {
if (dma_wp[1])
dma[channel].ab = (dma[channel].ab & 0xffffff00 & dma_mask) | val;
else
dma[channel].ab = (dma[channel].ab & 0xffff00ff & dma_mask) | (val << 8);
} else {
if (dma_wp[1])
dma[channel].ab = (dma[channel].ab & 0xfffffe00 & dma_mask) | (val << 1);
else
dma[channel].ab = (dma[channel].ab & 0xfffe01ff & dma_mask) | (val << 9);
}
dma[channel].ac = dma[channel].ab;
return;
case 1:
case 3:
case 5:
case 7: /*Count registers*/
dma_wp[1] ^= 1;
if (dma_wp[1])
dma[channel].cb = (dma[channel].cb & 0xff00) | val;
else
dma[channel].cb = (dma[channel].cb & 0x00ff) | (val << 8);
dma[channel].cc = dma[channel].cb;
return;
case 8: /*Control register*/
return;
case 9: /*Request register */
channel = (val & 3) + 4;
if (val & 4) {
dma_stat_rq_pc |= (1 << channel);
dma_block_transfer(channel);
} else
dma_stat_rq_pc &= ~(1 << channel);
break;
case 0xa: /*Mask*/
channel = (val & 3);
if (val & 4)
dma_m |= (0x10 << channel);
else
dma_m &= ~(0x10 << channel);
return;
case 0xb: /*Mode*/
channel = (val & 3) + 4;
dma[channel].mode = val;
if (dma_ps2.is_ps2) {
dma[channel].ps2_mode &= ~0x1c;
if (val & 0x20)
dma[channel].ps2_mode |= 0x10;
if ((val & 0xc) == 8)
dma[channel].ps2_mode |= 4;
else if ((val & 0xc) == 4)
dma[channel].ps2_mode |= 0xc;
}
return;
case 0xc: /*Clear FF*/
dma_wp[1] = 0;
return;
case 0xd: /*Master clear*/
dma_wp[1] = 0;
dma_m |= 0xf0;
dma_stat_rq_pc &= ~0xf0;
return;
case 0xe: /*Clear mask*/
dma_m &= 0x0f;
return;
case 0xf: /*Mask write*/
dma_m = (dma_m & 0x0f) | ((val & 0xf) << 4);
return;
}
}
#define CHANNELS { 8, 2, 3, 1, 8, 8, 8, 0 }
static void
dma_page_write(uint16_t addr, uint8_t val, void *priv)
{
uint8_t convert[8] = CHANNELS;
addr &= 0x0f;
dmaregs[2][addr] = val;
if (addr >= 8)
addr = convert[addr & 0x07] | 4;
else
addr = convert[addr & 0x07];
if (addr < 8) {
dma[addr].page_l = val;
if (addr > 4) {
dma[addr].page = val & 0xfe;
dma[addr].ab = (dma[addr].ab & 0xff01ffff & dma_mask) | (dma[addr].page << 16);
dma[addr].ac = (dma[addr].ac & 0xff01ffff & dma_mask) | (dma[addr].page << 16);
} else {
dma[addr].page = (AT) ? val : val & 0xf;
dma[addr].ab = (dma[addr].ab & 0xff00ffff & dma_mask) | (dma[addr].page << 16);
dma[addr].ac = (dma[addr].ac & 0xff00ffff & dma_mask) | (dma[addr].page << 16);
}
}
}
static uint8_t
dma_page_read(uint16_t addr, void *priv)
{
uint8_t convert[8] = CHANNELS;
uint8_t ret = 0xff;
addr &= 0x0f;
ret = dmaregs[2][addr];
if (addr >= 8)
addr = convert[addr & 0x07] | 4;
else
addr = convert[addr & 0x07];
if (addr < 8)
ret = dma[addr].page_l;
return ret;
}
static void
dma_high_page_write(uint16_t addr, uint8_t val, void *priv)
{
uint8_t convert[8] = CHANNELS;
addr &= 0x0f;
if (addr >= 8)
addr = convert[addr & 0x07] | 4;
else
addr = convert[addr & 0x07];
if (addr < 8) {
dma[addr].page_h = val;
dma[addr].ab = ((dma[addr].ab & 0xffffff) | (dma[addr].page << 24)) & dma_mask;
dma[addr].ac = ((dma[addr].ac & 0xffffff) | (dma[addr].page << 24)) & dma_mask;
}
}
static uint8_t
dma_high_page_read(uint16_t addr, void *priv)
{
uint8_t convert[8] = CHANNELS;
uint8_t ret = 0xff;
addr &= 0x0f;
if (addr >= 8)
addr = convert[addr & 0x07] | 4;
else
addr = convert[addr & 0x07];
if (addr < 8)
ret = dma[addr].page_h;
return ret;
}
void
dma_set_params(uint8_t advanced, uint32_t mask)
{
dma_advanced = advanced;
dma_mask = mask;
}
void
dma_set_mask(uint32_t mask)
{
int i;
dma_mask = mask;
for (i = 0; i < 8; i++) {
dma[i].ab &= mask;
dma[i].ac &= mask;
}
}
void
dma_reset(void)
{
int c;
dma_wp[0] = dma_wp[1] = 0;
dma_m = 0;
dma_e = 0xff;
for (c = 0; c < 16; c++)
dmaregs[0][c] = dmaregs[1][c] = 0;
for (c = 0; c < 8; c++) {
memset(&(dma[c]), 0x00, sizeof(dma_t));
dma[c].size = (c & 4) ? 1 : 0;
dma[c].transfer_mode = (c & 4) ? 0x0202 : 0x0101;
}
dma_stat = 0x00;
dma_stat_rq = 0x00;
dma_stat_rq_pc = 0x00;
dma_req_is_soft = 0;
dma_advanced = 0;
memset(dma_buffer, 0x00, sizeof(dma_buffer));
memset(dma16_buffer, 0x00, sizeof(dma16_buffer));
dma_remove_sg();
dma_sg_base = 0x0400;
dma_mask = 0x00ffffff;
}
void
dma_remove_sg(void)
{
int i;
io_removehandler(dma_sg_base + 0x0a, 0x01,
dma_sg_int_status_read, NULL, NULL,
NULL, NULL, NULL,
NULL);
for (i = 0; i < 8; i++) {
io_removehandler(dma_sg_base + 0x10 + i, 0x01,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
io_removehandler(dma_sg_base + 0x18 + i, 0x01,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
io_removehandler(dma_sg_base + 0x20 + i, 0x04,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
}
}
void
dma_set_sg_base(uint8_t sg_base)
{
int i;
dma_sg_base = sg_base << 8;
io_sethandler(dma_sg_base + 0x0a, 0x01,
dma_sg_int_status_read, NULL, NULL,
NULL, NULL, NULL,
NULL);
for (i = 0; i < 8; i++) {
io_sethandler(dma_sg_base + 0x10 + i, 0x01,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
io_sethandler(dma_sg_base + 0x18 + i, 0x01,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
io_sethandler(dma_sg_base + 0x20 + i, 0x04,
dma_sg_read, dma_sg_readw, dma_sg_readl,
dma_sg_write, dma_sg_writew, dma_sg_writel,
&dma[i]);
}
}
void
dma_ext_mode_init(void)
{
io_sethandler(0x040b, 0x01,
NULL,NULL,NULL, dma_ext_mode_write,NULL,NULL, NULL);
io_sethandler(0x04d6, 0x01,
NULL,NULL,NULL, dma_ext_mode_write,NULL,NULL, NULL);
}
void
dma_high_page_init(void)
{
io_sethandler(0x0480, 8,
dma_high_page_read,NULL,NULL, dma_high_page_write,NULL,NULL, NULL);
}
void
dma_init(void)
{
dma_reset();
io_sethandler(0x0000, 16,
dma_read,NULL,NULL, dma_write,NULL,NULL, NULL);
io_sethandler(0x0080, 8,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
dma_ps2.is_ps2 = 0;
}
void
dma16_init(void)
{
dma_reset();
io_sethandler(0x00C0, 32,
dma16_read,NULL,NULL, dma16_write,NULL,NULL, NULL);
io_sethandler(0x0088, 8,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
}
void
dma_alias_set(void)
{
io_sethandler(0x0090, 2,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_sethandler(0x0093, 13,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
}
void
dma_alias_set_piix(void)
{
io_sethandler(0x0090, 1,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_sethandler(0x0094, 3,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_sethandler(0x0098, 1,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_sethandler(0x009C, 3,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
}
void
dma_alias_remove(void)
{
io_removehandler(0x0090, 2,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_removehandler(0x0093, 13,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
}
void
dma_alias_remove_piix(void)
{
io_removehandler(0x0090, 1,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_removehandler(0x0094, 3,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_removehandler(0x0098, 1,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
io_removehandler(0x009C, 3,
dma_page_read,NULL,NULL, dma_page_write,NULL,NULL, NULL);
}
void
ps2_dma_init(void)
{
dma_reset();
io_sethandler(0x0018, 1,
dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL);
io_sethandler(0x001a, 1,
dma_ps2_read,NULL,NULL, dma_ps2_write,NULL,NULL, NULL);
dma_ps2.is_ps2 = 1;
}
extern void dma_bm_read(uint32_t PhysAddress, uint8_t *DataRead, uint32_t TotalSize, int TransferSize);
extern void dma_bm_write(uint32_t PhysAddress, const uint8_t *DataWrite, uint32_t TotalSize, int TransferSize);
static int
dma_sg(uint8_t *data, int transfer_length, int out, void *priv)
{
dma_t *dev = (dma_t *) priv;
#ifdef ENABLE_DMA_LOG
char *sop;
#endif
int force_end = 0, buffer_pos = 0;
#ifdef ENABLE_DMA_LOG
sop = out ? "Read" : "Writ";
#endif
if (!(dev->sg_status & 1))
return 2; /*S/G disabled*/
dma_log("DMA S/G %s: %i bytes\n", out ? "write" : "read", transfer_length);
while (1) {
if (dev->count <= transfer_length) {
dma_log("%sing %i bytes to %08X\n", sop, dev->count, dev->addr);
if (out)
dma_bm_read(dev->addr, (uint8_t *)(data + buffer_pos), dev->count, 4);
else
dma_bm_write(dev->addr, (uint8_t *)(data + buffer_pos), dev->count, 4);
transfer_length -= dev->count;
buffer_pos += dev->count;
} else {
dma_log("%sing %i bytes to %08X\n", sop, transfer_length, dev->addr);
if (out)
dma_bm_read(dev->addr, (uint8_t *)(data + buffer_pos), transfer_length, 4);
else
dma_bm_write(dev->addr, (uint8_t *)(data + buffer_pos), transfer_length, 4);
/* Increase addr and decrease count so that resumed transfers do not mess up. */
dev->addr += transfer_length;
dev->count -= transfer_length;
transfer_length = 0;
force_end = 1;
}
if (force_end) {
dma_log("Total transfer length smaller than sum of all blocks, partial block\n");
return 1; /* This block has exhausted the data to transfer and it was smaller than the count, break. */
} else {
if (!transfer_length && !dev->eot) {
dma_log("Total transfer length smaller than sum of all blocks, full block\n");
return 1; /* We have exhausted the data to transfer but there's more blocks left, break. */
} else if (transfer_length && dev->eot) {
dma_log("Total transfer length greater than sum of all blocks\n");
return 4; /* There is data left to transfer but we have reached EOT - return with error. */
} else if (dev->eot) {
dma_log("Regular EOT\n");
return 5; /* We have regularly reached EOT - clear status and break. */
} else {
/* We have more to transfer and there are blocks left, get next block. */
dma_sg_next_addr(dev);
}
}
}
return 1;
}
uint8_t
_dma_read(uint32_t addr, dma_t *dma_c)
{
uint8_t temp;
if (dma_advanced) {
if (dma_c->sg_status & 1)
dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg(&temp, 1, 1, dma_c) << 4);
else
dma_bm_read(addr, &temp, 1, dma_transfer_size(dma_c));
} else
temp = mem_readb_phys(addr);
return(temp);
}
static uint16_t
_dma_readw(uint32_t addr, dma_t *dma_c)
{
uint16_t temp;
if (dma_advanced) {
if (dma_c->sg_status & 1)
dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg((uint8_t *) &temp, 2, 1, dma_c) << 4);
else
dma_bm_read(addr, (uint8_t *) &temp, 2, dma_transfer_size(dma_c));
} else
temp = _dma_read(addr, dma_c) | (_dma_read(addr + 1, dma_c) << 8);
return(temp);
}
static void
_dma_write(uint32_t addr, uint8_t val, dma_t *dma_c)
{
if (dma_advanced) {
if (dma_c->sg_status & 1)
dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg(&val, 1, 0, dma_c) << 4);
else
dma_bm_write(addr, &val, 1, dma_transfer_size(dma_c));
} else {
mem_writeb_phys(addr, val);
mem_invalidate_range(addr, addr);
}
}
static void
_dma_writew(uint32_t addr, uint16_t val, dma_t *dma_c)
{
if (dma_advanced) {
if (dma_c->sg_status & 1)
dma_c->sg_status = (dma_c->sg_status & 0x0f) | (dma_sg((uint8_t *) &val, 2, 0, dma_c) << 4);
else
dma_bm_write(addr, (uint8_t *) &val, 2, dma_transfer_size(dma_c));
} else {
_dma_write(addr, val & 0xff, dma_c);
_dma_write(addr + 1, val >> 8, dma_c);
}
}
static void
dma_retreat(dma_t *dma_c)
{
int as = dma_c->transfer_mode >> 8;
if (dma->sg_status & 1) {
dma_c->ac = (dma_c->ac - as) & dma_mask;
dma_c->page = dma_c->page_l = (dma_c->ac >> 16) & 0xff;
dma_c->page_h = (dma_c->ac >> 24) & 0xff;
} else if (as == 2)
dma_c->ac = ((dma_c->ac & 0xfffe0000) & dma_mask) | ((dma_c->ac - as) & 0xffff);
else
dma_c->ac = ((dma_c->ac & 0xffff0000) & dma_mask) | ((dma_c->ac - as) & 0xffff);
}
void
dma_advance(dma_t *dma_c)
{
int as = dma_c->transfer_mode >> 8;
if (dma->sg_status & 1) {
dma_c->ac = (dma_c->ac + as) & dma_mask;
dma_c->page = dma_c->page_l = (dma_c->ac >> 16) & 0xff;
dma_c->page_h = (dma_c->ac >> 24) & 0xff;
} else if (as == 2)
dma_c->ac = ((dma_c->ac & 0xfffe0000) & dma_mask) | ((dma_c->ac + as) & 0xffff);
else
dma_c->ac = ((dma_c->ac & 0xffff0000) & dma_mask) | ((dma_c->ac + as) & 0xffff);
}
int
dma_channel_read(int channel)
{
dma_t *dma_c = &dma[channel];
uint16_t temp;
int tc = 0;
if (channel < 4) {
if (dma_command[0] & 0x04)
return(DMA_NODATA);
} else {
if (dma_command[1] & 0x04)
return(DMA_NODATA);
}
if (!(dma_e & (1 << channel)))
return(DMA_NODATA);
if ((dma_m & (1 << channel)) && !dma_req_is_soft)
return(DMA_NODATA);
if ((dma_c->mode & 0xC) != 8)
return(DMA_NODATA);
if (!AT && !channel)
refreshread();
if (! dma_c->size) {
temp = _dma_read(dma_c->ac, dma_c);
if (dma_c->mode & 0x20) {
if (dma_ps2.is_ps2)
dma_c->ac--;
else if (dma_advanced)
dma_retreat(dma_c);
else
dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac - 1) & 0xffff);
} else {
if (dma_ps2.is_ps2)
dma_c->ac++;
else if (dma_advanced)
dma_advance(dma_c);
else
dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac + 1) & 0xffff);
}
} else {
temp = _dma_readw(dma_c->ac, dma_c);
if (dma_c->mode & 0x20) {
if (dma_ps2.is_ps2)
dma_c->ac -= 2;
else if (dma_advanced)
dma_retreat(dma_c);
else
dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff);
} else {
if (dma_ps2.is_ps2)
dma_c->ac += 2;
else if (dma_advanced)
dma_advance(dma_c);
else
dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac + 2) & 0x1ffff);
}
}
dma_stat_rq |= (1 << channel);
dma_c->cc--;
if (dma_c->cc < 0) {
if (dma_advanced && (dma_c->sg_status & 1) && !(dma_c->sg_status & 6))
dma_sg_next_addr(dma_c);
else {
tc = 1;
if (dma_c->mode & 0x10) { /*Auto-init*/
dma_c->cc = dma_c->cb;
dma_c->ac = dma_c->ab;
} else
dma_m |= (1 << channel);
dma_stat |= (1 << channel);
}
}
if (tc) {
if (dma_advanced && (dma_c->sg_status & 1) && ((dma_c->sg_command & 0xc0) == 0x40)) {
picint(1 << 13);
dma_c->sg_status |= 8;
}
return(temp | DMA_OVER);
}
return(temp);
}
int
dma_channel_write(int channel, uint16_t val)
{
dma_t *dma_c = &dma[channel];
if (channel < 4) {
if (dma_command[0] & 0x04)
return(DMA_NODATA);
} else {
if (dma_command[1] & 0x04)
return(DMA_NODATA);
}
if (!(dma_e & (1 << channel)))
return(DMA_NODATA);
if ((dma_m & (1 << channel)) && !dma_req_is_soft)
return(DMA_NODATA);
if ((dma_c->mode & 0xC) != 4)
return(DMA_NODATA);
if (! dma_c->size) {
_dma_write(dma_c->ac, val & 0xff, dma_c);
if (dma_c->mode & 0x20) {
if (dma_ps2.is_ps2)
dma_c->ac--;
else if (dma_advanced)
dma_retreat(dma_c);
else
dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac - 1) & 0xffff);
} else {
if (dma_ps2.is_ps2)
dma_c->ac++;
else if (dma_advanced)
dma_advance(dma_c);
else
dma_c->ac = (dma_c->ac & 0xffff0000 & dma_mask) | ((dma_c->ac + 1) & 0xffff);
}
} else {
_dma_writew(dma_c->ac, val, dma_c);
if (dma_c->mode & 0x20) {
if (dma_ps2.is_ps2)
dma_c->ac -= 2;
else if (dma_advanced)
dma_retreat(dma_c);
else
dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff);
dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac - 2) & 0x1ffff);
} else {
if (dma_ps2.is_ps2)
dma_c->ac += 2;
else if (dma_advanced)
dma_advance(dma_c);
else
dma_c->ac = (dma_c->ac & 0xfffe0000 & dma_mask) | ((dma_c->ac + 2) & 0x1ffff);
}
}
dma_stat_rq |= (1 << channel);
dma_c->cc--;
if (dma_c->cc < 0) {
if (dma_advanced && (dma_c->sg_status & 1) && !(dma_c->sg_status & 6))
dma_sg_next_addr(dma_c);
else {
if (dma_c->mode & 0x10) { /*Auto-init*/
dma_c->cc = dma_c->cb;
dma_c->ac = dma_c->ab;
} else
dma_m |= (1 << channel);
dma_stat |= (1 << channel);
}
}
if (dma_m & (1 << channel)) {
if (dma_advanced && (dma_c->sg_status & 1) && ((dma_c->sg_command & 0xc0) == 0x40)) {
picint(1 << 13);
dma_c->sg_status |= 8;
}
return(DMA_OVER);
}
return(0);
}
static void
dma_ps2_run(int channel)
{
dma_t *dma_c = &dma[channel];
switch (dma_c->ps2_mode & DMA_PS2_XFER_MASK) {
case DMA_PS2_XFER_MEM_TO_IO:
do {
if (! dma_c->size) {
uint8_t temp = _dma_read(dma_c->ac, dma_c);
outb(dma_c->io_addr, temp);
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac--;
else
dma_c->ac++;
} else {
uint16_t temp = _dma_readw(dma_c->ac, dma_c);
outw(dma_c->io_addr, temp);
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac -= 2;
else
dma_c->ac += 2;
}
dma_stat_rq |= (1 << channel);
dma_c->cc--;
} while (dma_c->cc > 0);
dma_stat |= (1 << channel);
break;
case DMA_PS2_XFER_IO_TO_MEM:
do {
if (! dma_c->size) {
uint8_t temp = inb(dma_c->io_addr);
_dma_write(dma_c->ac, temp, dma_c);
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac--;
else
dma_c->ac++;
} else {
uint16_t temp = inw(dma_c->io_addr);
_dma_writew(dma_c->ac, temp, dma_c);
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac -= 2;
else
dma_c->ac += 2;
}
dma_stat_rq |= (1 << channel);
dma_c->cc--;
} while (dma_c->cc > 0);
ps2_cache_clean();
dma_stat |= (1 << channel);
break;
default: /*Memory verify*/
do {
if (! dma_c->size) {
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac--;
else
dma_c->ac++;
} else {
if (dma_c->ps2_mode & DMA_PS2_DEC2)
dma_c->ac -= 2;
else
dma_c->ac += 2;
}
dma_stat_rq |= (1 << channel);
dma->cc--;
} while (dma->cc > 0);
dma_stat |= (1 << channel);
break;
}
}
int
dma_mode(int channel)
{
return(dma[channel].mode);
}
/* DMA Bus Master Page Read/Write */
void
dma_bm_read(uint32_t PhysAddress, uint8_t *DataRead, uint32_t TotalSize, int TransferSize)
{
uint32_t i = 0, n, n2;
uint8_t bytes[4] = { 0, 0, 0, 0 };
n = TotalSize & ~(TransferSize - 1);
n2 = TotalSize - n;
/* Do the divisible block, if there is one. */
if (n) {
for (i = 0; i < n; i += TransferSize)
mem_read_phys((void *) &(DataRead[i]), PhysAddress + i, TransferSize);
}
/* Do the non-divisible block, if there is one. */
if (n2) {
mem_read_phys((void *) bytes, PhysAddress + n, TransferSize);
memcpy((void *) &(DataRead[n]), bytes, n2);
}
}
void
dma_bm_write(uint32_t PhysAddress, const uint8_t *DataWrite, uint32_t TotalSize, int TransferSize)
{
uint32_t i = 0, n, n2;
uint8_t bytes[4] = { 0, 0, 0, 0 };
n = TotalSize & ~(TransferSize - 1);
n2 = TotalSize - n;
/* Do the divisible block, if there is one. */
if (n) {
for (i = 0; i < n; i += TransferSize)
mem_write_phys((void *) &(DataWrite[i]), PhysAddress + i, TransferSize);
}
/* Do the non-divisible block, if there is one. */
if (n2) {
mem_read_phys((void *) bytes, PhysAddress + n, TransferSize);
memcpy(bytes, (void *) &(DataWrite[n]), n2);
mem_write_phys((void *) bytes, PhysAddress + n, TransferSize);
}
}