tls: P256: explain which functions use double-wide arrays, no code changes
function old new delta sp_512to256_mont_reduce_8 - 243 +243 sp_256to512z_mont_mul_8 - 150 +150 sp_256to512z_mont_sqr_8 - 7 +7 sp_256_mont_sqr_8 7 - -7 sp_256_mont_mul_8 150 - -150 sp_256_mont_reduce_8 243 - -243 ------------------------------------------------------------------------------ (add/remove: 3/3 grow/shrink: 0/0 up/down: 400/-400) Total: 0 bytes Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
This commit is contained in:
		| @@ -455,8 +455,10 @@ static void sp_256_sub_8_p256_mod(sp_digit* r) | ||||
| } | ||||
| #endif | ||||
|  | ||||
| /* Multiply a and b into r. (r = a * b) */ | ||||
| static void sp_256_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) | ||||
| /* Multiply a and b into r. (r = a * b) | ||||
|  * r should be [16] array (512 bits). | ||||
|  */ | ||||
| static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b) | ||||
| { | ||||
| #if ALLOW_ASM && defined(__GNUC__) && defined(__i386__) | ||||
| 	sp_digit rr[15]; /* in case r coincides with a or b */ | ||||
| @@ -704,9 +706,11 @@ static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* | ||||
| 	} | ||||
| } | ||||
|  | ||||
| /* Shift the result in the high 256 bits down to the bottom. */ | ||||
| /* Shift the result in the high 256 bits down to the bottom. | ||||
|  * High half is cleared to zeros. | ||||
|  */ | ||||
| #if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff | ||||
| static void sp_256_mont_shift_8(sp_digit* rr) | ||||
| static void sp_512to256_mont_shift_8(sp_digit* rr) | ||||
| { | ||||
| 	uint64_t *r = (void*)rr; | ||||
| 	int i; | ||||
| @@ -717,7 +721,7 @@ static void sp_256_mont_shift_8(sp_digit* rr) | ||||
| 	} | ||||
| } | ||||
| #else | ||||
| static void sp_256_mont_shift_8(sp_digit* r) | ||||
| static void sp_512to256_mont_shift_8(sp_digit* r) | ||||
| { | ||||
| 	int i; | ||||
|  | ||||
| @@ -728,7 +732,10 @@ static void sp_256_mont_shift_8(sp_digit* r) | ||||
| } | ||||
| #endif | ||||
|  | ||||
| /* Mul a by scalar b and add into r. (r += a * b) */ | ||||
| /* Mul a by scalar b and add into r. (r += a * b) | ||||
|  * a = p256_mod | ||||
|  * b = r[0] | ||||
|  */ | ||||
| static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) | ||||
| { | ||||
| //	const sp_digit* a = p256_mod; | ||||
| @@ -857,11 +864,11 @@ static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/) | ||||
|  | ||||
| /* Reduce the number back to 256 bits using Montgomery reduction. | ||||
|  * | ||||
|  * a   A single precision number to reduce in place. | ||||
|  * a   Double-wide number to reduce in place. | ||||
|  * m   The single precision number representing the modulus. | ||||
|  * mp  The digit representing the negative inverse of m mod 2^n. | ||||
|  */ | ||||
| static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/) | ||||
| static void sp_512to256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/) | ||||
| { | ||||
| //	const sp_digit* m = p256_mod; | ||||
| 	sp_digit mp = p256_mp_mod; | ||||
| @@ -884,7 +891,7 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ | ||||
| 					goto inc_next_word0; | ||||
| 			} | ||||
| 		} | ||||
| 		sp_256_mont_shift_8(a); | ||||
| 		sp_512to256_mont_shift_8(a); | ||||
| 		if (word16th != 0) | ||||
| 			sp_256_sub_8_p256_mod(a); | ||||
| 		sp_256_norm_8(a); | ||||
| @@ -892,7 +899,7 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ | ||||
| 	else { /* Same code for explicit mp == 1 (which is always the case for P256) */ | ||||
| 		sp_digit word16th = 0; | ||||
| 		for (i = 0; i < 8; i++) { | ||||
| 			/*mu = a[i];*/ | ||||
| //			mu = a[i]; | ||||
| 			if (sp_256_mul_add_8(a+i /*, m, mu*/)) { | ||||
| 				int j = i + 8; | ||||
|  inc_next_word: | ||||
| @@ -904,148 +911,46 @@ static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/ | ||||
| 					goto inc_next_word; | ||||
| 			} | ||||
| 		} | ||||
| 		sp_256_mont_shift_8(a); | ||||
| 		sp_512to256_mont_shift_8(a); | ||||
| 		if (word16th != 0) | ||||
| 			sp_256_sub_8_p256_mod(a); | ||||
| 		sp_256_norm_8(a); | ||||
| 	} | ||||
| } | ||||
| #if 0 | ||||
| //TODO: arm32 asm (also adapt for x86?) | ||||
| static void sp_256_mont_reduce_8(sp_digit* a, sp_digit* m, sp_digit mp) | ||||
| { | ||||
| 	sp_digit ca = 0; | ||||
|  | ||||
| 	asm volatile ( | ||||
| 	# i = 0 | ||||
| 	mov	r12, #0 | ||||
| 	ldr	r10, [%[a], #0] | ||||
| 	ldr	r14, [%[a], #4] | ||||
| 1: | ||||
| 	# mu = a[i] * mp | ||||
| 	mul	r8, %[mp], r10 | ||||
| 	# a[i+0] += m[0] * mu | ||||
| 	ldr	r7, [%[m], #0] | ||||
| 	ldr	r9, [%[a], #0] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r10, r10, r6 | ||||
| 	adc	r5, r7, #0 | ||||
| 	# a[i+1] += m[1] * mu | ||||
| 	ldr	r7, [%[m], #4] | ||||
| 	ldr	r9, [%[a], #4] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r10, r14, r6 | ||||
| 	adc	r4, r7, #0 | ||||
| 	adds	r10, r10, r5 | ||||
| 	adc	r4, r4, #0 | ||||
| 	# a[i+2] += m[2] * mu | ||||
| 	ldr	r7, [%[m], #8] | ||||
| 	ldr	r14, [%[a], #8] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r14, r14, r6 | ||||
| 	adc	r5, r7, #0 | ||||
| 	adds	r14, r14, r4 | ||||
| 	adc	r5, r5, #0 | ||||
| 	# a[i+3] += m[3] * mu | ||||
| 	ldr	r7, [%[m], #12] | ||||
| 	ldr	r9, [%[a], #12] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r9, r9, r6 | ||||
| 	adc	r4, r7, #0 | ||||
| 	adds	r9, r9, r5 | ||||
| 	str	r9, [%[a], #12] | ||||
| 	adc	r4, r4, #0 | ||||
| 	# a[i+4] += m[4] * mu | ||||
| 	ldr	r7, [%[m], #16] | ||||
| 	ldr	r9, [%[a], #16] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r9, r9, r6 | ||||
| 	adc	r5, r7, #0 | ||||
| 	adds	r9, r9, r4 | ||||
| 	str	r9, [%[a], #16] | ||||
| 	adc	r5, r5, #0 | ||||
| 	# a[i+5] += m[5] * mu | ||||
| 	ldr	r7, [%[m], #20] | ||||
| 	ldr	r9, [%[a], #20] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r9, r9, r6 | ||||
| 	adc	r4, r7, #0 | ||||
| 	adds	r9, r9, r5 | ||||
| 	str	r9, [%[a], #20] | ||||
| 	adc	r4, r4, #0 | ||||
| 	# a[i+6] += m[6] * mu | ||||
| 	ldr	r7, [%[m], #24] | ||||
| 	ldr	r9, [%[a], #24] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r9, r9, r6 | ||||
| 	adc	r5, r7, #0 | ||||
| 	adds	r9, r9, r4 | ||||
| 	str	r9, [%[a], #24] | ||||
| 	adc	r5, r5, #0 | ||||
| 	# a[i+7] += m[7] * mu | ||||
| 	ldr	r7, [%[m], #28] | ||||
| 	ldr	r9, [%[a], #28] | ||||
| 	umull	r6, r7, r8, r7 | ||||
| 	adds	r5, r5, r6 | ||||
| 	adcs	r7, r7, %[ca] | ||||
| 	mov	%[ca], #0 | ||||
| 	adc	%[ca], %[ca], %[ca] | ||||
| 	adds	r9, r9, r5 | ||||
| 	str	r9, [%[a], #28] | ||||
| 	ldr	r9, [%[a], #32] | ||||
| 	adcs	r9, r9, r7 | ||||
| 	str	r9, [%[a], #32] | ||||
| 	adc	%[ca], %[ca], #0 | ||||
| 	# i += 1 | ||||
| 	add	%[a], %[a], #4 | ||||
| 	add	r12, r12, #4 | ||||
| 	cmp	r12, #32 | ||||
| 	blt	1b | ||||
|  | ||||
| 	str	r10, [%[a], #0] | ||||
| 	str	r14, [%[a], #4] | ||||
| 	: [ca] "+r" (ca), [a] "+r" (a) | ||||
| 	: [m] "r" (m), [mp] "r" (mp) | ||||
| 	: "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14" | ||||
| 	); | ||||
|  | ||||
| 	memcpy(a, a + 8, 32); | ||||
| 	if (ca) | ||||
| 		a -= m; | ||||
| } | ||||
| #endif | ||||
|  | ||||
| /* Multiply two Montogmery form numbers mod the modulus (prime). | ||||
|  * (r = a * b mod m) | ||||
|  * | ||||
|  * r   Result of multiplication. | ||||
|  *     Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). | ||||
|  * a   First number to multiply in Montogmery form. | ||||
|  * b   Second number to multiply in Montogmery form. | ||||
|  * m   Modulus (prime). | ||||
|  * mp  Montogmery mulitplier. | ||||
|  */ | ||||
| static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b | ||||
| static void sp_256to512z_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b | ||||
| 		/*, const sp_digit* m, sp_digit mp*/) | ||||
| { | ||||
| 	//const sp_digit* m = p256_mod; | ||||
| 	//sp_digit mp = p256_mp_mod; | ||||
| 	sp_256_mul_8(r, a, b); | ||||
| 	sp_256_mont_reduce_8(r /*, m, mp*/); | ||||
| 	sp_256to512_mul_8(r, a, b); | ||||
| 	sp_512to256_mont_reduce_8(r /*, m, mp*/); | ||||
| } | ||||
|  | ||||
| /* Square the Montgomery form number. (r = a * a mod m) | ||||
|  * | ||||
|  * r   Result of squaring. | ||||
|  *     Should be [16] array (512 bits), but high half is cleared to zeros (used as scratch pad). | ||||
|  * a   Number to square in Montogmery form. | ||||
|  * m   Modulus (prime). | ||||
|  * mp  Montogmery mulitplier. | ||||
|  */ | ||||
| static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a | ||||
| static void sp_256to512z_mont_sqr_8(sp_digit* r, const sp_digit* a | ||||
| 		/*, const sp_digit* m, sp_digit mp*/) | ||||
| { | ||||
| 	//const sp_digit* m = p256_mod; | ||||
| 	//sp_digit mp = p256_mp_mod; | ||||
| 	sp_256_mont_mul_8(r, a, a /*, m, mp*/); | ||||
| 	sp_256to512z_mont_mul_8(r, a, a /*, m, mp*/); | ||||
| } | ||||
|  | ||||
| /* Invert the number, in Montgomery form, modulo the modulus (prime) of the | ||||
| @@ -1068,15 +973,15 @@ static const uint32_t p256_mod_2[8] = { | ||||
| #endif | ||||
| static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a) | ||||
| { | ||||
| 	sp_digit t[2*8]; //can be just [8]? | ||||
| 	sp_digit t[2*8]; | ||||
| 	int i; | ||||
|  | ||||
| 	memcpy(t, a, sizeof(sp_digit) * 8); | ||||
| 	for (i = 254; i >= 0; i--) { | ||||
| 		sp_256_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); | ||||
| 		sp_256to512z_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/); | ||||
| 		/*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ | ||||
| 		if (i >= 224 || i == 192 || (i <= 95 && i != 1)) | ||||
| 			sp_256_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); | ||||
| 			sp_256to512z_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/); | ||||
| 	} | ||||
| 	memcpy(r, t, sizeof(sp_digit) * 8); | ||||
| } | ||||
| @@ -1152,22 +1057,22 @@ static void sp_256_map_8(sp_point* r, sp_point* p) | ||||
|  | ||||
| 	sp_256_mont_inv_8(t1, p->z); | ||||
|  | ||||
| 	sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); | ||||
|  | ||||
| 	/* x /= z^2 */ | ||||
| 	sp_256_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	memset(r->x + 8, 0, sizeof(r->x) / 2); | ||||
| 	sp_256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_512to256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* Reduce x to less than modulus */ | ||||
| 	if (sp_256_cmp_8(r->x, p256_mod) >= 0) | ||||
| 		sp_256_sub_8_p256_mod(r->x); | ||||
| 	sp_256_norm_8(r->x); | ||||
|  | ||||
| 	/* y /= z^3 */ | ||||
| 	sp_256_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	memset(r->y + 8, 0, sizeof(r->y) / 2); | ||||
| 	sp_256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_512to256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* Reduce y to less than modulus */ | ||||
| 	if (sp_256_cmp_8(r->y, p256_mod) >= 0) | ||||
| 		sp_256_sub_8_p256_mod(r->y); | ||||
| @@ -1202,9 +1107,9 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) | ||||
| 	} | ||||
|  | ||||
| 	/* T1 = Z * Z */ | ||||
| 	sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* Z = Y * Z */ | ||||
| 	sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* Z = 2Z */ | ||||
| 	sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/); | ||||
| 	/* T2 = X - T1 */ | ||||
| @@ -1212,21 +1117,21 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) | ||||
| 	/* T1 = X + T1 */ | ||||
| 	sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/); | ||||
| 	/* T2 = T1 * T2 */ | ||||
| 	sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* T1 = 3T2 */ | ||||
| 	sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/); | ||||
| 	/* Y = 2Y */ | ||||
| 	sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/); | ||||
| 	/* Y = Y * Y */ | ||||
| 	sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* T2 = Y * Y */ | ||||
| 	sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* T2 = T2/2 */ | ||||
| 	sp_256_div2_8(t2, t2, p256_mod); | ||||
| 	/* Y = Y * X */ | ||||
| 	sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* X = T1 * T1 */ | ||||
| 	sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* X = X - Y */ | ||||
| 	sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/); | ||||
| 	/* X = X - Y */ | ||||
| @@ -1234,7 +1139,7 @@ static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p) | ||||
| 	/* Y = Y - X */ | ||||
| 	sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); | ||||
| 	/* Y = Y * T1 */ | ||||
| 	sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* Y = Y - T2 */ | ||||
| 	sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/); | ||||
| 	dump_512("y2 %s\n", r->y); | ||||
| @@ -1279,36 +1184,36 @@ static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* | ||||
| 	} | ||||
|  | ||||
| 	/* U1 = X1*Z2^2 */ | ||||
| 	sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* U2 = X2*Z1^2 */ | ||||
| 	sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* S1 = Y1*Z2^3 */ | ||||
| 	sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* S2 = Y2*Z1^3 */ | ||||
| 	sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* H = U2 - U1 */ | ||||
| 	sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/); | ||||
| 	/* R = S2 - S1 */ | ||||
| 	sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/); | ||||
| 	/* Z3 = H*Z1*Z2 */ | ||||
| 	sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	/* X3 = R^2 - H^3 - 2*U1*H^2 */ | ||||
| 	sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/); | ||||
| 	sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/); | ||||
| 	sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/); | ||||
| 	/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ | ||||
| 	sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/); | ||||
| 	sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256to512z_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); | ||||
| 	sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/); | ||||
| } | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user