More whitespace than you can possibly imagine...
This commit is contained in:
parent
27cd85b5be
commit
f856eabcde
@ -7,7 +7,7 @@
|
||||
Robert Sedgewick, and Jon L. Bentley.
|
||||
|
||||
This code is licensed under the LGPLv2:
|
||||
LGPL (http://www.gnu.org/copyleft/lgpl.html
|
||||
LGPL http://www.gnu.org/copyleft/lgpl.html
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -23,19 +23,8 @@
|
||||
|
||||
I would ask that anyone benefiting from this work, especially those
|
||||
using it in commercial products, consider making a donation to my local
|
||||
non-profit hospice organization in the name of the woman I loved, who
|
||||
passed away Feb. 12, 2003.
|
||||
|
||||
In memory of Toni W. Hagan
|
||||
|
||||
Hospice of Acadiana, Inc.
|
||||
2600 Johnston St., Suite 200
|
||||
Lafayette, LA 70503-3240
|
||||
|
||||
Phone (337) 232-1234 or 1-800-738-2226
|
||||
Fax (337) 232-1297
|
||||
|
||||
http://www.hospiceacadiana.com/
|
||||
non-profit hospice organization (www.hospiceacadiana.com) in the name of
|
||||
the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
|
||||
|
||||
Manuel
|
||||
*/
|
||||
@ -79,51 +68,73 @@ struct group_data {
|
||||
|
||||
/* Structure holding all the housekeeping data, including IO buffers and
|
||||
memory that persists between calls to bunzip */
|
||||
|
||||
typedef struct {
|
||||
/* State for interrupting output loop */
|
||||
|
||||
int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent;
|
||||
|
||||
/* I/O tracking data (file handles, buffers, positions, etc.) */
|
||||
|
||||
int in_fd,out_fd,inbufCount,inbufPos /*,outbufPos*/;
|
||||
unsigned char *inbuf /*,*outbuf*/;
|
||||
unsigned int inbufBitCount, inbufBits;
|
||||
|
||||
/* The CRC values stored in the block header and calculated from the data */
|
||||
|
||||
unsigned int crc32Table[256],headerCRC, totalCRC, writeCRC;
|
||||
|
||||
/* Intermediate buffer and its size (in bytes) */
|
||||
|
||||
unsigned int *dbuf, dbufSize;
|
||||
|
||||
/* These things are a bit too big to go on the stack */
|
||||
|
||||
unsigned char selectors[32768]; /* nSelectors=15 bits */
|
||||
struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
|
||||
|
||||
/* For I/O error handling */
|
||||
|
||||
jmp_buf jmpbuf;
|
||||
} bunzip_data;
|
||||
|
||||
/* Return the next nnn bits of input. All reads from the compressed input
|
||||
are done through this function. All reads are big endian */
|
||||
|
||||
static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
|
||||
{
|
||||
unsigned int bits=0;
|
||||
|
||||
/* If we need to get more data from the byte buffer, do so. (Loop getting
|
||||
one byte at a time to enforce endianness and avoid unaligned access.) */
|
||||
|
||||
while (bd->inbufBitCount<bits_wanted) {
|
||||
|
||||
/* If we need to read more data from file into byte buffer, do so */
|
||||
|
||||
if(bd->inbufPos==bd->inbufCount) {
|
||||
if((bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)) <= 0)
|
||||
longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF);
|
||||
bd->inbufPos=0;
|
||||
}
|
||||
|
||||
/* Avoid 32-bit overflow (dump bit buffer to top of output) */
|
||||
|
||||
if(bd->inbufBitCount>=24) {
|
||||
bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
|
||||
bits_wanted-=bd->inbufBitCount;
|
||||
bits<<=bits_wanted;
|
||||
bd->inbufBitCount=0;
|
||||
}
|
||||
|
||||
/* Grab next 8 bits of input from buffer. */
|
||||
|
||||
bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
|
||||
bd->inbufBitCount+=8;
|
||||
}
|
||||
|
||||
/* Calculate result */
|
||||
|
||||
bd->inbufBitCount-=bits_wanted;
|
||||
bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
|
||||
|
||||
@ -143,26 +154,34 @@ static int get_next_block(bunzip_data *bd)
|
||||
dbuf=bd->dbuf;
|
||||
dbufSize=bd->dbufSize;
|
||||
selectors=bd->selectors;
|
||||
|
||||
/* Reset longjmp I/O error handling */
|
||||
|
||||
i=setjmp(bd->jmpbuf);
|
||||
if(i) return i;
|
||||
|
||||
/* Read in header signature and CRC, then validate signature.
|
||||
(last block signature means CRC is for whole file, return now) */
|
||||
|
||||
i = get_bits(bd,24);
|
||||
j = get_bits(bd,24);
|
||||
bd->headerCRC=get_bits(bd,32);
|
||||
if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
|
||||
if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
|
||||
|
||||
/* We can add support for blockRandomised if anybody complains. There was
|
||||
some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
|
||||
it didn't actually work. */
|
||||
|
||||
if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
|
||||
if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
|
||||
|
||||
/* mapping table: if some byte values are never used (encoding things
|
||||
like ascii text), the compression code removes the gaps to have fewer
|
||||
symbols to deal with, and writes a sparse bitfield indicating which
|
||||
values were present. We make a translation table to convert the symbols
|
||||
back to the corresponding bytes. */
|
||||
|
||||
t=get_bits(bd, 16);
|
||||
symTotal=0;
|
||||
for (i=0;i<16;i++) {
|
||||
@ -172,60 +191,81 @@ static int get_next_block(bunzip_data *bd)
|
||||
if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
|
||||
}
|
||||
}
|
||||
|
||||
/* How many different Huffman coding groups does this block use? */
|
||||
|
||||
groupCount=get_bits(bd,3);
|
||||
if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
|
||||
|
||||
/* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
|
||||
group. Read in the group selector list, which is stored as MTF encoded
|
||||
bit runs. (MTF=Move To Front, as each value is used it's moved to the
|
||||
start of the list.) */
|
||||
|
||||
if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
|
||||
for(i=0; i<groupCount; i++) mtfSymbol[i] = i;
|
||||
for(i=0; i<nSelectors; i++) {
|
||||
|
||||
/* Get next value */
|
||||
|
||||
for(j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
|
||||
|
||||
/* Decode MTF to get the next selector */
|
||||
|
||||
uc = mtfSymbol[j];
|
||||
for(;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
|
||||
mtfSymbol[0]=selectors[i]=uc;
|
||||
}
|
||||
|
||||
/* Read the Huffman coding tables for each group, which code for symTotal
|
||||
literal symbols, plus two run symbols (RUNA, RUNB) */
|
||||
|
||||
symCount=symTotal+2;
|
||||
for (j=0; j<groupCount; j++) {
|
||||
unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
|
||||
int minLen, maxLen, pp;
|
||||
|
||||
/* Read Huffman code lengths for each symbol. They're stored in
|
||||
a way similar to mtf; record a starting value for the first symbol,
|
||||
and an offset from the previous value for everys symbol after that.
|
||||
(Subtracting 1 before the loop and then adding it back at the end is
|
||||
an optimization that makes the test inside the loop simpler: symbol
|
||||
length 0 becomes negative, so an unsigned inequality catches it.) */
|
||||
|
||||
t=get_bits(bd, 5)-1;
|
||||
for (i = 0; i < symCount; i++) {
|
||||
for(;;) {
|
||||
if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
|
||||
return RETVAL_DATA_ERROR;
|
||||
|
||||
/* If first bit is 0, stop. Else second bit indicates whether
|
||||
to increment or decrement the value. Optimization: grab 2
|
||||
bits and unget the second if the first was 0. */
|
||||
|
||||
k = get_bits(bd,2);
|
||||
if (k < 2) {
|
||||
bd->inbufBitCount++;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Add one if second bit 1, else subtract 1. Avoids if/else */
|
||||
|
||||
t+=(((k+1)&2)-1);
|
||||
}
|
||||
|
||||
/* Correct for the initial -1, to get the final symbol length */
|
||||
|
||||
length[i]=t+1;
|
||||
}
|
||||
|
||||
/* Find largest and smallest lengths in this group */
|
||||
|
||||
minLen=maxLen=length[0];
|
||||
for(i = 1; i < symCount; i++) {
|
||||
if(length[i] > maxLen) maxLen = length[i];
|
||||
else if(length[i] < minLen) minLen = length[i];
|
||||
}
|
||||
|
||||
/* Calculate permute[], base[], and limit[] tables from length[].
|
||||
*
|
||||
* permute[] is the lookup table for converting Huffman coded symbols
|
||||
@ -236,36 +276,47 @@ static int get_next_block(bunzip_data *bd)
|
||||
* number of bits can have. This is how the Huffman codes can vary in
|
||||
* length: each code with a value>limit[length] needs another bit.
|
||||
*/
|
||||
|
||||
hufGroup=bd->groups+j;
|
||||
hufGroup->minLen = minLen;
|
||||
hufGroup->maxLen = maxLen;
|
||||
|
||||
/* Note that minLen can't be smaller than 1, so we adjust the base
|
||||
and limit array pointers so we're not always wasting the first
|
||||
entry. We do this again when using them (during symbol decoding).*/
|
||||
|
||||
base=hufGroup->base-1;
|
||||
limit=hufGroup->limit-1;
|
||||
|
||||
/* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
|
||||
|
||||
pp=0;
|
||||
for(i=minLen;i<=maxLen;i++) {
|
||||
temp[i]=limit[i]=0;
|
||||
for(t=0;t<symCount;t++)
|
||||
if(length[t]==i) hufGroup->permute[pp++] = t;
|
||||
}
|
||||
|
||||
/* Count symbols coded for at each bit length */
|
||||
|
||||
for (i=0;i<symCount;i++) temp[length[i]]++;
|
||||
|
||||
/* Calculate limit[] (the largest symbol-coding value at each bit
|
||||
* length, which is (previous limit<<1)+symbols at this level), and
|
||||
* base[] (number of symbols to ignore at each bit length, which is
|
||||
* limit minus the cumulative count of symbols coded for already). */
|
||||
|
||||
pp=t=0;
|
||||
for (i=minLen; i<maxLen; i++) {
|
||||
pp+=temp[i];
|
||||
|
||||
/* We read the largest possible symbol size and then unget bits
|
||||
after determining how many we need, and those extra bits could
|
||||
be set to anything. (They're noise from future symbols.) At
|
||||
each level we're really only interested in the first few bits,
|
||||
so here we set all the trailing to-be-ignored bits to 1 so they
|
||||
don't affect the value>limit[length] comparison. */
|
||||
|
||||
limit[i]= (pp << (maxLen - i)) - 1;
|
||||
pp<<=1;
|
||||
base[i+1]=pp-(t+=temp[i]);
|
||||
@ -274,26 +325,34 @@ static int get_next_block(bunzip_data *bd)
|
||||
limit[maxLen]=pp+temp[maxLen]-1;
|
||||
base[minLen]=0;
|
||||
}
|
||||
|
||||
/* We've finished reading and digesting the block header. Now read this
|
||||
block's Huffman coded symbols from the file and undo the Huffman coding
|
||||
and run length encoding, saving the result into dbuf[dbufCount++]=uc */
|
||||
|
||||
/* Initialize symbol occurrence counters and symbol Move To Front table */
|
||||
|
||||
for(i=0;i<256;i++) {
|
||||
byteCount[i] = 0;
|
||||
mtfSymbol[i]=(unsigned char)i;
|
||||
}
|
||||
|
||||
/* Loop through compressed symbols. */
|
||||
|
||||
runPos=dbufCount=selector=0;
|
||||
for(;;) {
|
||||
|
||||
/* fetch next Huffman coding group from list. */
|
||||
|
||||
symCount=GROUP_SIZE-1;
|
||||
if(selector>=nSelectors) return RETVAL_DATA_ERROR;
|
||||
hufGroup=bd->groups+selectors[selector++];
|
||||
base=hufGroup->base-1;
|
||||
limit=hufGroup->limit-1;
|
||||
continue_this_group:
|
||||
|
||||
/* Read next Huffman-coded symbol. */
|
||||
|
||||
/* Note: It is far cheaper to read maxLen bits and back up than it is
|
||||
to read minLen bits and then an additional bit at a time, testing
|
||||
as we go. Because there is a trailing last block (with file CRC),
|
||||
@ -303,6 +362,7 @@ continue_this_group:
|
||||
dry). The following (up to got_huff_bits:) is equivalent to
|
||||
j=get_bits(bd,hufGroup->maxLen);
|
||||
*/
|
||||
|
||||
while (bd->inbufBitCount<hufGroup->maxLen) {
|
||||
if(bd->inbufPos==bd->inbufCount) {
|
||||
j = get_bits(bd,hufGroup->maxLen);
|
||||
@ -313,27 +373,37 @@ continue_this_group:
|
||||
};
|
||||
bd->inbufBitCount-=hufGroup->maxLen;
|
||||
j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1);
|
||||
|
||||
got_huff_bits:
|
||||
|
||||
/* Figure how how many bits are in next symbol and unget extras */
|
||||
|
||||
i=hufGroup->minLen;
|
||||
while(j>limit[i]) ++i;
|
||||
bd->inbufBitCount += (hufGroup->maxLen - i);
|
||||
|
||||
/* Huffman decode value to get nextSym (with bounds checking) */
|
||||
|
||||
if ((i > hufGroup->maxLen)
|
||||
|| (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i]))
|
||||
>= MAX_SYMBOLS))
|
||||
return RETVAL_DATA_ERROR;
|
||||
nextSym = hufGroup->permute[j];
|
||||
|
||||
/* We have now decoded the symbol, which indicates either a new literal
|
||||
byte, or a repeated run of the most recent literal byte. First,
|
||||
check if nextSym indicates a repeated run, and if so loop collecting
|
||||
how many times to repeat the last literal. */
|
||||
|
||||
if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
|
||||
|
||||
/* If this is the start of a new run, zero out counter */
|
||||
|
||||
if(!runPos) {
|
||||
runPos = 1;
|
||||
t = 0;
|
||||
}
|
||||
|
||||
/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
|
||||
each bit position, add 1 or 2 instead. For example,
|
||||
1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
|
||||
@ -341,14 +411,17 @@ got_huff_bits:
|
||||
the basic or 0/1 method (except all bits 0, which would use no
|
||||
symbols, but a run of length 0 doesn't mean anything in this
|
||||
context). Thus space is saved. */
|
||||
|
||||
t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
|
||||
runPos <<= 1;
|
||||
goto end_of_huffman_loop;
|
||||
}
|
||||
|
||||
/* When we hit the first non-run symbol after a run, we now know
|
||||
how many times to repeat the last literal, so append that many
|
||||
copies to our buffer of decoded symbols (dbuf) now. (The last
|
||||
literal used is the one at the head of the mtfSymbol array.) */
|
||||
|
||||
if(runPos) {
|
||||
runPos=0;
|
||||
if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
|
||||
@ -357,8 +430,11 @@ got_huff_bits:
|
||||
byteCount[uc] += t;
|
||||
while(t--) dbuf[dbufCount++]=uc;
|
||||
}
|
||||
|
||||
/* Is this the terminating symbol? */
|
||||
|
||||
if(nextSym>symTotal) break;
|
||||
|
||||
/* At this point, nextSym indicates a new literal character. Subtract
|
||||
one to get the position in the MTF array at which this literal is
|
||||
currently to be found. (Note that the result can't be -1 or 0,
|
||||
@ -366,48 +442,62 @@ got_huff_bits:
|
||||
first symbol in the mtf array, position 0, would have been handled
|
||||
as part of a run above. Therefore 1 unused mtf position minus
|
||||
2 non-literal nextSym values equals -1.) */
|
||||
|
||||
if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
|
||||
i = nextSym - 1;
|
||||
uc = mtfSymbol[i];
|
||||
|
||||
/* Adjust the MTF array. Since we typically expect to move only a
|
||||
* small number of symbols, and are bound by 256 in any case, using
|
||||
* memmove here would typically be bigger and slower due to function
|
||||
* call overhead and other assorted setup costs. */
|
||||
|
||||
do {
|
||||
mtfSymbol[i] = mtfSymbol[i-1];
|
||||
} while (--i);
|
||||
mtfSymbol[0] = uc;
|
||||
uc=symToByte[uc];
|
||||
|
||||
/* We have our literal byte. Save it into dbuf. */
|
||||
|
||||
byteCount[uc]++;
|
||||
dbuf[dbufCount++] = (unsigned int)uc;
|
||||
/* Skip group initialization if we're not done with this group. Done this
|
||||
* way to avoid compiler warning. */
|
||||
|
||||
/* Skip group initialization if we're not done with this group. Done
|
||||
* this way to avoid compiler warning. */
|
||||
|
||||
end_of_huffman_loop:
|
||||
if(symCount--) goto continue_this_group;
|
||||
}
|
||||
|
||||
/* At this point, we've read all the Huffman-coded symbols (and repeated
|
||||
runs) for this block from the input stream, and decoded them into the
|
||||
intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
|
||||
Now undo the Burrows-Wheeler transform on dbuf.
|
||||
See http://dogma.net/markn/articles/bwt/bwt.htm
|
||||
*/
|
||||
|
||||
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
|
||||
|
||||
j=0;
|
||||
for(i=0;i<256;i++) {
|
||||
k=j+byteCount[i];
|
||||
byteCount[i] = j;
|
||||
j=k;
|
||||
}
|
||||
|
||||
/* Figure out what order dbuf would be in if we sorted it. */
|
||||
|
||||
for (i=0;i<dbufCount;i++) {
|
||||
uc=(unsigned char)(dbuf[i] & 0xff);
|
||||
dbuf[byteCount[uc]] |= (i << 8);
|
||||
byteCount[uc]++;
|
||||
}
|
||||
|
||||
/* Decode first byte by hand to initialize "previous" byte. Note that it
|
||||
doesn't get output, and if the first three characters are identical
|
||||
it doesn't qualify as a run (hence writeRunCountdown=5). */
|
||||
|
||||
if(dbufCount) {
|
||||
if(origPtr>=dbufCount) return RETVAL_DATA_ERROR;
|
||||
bd->writePos=dbuf[origPtr];
|
||||
@ -445,22 +535,32 @@ static int read_bunzip(bunzip_data *bd, char *outbuf, int len)
|
||||
Huffman-decoded a block into the intermediate buffer yet). */
|
||||
|
||||
if (bd->writeCopies) {
|
||||
|
||||
/* Inside the loop, writeCopies means extra copies (beyond 1) */
|
||||
|
||||
--bd->writeCopies;
|
||||
|
||||
/* Loop outputting bytes */
|
||||
|
||||
for(;;) {
|
||||
|
||||
/* If the output buffer is full, snapshot state and return */
|
||||
|
||||
if(gotcount >= len) {
|
||||
bd->writePos=pos;
|
||||
bd->writeCurrent=current;
|
||||
bd->writeCopies++;
|
||||
return len;
|
||||
}
|
||||
|
||||
/* Write next byte into output buffer, updating CRC */
|
||||
|
||||
outbuf[gotcount++] = current;
|
||||
bd->writeCRC=(((bd->writeCRC)<<8)
|
||||
^bd->crc32Table[((bd->writeCRC)>>24)^current]);
|
||||
|
||||
/* Loop now if we're outputting multiple copies of this byte */
|
||||
|
||||
if (bd->writeCopies) {
|
||||
--bd->writeCopies;
|
||||
continue;
|
||||
@ -472,26 +572,38 @@ decode_next_byte:
|
||||
pos=dbuf[pos];
|
||||
current=pos&0xff;
|
||||
pos>>=8;
|
||||
|
||||
/* After 3 consecutive copies of the same byte, the 4th is a repeat
|
||||
count. We count down from 4 instead
|
||||
* of counting up because testing for non-zero is faster */
|
||||
|
||||
if(--bd->writeRunCountdown) {
|
||||
if(current!=previous) bd->writeRunCountdown=4;
|
||||
} else {
|
||||
|
||||
/* We have a repeated run, this byte indicates the count */
|
||||
|
||||
bd->writeCopies=current;
|
||||
current=previous;
|
||||
bd->writeRunCountdown=5;
|
||||
|
||||
/* Sometimes there are just 3 bytes (run length 0) */
|
||||
|
||||
if(!bd->writeCopies) goto decode_next_byte;
|
||||
|
||||
/* Subtract the 1 copy we'd output anyway to get extras */
|
||||
|
||||
--bd->writeCopies;
|
||||
}
|
||||
}
|
||||
|
||||
/* Decompression of this block completed successfully */
|
||||
|
||||
bd->writeCRC=~bd->writeCRC;
|
||||
bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC;
|
||||
|
||||
/* If this block had a CRC error, force file level CRC error. */
|
||||
|
||||
if(bd->writeCRC!=bd->headerCRC) {
|
||||
bd->totalCRC=bd->headerCRC+1;
|
||||
return RETVAL_LAST_BLOCK;
|
||||
@ -500,6 +612,7 @@ decode_next_byte:
|
||||
|
||||
/* Refill the intermediate buffer by Huffman-decoding next block of input */
|
||||
/* (previous is just a convenient unused temp variable here) */
|
||||
|
||||
previous=get_next_block(bd);
|
||||
if(previous) {
|
||||
bd->writeCount=previous;
|
||||
@ -514,6 +627,7 @@ decode_next_byte:
|
||||
/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
|
||||
a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
|
||||
ignored, and data is read from file handle into temporary buffer. */
|
||||
|
||||
static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
|
||||
int len)
|
||||
{
|
||||
@ -523,33 +637,44 @@ static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
|
||||
+(((unsigned int)'h')<<8)+(unsigned int)'0';
|
||||
|
||||
/* Figure out how much data to allocate */
|
||||
|
||||
i=sizeof(bunzip_data);
|
||||
if(in_fd!=-1) i+=IOBUF_SIZE;
|
||||
|
||||
/* Allocate bunzip_data. Most fields initialize to zero. */
|
||||
|
||||
bd=*bdp=xmalloc(i);
|
||||
memset(bd,0,sizeof(bunzip_data));
|
||||
|
||||
/* Setup input buffer */
|
||||
|
||||
if(-1==(bd->in_fd=in_fd)) {
|
||||
bd->inbuf=inbuf;
|
||||
bd->inbufCount=len;
|
||||
} else bd->inbuf=(unsigned char *)(bd+1);
|
||||
|
||||
/* Init the CRC32 table (big endian) */
|
||||
|
||||
for(i=0;i<256;i++) {
|
||||
c=i<<24;
|
||||
for(j=8;j;j--)
|
||||
c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1);
|
||||
bd->crc32Table[i]=c;
|
||||
}
|
||||
|
||||
/* Setup for I/O error handling via longjmp */
|
||||
|
||||
i=setjmp(bd->jmpbuf);
|
||||
if(i) return i;
|
||||
|
||||
/* Ensure that file starts with "BZh['1'-'9']." */
|
||||
|
||||
i = get_bits(bd,32);
|
||||
if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA;
|
||||
|
||||
/* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
|
||||
uncompressed data. Allocate intermediate buffer for block. */
|
||||
|
||||
bd->dbufSize=100000*(i-BZh0);
|
||||
|
||||
bd->dbuf=xmalloc(bd->dbufSize * sizeof(int));
|
||||
@ -558,6 +683,7 @@ static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
|
||||
|
||||
/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
|
||||
not end of file.) */
|
||||
|
||||
extern int uncompressStream(int src_fd, int dst_fd)
|
||||
{
|
||||
char *outbuf;
|
||||
@ -574,15 +700,16 @@ extern int uncompressStream(int src_fd, int dst_fd)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Check CRC and release memory */
|
||||
|
||||
if(i==RETVAL_LAST_BLOCK) {
|
||||
if (bd->headerCRC!=bd->totalCRC) {
|
||||
bb_error_msg("Data integrity error when decompressing.");
|
||||
} else {
|
||||
i=RETVAL_OK;
|
||||
}
|
||||
}
|
||||
else if (i==RETVAL_UNEXPECTED_OUTPUT_EOF) {
|
||||
} else if (i==RETVAL_UNEXPECTED_OUTPUT_EOF) {
|
||||
bb_error_msg("Compressed file ends unexpectedly");
|
||||
} else {
|
||||
bb_error_msg("Decompression failed");
|
||||
|
Loading…
x
Reference in New Issue
Block a user