function old new delta sp_256_mont_mul_and_reduce_8 - 44 +44 sp_256_ecc_mulmod_8 517 442 -75 ------------------------------------------------------------------------------ (add/remove: 1/0 grow/shrink: 0/1 up/down: 44/-75) Total: -31 bytes Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
		
			
				
	
	
		
			1524 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1524 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2021 Denys Vlasenko
 | 
						|
 *
 | 
						|
 * Licensed under GPLv2, see file LICENSE in this source tree.
 | 
						|
 */
 | 
						|
#include "tls.h"
 | 
						|
 | 
						|
#define SP_DEBUG          0
 | 
						|
#define FIXED_SECRET      0
 | 
						|
#define FIXED_PEER_PUBKEY 0
 | 
						|
 | 
						|
#define ALLOW_ASM         1
 | 
						|
 | 
						|
#if SP_DEBUG
 | 
						|
# define dbg(...) fprintf(stderr, __VA_ARGS__)
 | 
						|
static void dump_hex(const char *fmt, const void *vp, int len)
 | 
						|
{
 | 
						|
	char hexbuf[32 * 1024 + 4];
 | 
						|
	const uint8_t *p = vp;
 | 
						|
 | 
						|
	bin2hex(hexbuf, (void*)p, len)[0] = '\0';
 | 
						|
	dbg(fmt, hexbuf);
 | 
						|
}
 | 
						|
#else
 | 
						|
# define dbg(...) ((void)0)
 | 
						|
# define dump_hex(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef uint32_t sp_digit;
 | 
						|
typedef int32_t signed_sp_digit;
 | 
						|
 | 
						|
/* 64-bit optimizations:
 | 
						|
 * if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff,
 | 
						|
 * then loads and stores can be done in 64-bit chunks.
 | 
						|
 *
 | 
						|
 * A narrower case is when arch is also little-endian (such as x86_64),
 | 
						|
 * then "LSW first", uint32[8] and uint64[4] representations are equivalent,
 | 
						|
 * and arithmetic can be done in 64 bits too.
 | 
						|
 */
 | 
						|
#if defined(__GNUC__) && defined(__x86_64__)
 | 
						|
# define UNALIGNED_LE_64BIT 1
 | 
						|
#else
 | 
						|
# define UNALIGNED_LE_64BIT 0
 | 
						|
#endif
 | 
						|
 | 
						|
/* The code below is taken from parts of
 | 
						|
 *  wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
 | 
						|
 * and heavily modified.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct sp_point {
 | 
						|
	sp_digit x[8]
 | 
						|
#if ULONG_MAX > 0xffffffff
 | 
						|
		/* Make sp_point[] arrays to not be 64-bit misaligned */
 | 
						|
		ALIGNED(8)
 | 
						|
#endif
 | 
						|
	;
 | 
						|
	sp_digit y[8];
 | 
						|
	sp_digit z[8];
 | 
						|
	int infinity;
 | 
						|
} sp_point;
 | 
						|
 | 
						|
/* The modulus (prime) of the curve P256. */
 | 
						|
static const sp_digit p256_mod[8] ALIGNED(8) = {
 | 
						|
	0xffffffff,0xffffffff,0xffffffff,0x00000000,
 | 
						|
	0x00000000,0x00000000,0x00000001,0xffffffff,
 | 
						|
};
 | 
						|
 | 
						|
#define p256_mp_mod ((sp_digit)0x000001)
 | 
						|
 | 
						|
/* Normalize the values in each word to 32 bits - NOP */
 | 
						|
#define sp_256_norm_8(a) ((void)0)
 | 
						|
 | 
						|
/* Write r as big endian to byte array.
 | 
						|
 * Fixed length number of bytes written: 32
 | 
						|
 *
 | 
						|
 * r  A single precision integer.
 | 
						|
 * a  Byte array.
 | 
						|
 */
 | 
						|
#if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
 | 
						|
static void sp_256_to_bin_8(const sp_digit* rr, uint8_t* a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	const uint64_t* r = (void*)rr;
 | 
						|
 | 
						|
	sp_256_norm_8(rr);
 | 
						|
 | 
						|
	r += 4;
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		r--;
 | 
						|
		move_to_unaligned64(a, SWAP_BE64(*r));
 | 
						|
		a += 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static void sp_256_to_bin_8(const sp_digit* r, uint8_t* a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	sp_256_norm_8(r);
 | 
						|
 | 
						|
	r += 8;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		r--;
 | 
						|
		move_to_unaligned32(a, SWAP_BE32(*r));
 | 
						|
		a += 4;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Read big endian unsigned byte array into r.
 | 
						|
 *
 | 
						|
 * r  A single precision integer.
 | 
						|
 * a  Byte array.
 | 
						|
 * n  Number of bytes in array to read.
 | 
						|
 */
 | 
						|
#if BB_UNALIGNED_MEMACCESS_OK && ULONG_MAX > 0xffffffff
 | 
						|
static void sp_256_from_bin_8(sp_digit* rr, const uint8_t* a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	uint64_t* r = (void*)rr;
 | 
						|
 | 
						|
	r += 4;
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		uint64_t v;
 | 
						|
		move_from_unaligned64(v, a);
 | 
						|
		*--r = SWAP_BE64(v);
 | 
						|
		a += 8;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static void sp_256_from_bin_8(sp_digit* r, const uint8_t* a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	r += 8;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		sp_digit v;
 | 
						|
		move_from_unaligned32(v, a);
 | 
						|
		*--r = SWAP_BE32(v);
 | 
						|
		a += 4;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if SP_DEBUG
 | 
						|
static void dump_256(const char *fmt, const sp_digit* r)
 | 
						|
{
 | 
						|
	uint8_t b32[32];
 | 
						|
	sp_256_to_bin_8(r, b32);
 | 
						|
	dump_hex(fmt, b32, 32);
 | 
						|
}
 | 
						|
static void dump_512(const char *fmt, const sp_digit* r)
 | 
						|
{
 | 
						|
	uint8_t b64[64];
 | 
						|
	sp_256_to_bin_8(r, b64 + 32);
 | 
						|
	sp_256_to_bin_8(r+8, b64);
 | 
						|
	dump_hex(fmt, b64, 64);
 | 
						|
}
 | 
						|
#else
 | 
						|
# define dump_256(...) ((void)0)
 | 
						|
# define dump_512(...) ((void)0)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Convert a point of big-endian 32-byte x,y pair to type sp_point. */
 | 
						|
static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
 | 
						|
{
 | 
						|
	memset(p, 0, sizeof(*p));
 | 
						|
	/*p->infinity = 0;*/
 | 
						|
	sp_256_from_bin_8(p->x, bin2x32);
 | 
						|
	sp_256_from_bin_8(p->y, bin2x32 + 32);
 | 
						|
	p->z[0] = 1; /* p->z = 1 */
 | 
						|
}
 | 
						|
 | 
						|
/* Compare a with b.
 | 
						|
 *
 | 
						|
 * return -ve, 0 or +ve if a is less than, equal to or greater than b
 | 
						|
 * respectively.
 | 
						|
 */
 | 
						|
#if UNALIGNED_LE_64BIT
 | 
						|
static signed_sp_digit sp_256_cmp_8(const sp_digit* aa, const sp_digit* bb)
 | 
						|
{
 | 
						|
	const uint64_t* a = (void*)aa;
 | 
						|
	const uint64_t* b = (void*)bb;
 | 
						|
	int i;
 | 
						|
	for (i = 3; i >= 0; i--) {
 | 
						|
		if (a[i] == b[i])
 | 
						|
			continue;
 | 
						|
		return (a[i] > b[i]) * 2 - 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
static signed_sp_digit sp_256_cmp_8(const sp_digit* a, const sp_digit* b)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 7; i >= 0; i--) {
 | 
						|
/*		signed_sp_digit r = a[i] - b[i];
 | 
						|
 *		if (r != 0)
 | 
						|
 *			return r;
 | 
						|
 * does not work: think about a[i]=0, b[i]=0xffffffff
 | 
						|
 */
 | 
						|
		if (a[i] == b[i])
 | 
						|
			continue;
 | 
						|
		return (a[i] > b[i]) * 2 - 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Compare two numbers to determine if they are equal.
 | 
						|
 *
 | 
						|
 * return 1 when equal and 0 otherwise.
 | 
						|
 */
 | 
						|
static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b)
 | 
						|
{
 | 
						|
	return sp_256_cmp_8(a, b) == 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Add b to a into r. (r = a + b). Return !0 on overflow */
 | 
						|
static int sp_256_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
 | 
						|
{
 | 
						|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
 | 
						|
	sp_digit reg;
 | 
						|
	asm volatile (
 | 
						|
"\n		movl	(%0), %3"
 | 
						|
"\n		addl	(%1), %3"
 | 
						|
"\n		movl	%3, (%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	1*4(%0), %3"
 | 
						|
"\n		adcl	1*4(%1), %3"
 | 
						|
"\n		movl	%3, 1*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	2*4(%0), %3"
 | 
						|
"\n		adcl	2*4(%1), %3"
 | 
						|
"\n		movl	%3, 2*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	3*4(%0), %3"
 | 
						|
"\n		adcl	3*4(%1), %3"
 | 
						|
"\n		movl	%3, 3*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	4*4(%0), %3"
 | 
						|
"\n		adcl	4*4(%1), %3"
 | 
						|
"\n		movl	%3, 4*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	5*4(%0), %3"
 | 
						|
"\n		adcl	5*4(%1), %3"
 | 
						|
"\n		movl	%3, 5*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	6*4(%0), %3"
 | 
						|
"\n		adcl	6*4(%1), %3"
 | 
						|
"\n		movl	%3, 6*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	7*4(%0), %3"
 | 
						|
"\n		adcl	7*4(%1), %3"
 | 
						|
"\n		movl	%3, 7*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		sbbl	%3, %3"
 | 
						|
"\n"
 | 
						|
		: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
 | 
						|
		: "0" (a), "1" (b), "2" (r)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	return reg;
 | 
						|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
 | 
						|
	uint64_t reg;
 | 
						|
	asm volatile (
 | 
						|
"\n		movq	(%0), %3"
 | 
						|
"\n		addq	(%1), %3"
 | 
						|
"\n		movq	%3, (%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	1*8(%0), %3"
 | 
						|
"\n		adcq	1*8(%1), %3"
 | 
						|
"\n		movq	%3, 1*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	2*8(%0), %3"
 | 
						|
"\n		adcq	2*8(%1), %3"
 | 
						|
"\n		movq	%3, 2*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	3*8(%0), %3"
 | 
						|
"\n		adcq	3*8(%1), %3"
 | 
						|
"\n		movq	%3, 3*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		sbbq	%3, %3"
 | 
						|
"\n"
 | 
						|
		: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
 | 
						|
		: "0" (a), "1" (b), "2" (r)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	return reg;
 | 
						|
#else
 | 
						|
	int i;
 | 
						|
	sp_digit carry;
 | 
						|
 | 
						|
	carry = 0;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		sp_digit w, v;
 | 
						|
		w = b[i] + carry;
 | 
						|
		v = a[i];
 | 
						|
		if (w != 0) {
 | 
						|
			v = a[i] + w;
 | 
						|
			carry = (v < a[i]);
 | 
						|
			/* hope compiler detects above as "carry flag set" */
 | 
						|
		}
 | 
						|
		/* else: b + carry == 0, two cases:
 | 
						|
		 * b:ffffffff, carry:1
 | 
						|
		 * b:00000000, carry:0
 | 
						|
		 * in either case, r[i] = a[i] and carry remains unchanged
 | 
						|
		 */
 | 
						|
		r[i] = v;
 | 
						|
	}
 | 
						|
	return carry;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Sub b from a into r. (r = a - b). Return !0 on underflow */
 | 
						|
static int sp_256_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
 | 
						|
{
 | 
						|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
 | 
						|
	sp_digit reg;
 | 
						|
	asm volatile (
 | 
						|
"\n		movl	(%0), %3"
 | 
						|
"\n		subl	(%1), %3"
 | 
						|
"\n		movl	%3, (%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	1*4(%0), %3"
 | 
						|
"\n		sbbl	1*4(%1), %3"
 | 
						|
"\n		movl	%3, 1*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	2*4(%0), %3"
 | 
						|
"\n		sbbl	2*4(%1), %3"
 | 
						|
"\n		movl	%3, 2*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	3*4(%0), %3"
 | 
						|
"\n		sbbl	3*4(%1), %3"
 | 
						|
"\n		movl	%3, 3*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	4*4(%0), %3"
 | 
						|
"\n		sbbl	4*4(%1), %3"
 | 
						|
"\n		movl	%3, 4*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	5*4(%0), %3"
 | 
						|
"\n		sbbl	5*4(%1), %3"
 | 
						|
"\n		movl	%3, 5*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	6*4(%0), %3"
 | 
						|
"\n		sbbl	6*4(%1), %3"
 | 
						|
"\n		movl	%3, 6*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movl	7*4(%0), %3"
 | 
						|
"\n		sbbl	7*4(%1), %3"
 | 
						|
"\n		movl	%3, 7*4(%2)"
 | 
						|
"\n"
 | 
						|
"\n		sbbl	%3, %3"
 | 
						|
"\n"
 | 
						|
		: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
 | 
						|
		: "0" (a), "1" (b), "2" (r)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	return reg;
 | 
						|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
 | 
						|
	uint64_t reg;
 | 
						|
	asm volatile (
 | 
						|
"\n		movq	(%0), %3"
 | 
						|
"\n		subq	(%1), %3"
 | 
						|
"\n		movq	%3, (%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	1*8(%0), %3"
 | 
						|
"\n		sbbq	1*8(%1), %3"
 | 
						|
"\n		movq	%3, 1*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	2*8(%0), %3"
 | 
						|
"\n		sbbq	2*8(%1), %3"
 | 
						|
"\n		movq	%3, 2*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		movq	3*8(%0), %3"
 | 
						|
"\n		sbbq	3*8(%1), %3"
 | 
						|
"\n		movq	%3, 3*8(%2)"
 | 
						|
"\n"
 | 
						|
"\n		sbbq	%3, %3"
 | 
						|
"\n"
 | 
						|
		: "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
 | 
						|
		: "0" (a), "1" (b), "2" (r)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
	return reg;
 | 
						|
#else
 | 
						|
	int i;
 | 
						|
	sp_digit borrow;
 | 
						|
 | 
						|
	borrow = 0;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		sp_digit w, v;
 | 
						|
		w = b[i] + borrow;
 | 
						|
		v = a[i];
 | 
						|
		if (w != 0) {
 | 
						|
			v = a[i] - w;
 | 
						|
			borrow = (v > a[i]);
 | 
						|
			/* hope compiler detects above as "carry flag set" */
 | 
						|
		}
 | 
						|
		/* else: b + borrow == 0, two cases:
 | 
						|
		 * b:ffffffff, borrow:1
 | 
						|
		 * b:00000000, borrow:0
 | 
						|
		 * in either case, r[i] = a[i] and borrow remains unchanged
 | 
						|
		 */
 | 
						|
		r[i] = v;
 | 
						|
	}
 | 
						|
	return borrow;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Sub p256_mod from r. (r = r - p256_mod). */
 | 
						|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
 | 
						|
static void sp_256_sub_8_p256_mod(sp_digit* r)
 | 
						|
{
 | 
						|
//p256_mod[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
 | 
						|
	asm volatile (
 | 
						|
"\n		subl	$0xffffffff, (%0)"
 | 
						|
"\n		sbbl	$0xffffffff, 1*4(%0)"
 | 
						|
"\n		sbbl	$0xffffffff, 2*4(%0)"
 | 
						|
"\n		sbbl	$0, 3*4(%0)"
 | 
						|
"\n		sbbl	$0, 4*4(%0)"
 | 
						|
"\n		sbbl	$0, 5*4(%0)"
 | 
						|
"\n		sbbl	$1, 6*4(%0)"
 | 
						|
"\n		sbbl	$0xffffffff, 7*4(%0)"
 | 
						|
"\n"
 | 
						|
		: "=r" (r)
 | 
						|
		: "0" (r)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
}
 | 
						|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
 | 
						|
static void sp_256_sub_8_p256_mod(sp_digit* r)
 | 
						|
{
 | 
						|
	uint64_t reg;
 | 
						|
	uint64_t ooff;
 | 
						|
//p256_mod[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
 | 
						|
	asm volatile (
 | 
						|
"\n		addq	$1, (%0)"	// adding 1 is the same as subtracting ffffffffffffffff
 | 
						|
"\n		cmc"			// only carry bit needs inverting
 | 
						|
"\n"
 | 
						|
"\n		sbbq	%1, 1*8(%0)"	// %1 holds 00000000ffffffff
 | 
						|
"\n"
 | 
						|
"\n		sbbq	$0, 2*8(%0)"
 | 
						|
"\n"
 | 
						|
"\n		movq	3*8(%0), %2"
 | 
						|
"\n		sbbq	$0, %2"		// adding 00000000ffffffff (in %1)
 | 
						|
"\n		addq	%1, %2"		// is the same as subtracting ffffffff00000001
 | 
						|
"\n		movq	%2, 3*8(%0)"
 | 
						|
"\n"
 | 
						|
		: "=r" (r), "=r" (ooff), "=r" (reg)
 | 
						|
		: "0" (r), "1" (0x00000000ffffffff)
 | 
						|
		: "memory"
 | 
						|
	);
 | 
						|
}
 | 
						|
#else
 | 
						|
static void sp_256_sub_8_p256_mod(sp_digit* r)
 | 
						|
{
 | 
						|
	sp_256_sub_8(r, r, p256_mod);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Multiply a and b into r. (r = a * b)
 | 
						|
 * r should be [16] array (512 bits), and must not coincide with a or b.
 | 
						|
 */
 | 
						|
static void sp_256to512_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
 | 
						|
{
 | 
						|
#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
 | 
						|
	int k;
 | 
						|
	uint32_t accl;
 | 
						|
	uint32_t acch;
 | 
						|
 | 
						|
	acch = accl = 0;
 | 
						|
	for (k = 0; k < 15; k++) {
 | 
						|
		int i, j;
 | 
						|
		uint32_t acc_hi;
 | 
						|
		i = k - 7;
 | 
						|
		if (i < 0)
 | 
						|
			i = 0;
 | 
						|
		j = k - i;
 | 
						|
		acc_hi = 0;
 | 
						|
		do {
 | 
						|
////////////////////////
 | 
						|
//			uint64_t m = ((uint64_t)a[i]) * b[j];
 | 
						|
//			acc_hi:acch:accl += m;
 | 
						|
			asm volatile (
 | 
						|
			// a[i] is already loaded in %%eax
 | 
						|
"\n			mull	%7"
 | 
						|
"\n			addl	%%eax, %0"
 | 
						|
"\n			adcl	%%edx, %1"
 | 
						|
"\n			adcl	$0, %2"
 | 
						|
			: "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
 | 
						|
			: "0" (accl), "1" (acch), "2" (acc_hi), "a" (a[i]), "m" (b[j])
 | 
						|
			: "cc", "dx"
 | 
						|
			);
 | 
						|
////////////////////////
 | 
						|
		        j--;
 | 
						|
			i++;
 | 
						|
		} while (i != 8 && i <= k);
 | 
						|
		r[k] = accl;
 | 
						|
		accl = acch;
 | 
						|
		acch = acc_hi;
 | 
						|
	}
 | 
						|
	r[15] = accl;
 | 
						|
#elif ALLOW_ASM && defined(__GNUC__) && defined(__x86_64__)
 | 
						|
	const uint64_t* aa = (const void*)a;
 | 
						|
	const uint64_t* bb = (const void*)b;
 | 
						|
	uint64_t* rr = (void*)r;
 | 
						|
	int k;
 | 
						|
	uint64_t accl;
 | 
						|
	uint64_t acch;
 | 
						|
 | 
						|
	acch = accl = 0;
 | 
						|
	for (k = 0; k < 7; k++) {
 | 
						|
		int i, j;
 | 
						|
		uint64_t acc_hi;
 | 
						|
		i = k - 3;
 | 
						|
		if (i < 0)
 | 
						|
			i = 0;
 | 
						|
		j = k - i;
 | 
						|
		acc_hi = 0;
 | 
						|
		do {
 | 
						|
////////////////////////
 | 
						|
//			uint128_t m = ((uint128_t)a[i]) * b[j];
 | 
						|
//			acc_hi:acch:accl += m;
 | 
						|
			asm volatile (
 | 
						|
			// aa[i] is already loaded in %%rax
 | 
						|
"\n			mulq	%7"
 | 
						|
"\n			addq	%%rax, %0"
 | 
						|
"\n			adcq	%%rdx, %1"
 | 
						|
"\n			adcq	$0, %2"
 | 
						|
			: "=rm" (accl), "=rm" (acch), "=rm" (acc_hi)
 | 
						|
			: "0" (accl), "1" (acch), "2" (acc_hi), "a" (aa[i]), "m" (bb[j])
 | 
						|
			: "cc", "dx"
 | 
						|
			);
 | 
						|
////////////////////////
 | 
						|
			j--;
 | 
						|
			i++;
 | 
						|
		} while (i != 4 && i <= k);
 | 
						|
		rr[k] = accl;
 | 
						|
		accl = acch;
 | 
						|
		acch = acc_hi;
 | 
						|
	}
 | 
						|
	rr[7] = accl;
 | 
						|
#elif 0
 | 
						|
	//TODO: arm assembly (untested)
 | 
						|
	asm volatile (
 | 
						|
"\n		mov	r5, #0"
 | 
						|
"\n		mov	r6, #0"
 | 
						|
"\n		mov	r7, #0"
 | 
						|
"\n		mov	r8, #0"
 | 
						|
"\n	1:"
 | 
						|
"\n		subs	r3, r5, #28"
 | 
						|
"\n		movcc	r3, #0"
 | 
						|
"\n		sub	r4, r5, r3"
 | 
						|
"\n	2:"
 | 
						|
"\n		ldr	r14, [%[a], r3]"
 | 
						|
"\n		ldr	r12, [%[b], r4]"
 | 
						|
"\n		umull	r9, r10, r14, r12"
 | 
						|
"\n		adds	r6, r6, r9"
 | 
						|
"\n		adcs	r7, r7, r10"
 | 
						|
"\n		adc	r8, r8, #0"
 | 
						|
"\n		add	r3, r3, #4"
 | 
						|
"\n		sub	r4, r4, #4"
 | 
						|
"\n		cmp	r3, #32"
 | 
						|
"\n		beq	3f"
 | 
						|
"\n		cmp	r3, r5"
 | 
						|
"\n		ble	2b"
 | 
						|
"\n	3:"
 | 
						|
"\n		str	r6, [%[r], r5]"
 | 
						|
"\n		mov	r6, r7"
 | 
						|
"\n		mov	r7, r8"
 | 
						|
"\n		mov	r8, #0"
 | 
						|
"\n		add	r5, r5, #4"
 | 
						|
"\n		cmp	r5, #56"
 | 
						|
"\n		ble	1b"
 | 
						|
"\n		str	r6, [%[r], r5]"
 | 
						|
		: [r] "r" (r), [a] "r" (a), [b] "r" (b)
 | 
						|
		: "memory", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "r14"
 | 
						|
	);
 | 
						|
#else
 | 
						|
	int i, j, k;
 | 
						|
	uint64_t acc;
 | 
						|
 | 
						|
	acc = 0;
 | 
						|
	for (k = 0; k < 15; k++) {
 | 
						|
		uint32_t acc_hi;
 | 
						|
		i = k - 7;
 | 
						|
		if (i < 0)
 | 
						|
			i = 0;
 | 
						|
		j = k - i;
 | 
						|
		acc_hi = 0;
 | 
						|
		do {
 | 
						|
			uint64_t m = ((uint64_t)a[i]) * b[j];
 | 
						|
			acc += m;
 | 
						|
			if (acc < m)
 | 
						|
				acc_hi++;
 | 
						|
		        j--;
 | 
						|
			i++;
 | 
						|
		} while (i != 8 && i <= k);
 | 
						|
		r[k] = acc;
 | 
						|
		acc = (acc >> 32) | ((uint64_t)acc_hi << 32);
 | 
						|
	}
 | 
						|
	r[15] = acc;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Shift number right one bit. Bottom bit is lost. */
 | 
						|
#if UNALIGNED_LE_64BIT
 | 
						|
static void sp_256_rshift1_8(sp_digit* rr, uint64_t carry)
 | 
						|
{
 | 
						|
	uint64_t *r = (void*)rr;
 | 
						|
	int i;
 | 
						|
 | 
						|
	carry = (((uint64_t)!!carry) << 63);
 | 
						|
	for (i = 3; i >= 0; i--) {
 | 
						|
		uint64_t c = r[i] << 63;
 | 
						|
		r[i] = (r[i] >> 1) | carry;
 | 
						|
		carry = c;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else
 | 
						|
static void sp_256_rshift1_8(sp_digit* r, sp_digit carry)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	carry = (((sp_digit)!!carry) << 31);
 | 
						|
	for (i = 7; i >= 0; i--) {
 | 
						|
		sp_digit c = r[i] << 31;
 | 
						|
		r[i] = (r[i] >> 1) | carry;
 | 
						|
		carry = c;
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Divide the number by 2 mod the modulus (prime). (r = (r / 2) % m) */
 | 
						|
static void sp_256_div2_8(sp_digit* r /*, const sp_digit* m*/)
 | 
						|
{
 | 
						|
	const sp_digit* m = p256_mod;
 | 
						|
 | 
						|
	int carry = 0;
 | 
						|
	if (r[0] & 1)
 | 
						|
		carry = sp_256_add_8(r, r, m);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	sp_256_rshift1_8(r, carry);
 | 
						|
}
 | 
						|
 | 
						|
/* Add two Montgomery form numbers (r = a + b % m) */
 | 
						|
static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b
 | 
						|
		/*, const sp_digit* m*/)
 | 
						|
{
 | 
						|
//	const sp_digit* m = p256_mod;
 | 
						|
 | 
						|
	int carry = sp_256_add_8(r, a, b);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	if (carry) {
 | 
						|
		sp_256_sub_8_p256_mod(r);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Subtract two Montgomery form numbers (r = a - b % m) */
 | 
						|
static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b
 | 
						|
		/*, const sp_digit* m*/)
 | 
						|
{
 | 
						|
	const sp_digit* m = p256_mod;
 | 
						|
 | 
						|
	int borrow;
 | 
						|
	borrow = sp_256_sub_8(r, a, b);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	if (borrow) {
 | 
						|
		sp_256_add_8(r, r, m);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Double a Montgomery form number (r = a + a % m) */
 | 
						|
static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
 | 
						|
{
 | 
						|
//	const sp_digit* m = p256_mod;
 | 
						|
 | 
						|
	int carry = sp_256_add_8(r, a, a);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	if (carry)
 | 
						|
		sp_256_sub_8_p256_mod(r);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
}
 | 
						|
 | 
						|
/* Triple a Montgomery form number (r = a + a + a % m) */
 | 
						|
static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a /*, const sp_digit* m*/)
 | 
						|
{
 | 
						|
//	const sp_digit* m = p256_mod;
 | 
						|
 | 
						|
	int carry = sp_256_add_8(r, a, a);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	if (carry) {
 | 
						|
		sp_256_sub_8_p256_mod(r);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
	carry = sp_256_add_8(r, r, a);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
	if (carry) {
 | 
						|
		sp_256_sub_8_p256_mod(r);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Shift the result in the high 256 bits down to the bottom. */
 | 
						|
static void sp_512to256_mont_shift_8(sp_digit* r, sp_digit* a)
 | 
						|
{
 | 
						|
	memcpy(r, a + 8, sizeof(*r) * 8);
 | 
						|
}
 | 
						|
 | 
						|
#if UNALIGNED_LE_64BIT
 | 
						|
/* 64-bit little-endian optimized version.
 | 
						|
 * See generic 32-bit version below for explanation.
 | 
						|
 * The benefit of this version is: even though r[3] calculation is atrocious,
 | 
						|
 * we call sp_256_mul_add_4() four times, not 8.
 | 
						|
 * Measured run time improvement of curve_P256_compute_pubkey_and_premaster()
 | 
						|
 * call on x86-64: from ~1500us to ~900us. Code size +32 bytes.
 | 
						|
 */
 | 
						|
static int sp_256_mul_add_4(uint64_t *r /*, const uint64_t* a, uint64_t b*/)
 | 
						|
{
 | 
						|
	uint64_t b = r[0];
 | 
						|
 | 
						|
# if 0
 | 
						|
	const uint64_t* a = (const void*)p256_mod;
 | 
						|
//a[3..0] = ffffffff00000001 0000000000000000 00000000ffffffff ffffffffffffffff
 | 
						|
	uint128_t t;
 | 
						|
	int i;
 | 
						|
	t = 0;
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
		uint32_t t_hi;
 | 
						|
		uint128_t m = ((uint128_t)b * a[i]) + r[i];
 | 
						|
		t += m;
 | 
						|
		t_hi = (t < m);
 | 
						|
		r[i] = (uint64_t)t;
 | 
						|
		t = (t >> 64) | ((uint128_t)t_hi << 64);
 | 
						|
	}
 | 
						|
	r[4] += (uint64_t)t;
 | 
						|
	return (r[4] < (uint64_t)t); /* 1 if addition overflowed */
 | 
						|
# else
 | 
						|
	// Unroll, then optimize the above loop:
 | 
						|
		//uint32_t t_hi;
 | 
						|
		//uint128_t m;
 | 
						|
		uint64_t t64, t64u;
 | 
						|
 | 
						|
		//m = ((uint128_t)b * a[0]) + r[0];
 | 
						|
		//  Since b is r[0] and a[0] is ffffffffffffffff, the above optimizes to:
 | 
						|
		//  m = r[0] * ffffffffffffffff + r[0] = (r[0] << 64 - r[0]) + r[0] = r[0] << 64;
 | 
						|
		//t += m;
 | 
						|
		//  t = r[0] << 64 = b << 64;
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[0] = (uint64_t)t;
 | 
						|
//		r[0] = 0;
 | 
						|
//the store can be eliminated since caller won't look at lower 256 bits of the result
 | 
						|
		//t = (t >> 64) | ((uint128_t)t_hi << 64);
 | 
						|
		//  t = b;
 | 
						|
 | 
						|
		//m = ((uint128_t)b * a[1]) + r[1];
 | 
						|
		//  Since a[1] is 00000000ffffffff, the above optimizes to:
 | 
						|
		//  m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
 | 
						|
		//t += m;
 | 
						|
		//  t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[1] = (uint64_t)t;
 | 
						|
		r[1] += (b << 32);
 | 
						|
		//t = (t >> 64) | ((uint128_t)t_hi << 64);
 | 
						|
		t64 = (r[1] < (b << 32));
 | 
						|
		t64 += (b >> 32);
 | 
						|
 | 
						|
		//m = ((uint128_t)b * a[2]) + r[2];
 | 
						|
		//  Since a[2] is 0000000000000000, the above optimizes to:
 | 
						|
		//  m = b * 0 + r[2] = r[2];
 | 
						|
		//t += m;
 | 
						|
		//  t = t64 + r[2];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[2] = (uint64_t)t;
 | 
						|
		r[2] += t64;
 | 
						|
		//t = (t >> 64) | ((uint128_t)t_hi << 64);
 | 
						|
		t64 = (r[2] < t64);
 | 
						|
 | 
						|
		//m = ((uint128_t)b * a[3]) + r[3];
 | 
						|
		//  Since a[3] is ffffffff00000001, the above optimizes to:
 | 
						|
		//  m = b * ffffffff00000001 + r[3];
 | 
						|
		//  m = b +  b*ffffffff00000000 + r[3]
 | 
						|
		//  m = b + (b*ffffffff << 32) + r[3]
 | 
						|
		//  m = b + (((b<<32) - b) << 32) + r[3]
 | 
						|
		//t += m;
 | 
						|
		//  t = t64 + (uint128_t)b + ((((uint128_t)b << 32) - b) << 32) + r[3];
 | 
						|
		t64 += b;
 | 
						|
		t64u = (t64 < b);
 | 
						|
		t64 += r[3];
 | 
						|
		t64u += (t64 < r[3]);
 | 
						|
		{ // add ((((uint128_t)b << 32) - b) << 32):
 | 
						|
			uint64_t lo, hi;
 | 
						|
			//lo = (((b << 32) - b) << 32
 | 
						|
			//hi = (((uint128_t)b << 32) - b) >> 32
 | 
						|
			//but without uint128_t:
 | 
						|
			hi = (b << 32) - b; /* make lower 32 bits of "hi", part 1 */
 | 
						|
			b = (b >> 32) - (/*borrowed above?*/(b << 32) < b); /* upper 32 bits of "hi" are in b */
 | 
						|
			lo = hi << 32;      /* (use "hi" value to calculate "lo",... */
 | 
						|
			t64 += lo;          /* ...consume... */
 | 
						|
			t64u += (t64 < lo); /* ..."lo") */
 | 
						|
			hi >>= 32;          /* make lower 32 bits of "hi", part 2 */
 | 
						|
			hi |= (b << 32);    /* combine lower and upper 32 bits */
 | 
						|
			t64u += hi;         /* consume "hi" */
 | 
						|
		}
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[3] = (uint64_t)t;
 | 
						|
		r[3] = t64;
 | 
						|
		//t = (t >> 64) | ((uint128_t)t_hi << 64);
 | 
						|
		//  t = t64u;
 | 
						|
 | 
						|
	r[4] += t64u;
 | 
						|
	return (r[4] < t64u); /* 1 if addition overflowed */
 | 
						|
# endif
 | 
						|
}
 | 
						|
 | 
						|
static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* aa/*, const sp_digit* m, sp_digit mp*/)
 | 
						|
{
 | 
						|
//	const sp_digit* m = p256_mod;
 | 
						|
	int i;
 | 
						|
	uint64_t *a = (void*)aa;
 | 
						|
 | 
						|
	sp_digit carry = 0;
 | 
						|
	for (i = 0; i < 4; i++) {
 | 
						|
//		mu = a[i];
 | 
						|
		if (sp_256_mul_add_4(a+i /*, m, mu*/)) {
 | 
						|
			int j = i + 4;
 | 
						|
 inc_next_word:
 | 
						|
			if (++j > 7) { /* a[8] array has no more words? */
 | 
						|
				carry++;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (++a[j] == 0) /* did this overflow too? */
 | 
						|
				goto inc_next_word;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	sp_512to256_mont_shift_8(r, aa);
 | 
						|
	if (carry != 0)
 | 
						|
		sp_256_sub_8_p256_mod(r);
 | 
						|
	sp_256_norm_8(r);
 | 
						|
}
 | 
						|
 | 
						|
#else /* Generic 32-bit version */
 | 
						|
 | 
						|
/* Mul a by scalar b and add into r. (r += a * b)
 | 
						|
 * a = p256_mod
 | 
						|
 * b = r[0]
 | 
						|
 */
 | 
						|
static int sp_256_mul_add_8(sp_digit* r /*, const sp_digit* a, sp_digit b*/)
 | 
						|
{
 | 
						|
	sp_digit b = r[0];
 | 
						|
	uint64_t t;
 | 
						|
 | 
						|
# if 0
 | 
						|
	const sp_digit* a = p256_mod;
 | 
						|
//a[7..0] = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
 | 
						|
	int i;
 | 
						|
	t = 0;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		uint32_t t_hi;
 | 
						|
		uint64_t m = ((uint64_t)b * a[i]) + r[i];
 | 
						|
		t += m;
 | 
						|
		t_hi = (t < m);
 | 
						|
		r[i] = (sp_digit)t;
 | 
						|
		t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
	}
 | 
						|
	r[8] += (sp_digit)t;
 | 
						|
	return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
 | 
						|
# else
 | 
						|
	// Unroll, then optimize the above loop:
 | 
						|
		//uint32_t t_hi;
 | 
						|
		uint64_t m;
 | 
						|
		uint32_t t32;
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[0]) + r[0];
 | 
						|
		//  Since b is r[0] and a[0] is ffffffff, the above optimizes to:
 | 
						|
		//  m = r[0] * ffffffff + r[0] = (r[0] * 100000000 - r[0]) + r[0] = r[0] << 32;
 | 
						|
		//t += m;
 | 
						|
		//  t = r[0] << 32 = b << 32;
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[0] = (sp_digit)t;
 | 
						|
//		r[0] = 0;
 | 
						|
//the store can be eliminated since caller won't look at lower 256 bits of the result
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		//  t = b;
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[1]) + r[1];
 | 
						|
		//  Since a[1] is ffffffff, the above optimizes to:
 | 
						|
		//  m = b * ffffffff + r[1] = (b * 100000000 - b) + r[1] = (b << 32) - b + r[1];
 | 
						|
		//t += m;
 | 
						|
		//  t = b + (b << 32) - b + r[1] = (b << 32) + r[1];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[1] = (sp_digit)t;
 | 
						|
		//  r[1] = r[1];
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		//  t = b;
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[2]) + r[2];
 | 
						|
		//  Since a[2] is ffffffff, the above optimizes to:
 | 
						|
		//  m = b * ffffffff + r[2] = (b * 100000000 - b) + r[2] = (b << 32) - b + r[2];
 | 
						|
		//t += m;
 | 
						|
		//  t = b + (b << 32) - b + r[2] = (b << 32) + r[2]
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[2] = (sp_digit)t;
 | 
						|
		//  r[2] = r[2];
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		//  t = b;
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[3]) + r[3];
 | 
						|
		//  Since a[3] is 00000000, the above optimizes to:
 | 
						|
		//  m = b * 0 + r[3] = r[3];
 | 
						|
		//t += m;
 | 
						|
		//  t = b + r[3];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[3] = (sp_digit)t;
 | 
						|
		r[3] = r[3] + b;
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		t32 = (r[3] < b); // 0 or 1
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[4]) + r[4];
 | 
						|
		//  Since a[4] is 00000000, the above optimizes to:
 | 
						|
		//  m = b * 0 + r[4] = r[4];
 | 
						|
		//t += m;
 | 
						|
		//  t = t32 + r[4];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[4] = (sp_digit)t;
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		if (t32 != 0) {
 | 
						|
			r[4]++;
 | 
						|
			t32 = (r[4] == 0); // 0 or 1
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[5]) + r[5];
 | 
						|
		//  Since a[5] is 00000000, the above optimizes to:
 | 
						|
		//  m = b * 0 + r[5] = r[5];
 | 
						|
		//t += m;
 | 
						|
		//  t = t32 + r[5]; (t32 is 0 or 1)
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		//r[5] = (sp_digit)t;
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
			if (t32 != 0) {
 | 
						|
				r[5]++;
 | 
						|
				t32 = (r[5] == 0); // 0 or 1
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[6]) + r[6];
 | 
						|
		//  Since a[6] is 00000001, the above optimizes to:
 | 
						|
		//  m = (uint64_t)b + r[6]; // 33 bits at most
 | 
						|
		//t += m;
 | 
						|
		t = t32 + (uint64_t)b + r[6];
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi = 0;
 | 
						|
		r[6] = (sp_digit)t;
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		t = (t >> 32);
 | 
						|
 | 
						|
		//m = ((uint64_t)b * a[7]) + r[7];
 | 
						|
		//  Since a[7] is ffffffff, the above optimizes to:
 | 
						|
		//  m = b * ffffffff + r[7] = (b * 100000000 - b) + r[7]
 | 
						|
		m = ((uint64_t)b << 32) - b + r[7];
 | 
						|
		t += m;
 | 
						|
		//t_hi = (t < m);
 | 
						|
		//  t_hi in fact is always 0 here (256bit * 32bit can't have more than 32 bits of overflow)
 | 
						|
		r[7] = (sp_digit)t;
 | 
						|
		//t = (t >> 32) | ((uint64_t)t_hi << 32);
 | 
						|
		t = (t >> 32);
 | 
						|
 | 
						|
	r[8] += (sp_digit)t;
 | 
						|
	return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
 | 
						|
# endif
 | 
						|
}
 | 
						|
 | 
						|
/* Reduce the number back to 256 bits using Montgomery reduction.
 | 
						|
 * Note: the result is NOT guaranteed to be less than p256_mod!
 | 
						|
 * (it is only guaranteed to fit into 256 bits).
 | 
						|
 *
 | 
						|
 * r   Result.
 | 
						|
 * a   Double-wide number to reduce. Clobbered.
 | 
						|
 * m   The single precision number representing the modulus.
 | 
						|
 * mp  The digit representing the negative inverse of m mod 2^n.
 | 
						|
 *
 | 
						|
 * Montgomery reduction on multiprecision integers:
 | 
						|
 * Montgomery reduction requires products modulo R.
 | 
						|
 * When R is a power of B [in our case R=2^128, B=2^32], there is a variant
 | 
						|
 * of Montgomery reduction which requires products only of machine word sized
 | 
						|
 * integers. T is stored as an little-endian word array a[0..n]. The algorithm
 | 
						|
 * reduces it one word at a time. First an appropriate multiple of modulus
 | 
						|
 * is added to make T divisible by B. [In our case, it is p256_mp_mod * a[0].]
 | 
						|
 * Then a multiple of modulus is added to make T divisible by B^2.
 | 
						|
 * [In our case, it is (p256_mp_mod * a[1]) << 32.]
 | 
						|
 * And so on. Eventually T is divisible by R, and after division by R
 | 
						|
 * the algorithm is in the same place as the usual Montgomery reduction.
 | 
						|
 *
 | 
						|
 * TODO: Can conditionally use 64-bit (if bit-little-endian arch) logic?
 | 
						|
 */
 | 
						|
static void sp_512to256_mont_reduce_8(sp_digit* r, sp_digit* a/*, const sp_digit* m, sp_digit mp*/)
 | 
						|
{
 | 
						|
//	const sp_digit* m = p256_mod;
 | 
						|
	sp_digit mp = p256_mp_mod;
 | 
						|
 | 
						|
	int i;
 | 
						|
//	sp_digit mu;
 | 
						|
 | 
						|
	if (mp != 1) {
 | 
						|
		sp_digit word16th = 0;
 | 
						|
		for (i = 0; i < 8; i++) {
 | 
						|
//			mu = (sp_digit)(a[i] * mp);
 | 
						|
			if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
 | 
						|
				int j = i + 8;
 | 
						|
 inc_next_word0:
 | 
						|
				if (++j > 15) { /* a[16] array has no more words? */
 | 
						|
					word16th++;
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				if (++a[j] == 0) /* did this overflow too? */
 | 
						|
					goto inc_next_word0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		sp_512to256_mont_shift_8(r, a);
 | 
						|
		if (word16th != 0)
 | 
						|
			sp_256_sub_8_p256_mod(r);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
	else { /* Same code for explicit mp == 1 (which is always the case for P256) */
 | 
						|
		sp_digit word16th = 0;
 | 
						|
		for (i = 0; i < 8; i++) {
 | 
						|
//			mu = a[i];
 | 
						|
			if (sp_256_mul_add_8(a+i /*, m, mu*/)) {
 | 
						|
				int j = i + 8;
 | 
						|
 inc_next_word:
 | 
						|
				if (++j > 15) { /* a[16] array has no more words? */
 | 
						|
					word16th++;
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
				if (++a[j] == 0) /* did this overflow too? */
 | 
						|
					goto inc_next_word;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		sp_512to256_mont_shift_8(r, a);
 | 
						|
		if (word16th != 0)
 | 
						|
			sp_256_sub_8_p256_mod(r);
 | 
						|
		sp_256_norm_8(r);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* Multiply two Montogmery form numbers mod the modulus (prime).
 | 
						|
 * (r = a * b mod m)
 | 
						|
 *
 | 
						|
 * r   Result of multiplication.
 | 
						|
 * a   First number to multiply in Montogmery form.
 | 
						|
 * b   Second number to multiply in Montogmery form.
 | 
						|
 * m   Modulus (prime).
 | 
						|
 * mp  Montogmery multiplier.
 | 
						|
 */
 | 
						|
static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b
 | 
						|
		/*, const sp_digit* m, sp_digit mp*/)
 | 
						|
{
 | 
						|
	//const sp_digit* m = p256_mod;
 | 
						|
	//sp_digit mp = p256_mp_mod;
 | 
						|
	sp_digit t[2 * 8];
 | 
						|
	sp_256to512_mul_8(t, a, b);
 | 
						|
	sp_512to256_mont_reduce_8(r, t /*, m, mp*/);
 | 
						|
}
 | 
						|
 | 
						|
/* Square the Montgomery form number. (r = a * a mod m)
 | 
						|
 *
 | 
						|
 * r   Result of squaring.
 | 
						|
 * a   Number to square in Montogmery form.
 | 
						|
 * m   Modulus (prime).
 | 
						|
 * mp  Montogmery multiplier.
 | 
						|
 */
 | 
						|
static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a
 | 
						|
		/*, const sp_digit* m, sp_digit mp*/)
 | 
						|
{
 | 
						|
	//const sp_digit* m = p256_mod;
 | 
						|
	//sp_digit mp = p256_mp_mod;
 | 
						|
	sp_256_mont_mul_8(r, a, a /*, m, mp*/);
 | 
						|
}
 | 
						|
 | 
						|
static NOINLINE void sp_256_mont_mul_and_reduce_8(sp_digit* r,
 | 
						|
		const sp_digit* a, const sp_digit* b
 | 
						|
		/*, const sp_digit* m, sp_digit mp*/)
 | 
						|
{
 | 
						|
	sp_digit rr[2 * 8];
 | 
						|
 | 
						|
	sp_256_mont_mul_8(rr, a, b /*, p256_mod, p256_mp_mod*/);
 | 
						|
	memset(rr + 8, 0, sizeof(rr) / 2);
 | 
						|
	sp_512to256_mont_reduce_8(r, rr /*, p256_mod, p256_mp_mod*/);
 | 
						|
}
 | 
						|
 | 
						|
/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
 | 
						|
 * P256 curve. (r = 1 / a mod m)
 | 
						|
 *
 | 
						|
 * r   Inverse result. Must not coincide with a.
 | 
						|
 * a   Number to invert.
 | 
						|
 */
 | 
						|
static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	memcpy(r, a, sizeof(sp_digit) * 8);
 | 
						|
	for (i = 254; i >= 0; i--) {
 | 
						|
		sp_256_mont_sqr_8(r, r /*, p256_mod, p256_mp_mod*/);
 | 
						|
/* p256_mod - 2:
 | 
						|
 * ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff - 2
 | 
						|
 * Bit pattern:
 | 
						|
 * 2    2         2         2         2         2         2         1...1
 | 
						|
 * 5    5         4         3         2         1         0         9...0         9...1
 | 
						|
 * 543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
 | 
						|
 * 111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
 | 
						|
 */
 | 
						|
		/*if (p256_mod_minus_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
 | 
						|
		if (i >= 224 || i == 192 || (i <= 95 && i != 1))
 | 
						|
			sp_256_mont_mul_8(r, r, a /*, p256_mod, p256_mp_mod*/);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply a number by Montogmery normalizer mod modulus (prime).
 | 
						|
 *
 | 
						|
 * r  The resulting Montgomery form number.
 | 
						|
 * a  The number to convert.
 | 
						|
 */
 | 
						|
static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a)
 | 
						|
{
 | 
						|
	int64_t t[8];
 | 
						|
	int32_t o;
 | 
						|
 | 
						|
#define A(n) ((uint64_t)a[n])
 | 
						|
	/*  1  1  0 -1 -1 -1 -1  0 */
 | 
						|
	t[0] = 0 + A(0) + A(1) - A(3) - A(4) - A(5) - A(6);
 | 
						|
	/*  0  1  1  0 -1 -1 -1 -1 */
 | 
						|
	t[1] = 0 + A(1) + A(2) - A(4) - A(5) - A(6) - A(7);
 | 
						|
	/*  0  0  1  1  0 -1 -1 -1 */
 | 
						|
	t[2] = 0 + A(2) + A(3) - A(5) - A(6) - A(7);
 | 
						|
	/* -1 -1  0  2  2  1  0 -1 */
 | 
						|
	t[3] = 0 - A(0) - A(1) + 2 * A(3) + 2 * A(4) + A(5) - A(7);
 | 
						|
	/*  0 -1 -1  0  2  2  1  0 */
 | 
						|
	t[4] = 0 - A(1) - A(2) + 2 * A(4) + 2 * A(5) + A(6);
 | 
						|
	/*  0  0 -1 -1  0  2  2  1 */
 | 
						|
	t[5] = 0 - A(2) - A(3) + 2 * A(5) + 2 * A(6) + A(7);
 | 
						|
	/* -1 -1  0  0  0  1  3  2 */
 | 
						|
	t[6] = 0 - A(0) - A(1) + A(5) + 3 * A(6) + 2 * A(7);
 | 
						|
	/*  1  0 -1 -1 -1 -1  0  3 */
 | 
						|
	t[7] = 0 + A(0) - A(2) - A(3) - A(4) - A(5) + 3 * A(7);
 | 
						|
#undef A
 | 
						|
 | 
						|
	t[1] += t[0] >> 32; t[0] &= 0xffffffff;
 | 
						|
	t[2] += t[1] >> 32; t[1] &= 0xffffffff;
 | 
						|
	t[3] += t[2] >> 32; t[2] &= 0xffffffff;
 | 
						|
	t[4] += t[3] >> 32; t[3] &= 0xffffffff;
 | 
						|
	t[5] += t[4] >> 32; t[4] &= 0xffffffff;
 | 
						|
	t[6] += t[5] >> 32; t[5] &= 0xffffffff;
 | 
						|
	t[7] += t[6] >> 32; t[6] &= 0xffffffff;
 | 
						|
	o     = t[7] >> 32; //t[7] &= 0xffffffff;
 | 
						|
	t[0] += o;
 | 
						|
	t[3] -= o;
 | 
						|
	t[6] -= o;
 | 
						|
	t[7] += o;
 | 
						|
	r[0] = (sp_digit)t[0];
 | 
						|
	t[1] += t[0] >> 32;
 | 
						|
	r[1] = (sp_digit)t[1];
 | 
						|
	t[2] += t[1] >> 32;
 | 
						|
	r[2] = (sp_digit)t[2];
 | 
						|
	t[3] += t[2] >> 32;
 | 
						|
	r[3] = (sp_digit)t[3];
 | 
						|
	t[4] += t[3] >> 32;
 | 
						|
	r[4] = (sp_digit)t[4];
 | 
						|
	t[5] += t[4] >> 32;
 | 
						|
	r[5] = (sp_digit)t[5];
 | 
						|
	t[6] += t[5] >> 32;
 | 
						|
	r[6] = (sp_digit)t[6];
 | 
						|
//	t[7] += t[6] >> 32;
 | 
						|
//	r[7] = (sp_digit)t[7];
 | 
						|
	r[7] = (sp_digit)t[7] + (sp_digit)(t[6] >> 32);
 | 
						|
}
 | 
						|
 | 
						|
/* Map the Montgomery form projective co-ordinate point to an affine point.
 | 
						|
 *
 | 
						|
 * r  Resulting affine co-ordinate point.
 | 
						|
 * p  Montgomery form projective co-ordinate point.
 | 
						|
 */
 | 
						|
static void sp_256_map_8(sp_point* r, sp_point* p)
 | 
						|
{
 | 
						|
	sp_digit t1[8];
 | 
						|
	sp_digit t2[8];
 | 
						|
 | 
						|
	sp_256_mont_inv_8(t1, p->z);
 | 
						|
 | 
						|
	sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/);
 | 
						|
 | 
						|
	/* x /= z^2 */
 | 
						|
	sp_256_mont_mul_and_reduce_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* Reduce x to less than modulus */
 | 
						|
	if (sp_256_cmp_8(r->x, p256_mod) >= 0)
 | 
						|
		sp_256_sub_8_p256_mod(r->x);
 | 
						|
	sp_256_norm_8(r->x);
 | 
						|
 | 
						|
	/* y /= z^3 */
 | 
						|
	sp_256_mont_mul_and_reduce_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* Reduce y to less than modulus */
 | 
						|
	if (sp_256_cmp_8(r->y, p256_mod) >= 0)
 | 
						|
		sp_256_sub_8_p256_mod(r->y);
 | 
						|
	sp_256_norm_8(r->y);
 | 
						|
 | 
						|
	memset(r->z, 0, sizeof(r->z));
 | 
						|
	r->z[0] = 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Double the Montgomery form projective point p.
 | 
						|
 *
 | 
						|
 * r  Result of doubling point.
 | 
						|
 * p  Point to double.
 | 
						|
 */
 | 
						|
static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p)
 | 
						|
{
 | 
						|
	sp_digit t1[8];
 | 
						|
	sp_digit t2[8];
 | 
						|
 | 
						|
	/* Put point to double into result */
 | 
						|
	if (r != p)
 | 
						|
		*r = *p; /* struct copy */
 | 
						|
 | 
						|
	if (r->infinity)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* T1 = Z * Z */
 | 
						|
	sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* Z = Y * Z */
 | 
						|
	sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* Z = 2Z */
 | 
						|
	sp_256_mont_dbl_8(r->z, r->z /*, p256_mod*/);
 | 
						|
	/* T2 = X - T1 */
 | 
						|
	sp_256_mont_sub_8(t2, r->x, t1 /*, p256_mod*/);
 | 
						|
	/* T1 = X + T1 */
 | 
						|
	sp_256_mont_add_8(t1, r->x, t1 /*, p256_mod*/);
 | 
						|
	/* T2 = T1 * T2 */
 | 
						|
	sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* T1 = 3T2 */
 | 
						|
	sp_256_mont_tpl_8(t1, t2 /*, p256_mod*/);
 | 
						|
	/* Y = 2Y */
 | 
						|
	sp_256_mont_dbl_8(r->y, r->y /*, p256_mod*/);
 | 
						|
	/* Y = Y * Y */
 | 
						|
	sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* T2 = Y * Y */
 | 
						|
	sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* T2 = T2/2 */
 | 
						|
	sp_256_div2_8(t2 /*, p256_mod*/);
 | 
						|
	/* Y = Y * X */
 | 
						|
	sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* X = T1 * T1 */
 | 
						|
	sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* X = X - Y */
 | 
						|
	sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
 | 
						|
	/* X = X - Y */
 | 
						|
	sp_256_mont_sub_8(r->x, r->x, r->y /*, p256_mod*/);
 | 
						|
	/* Y = Y - X */
 | 
						|
	sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
 | 
						|
	/* Y = Y * T1 */
 | 
						|
	sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* Y = Y - T2 */
 | 
						|
	sp_256_mont_sub_8(r->y, r->y, t2 /*, p256_mod*/);
 | 
						|
	dump_512("y2 %s\n", r->y);
 | 
						|
}
 | 
						|
 | 
						|
/* Add two Montgomery form projective points.
 | 
						|
 *
 | 
						|
 * r  Result of addition.
 | 
						|
 * p  Frist point to add.
 | 
						|
 * q  Second point to add.
 | 
						|
 */
 | 
						|
static NOINLINE void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q)
 | 
						|
{
 | 
						|
	sp_digit t1[8];
 | 
						|
	sp_digit t2[8];
 | 
						|
	sp_digit t3[8];
 | 
						|
	sp_digit t4[8];
 | 
						|
	sp_digit t5[8];
 | 
						|
 | 
						|
	/* Ensure only the first point is the same as the result. */
 | 
						|
	if (q == r) {
 | 
						|
		sp_point* a = p;
 | 
						|
		p = q;
 | 
						|
		q = a;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check double */
 | 
						|
	sp_256_sub_8(t1, p256_mod, q->y);
 | 
						|
	sp_256_norm_8(t1);
 | 
						|
	if (sp_256_cmp_equal_8(p->x, q->x)
 | 
						|
	 && sp_256_cmp_equal_8(p->z, q->z)
 | 
						|
	 && (sp_256_cmp_equal_8(p->y, q->y) || sp_256_cmp_equal_8(p->y, t1))
 | 
						|
	) {
 | 
						|
		sp_256_proj_point_dbl_8(r, p);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p->infinity || q->infinity) {
 | 
						|
		*r = p->infinity ? *q : *p; /* struct copy */
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* U1 = X1*Z2^2 */
 | 
						|
	sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t1, t1, r->x /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* U2 = X2*Z1^2 */
 | 
						|
	sp_256_mont_sqr_8(t2, r->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t4, t2, r->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* S1 = Y1*Z2^3 */
 | 
						|
	sp_256_mont_mul_8(t3, t3, r->y /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* S2 = Y2*Z1^3 */
 | 
						|
	sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* H = U2 - U1 */
 | 
						|
	sp_256_mont_sub_8(t2, t2, t1 /*, p256_mod*/);
 | 
						|
	/* R = S2 - S1 */
 | 
						|
	sp_256_mont_sub_8(t4, t4, t3 /*, p256_mod*/);
 | 
						|
	/* Z3 = H*Z1*Z2 */
 | 
						|
	sp_256_mont_mul_8(r->z, r->z, q->z /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(r->z, r->z, t2 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	/* X3 = R^2 - H^3 - 2*U1*H^2 */
 | 
						|
	sp_256_mont_sqr_8(r->x, t4 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(r->y, t1, t5 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_sub_8(r->x, r->x, t5 /*, p256_mod*/);
 | 
						|
	sp_256_mont_dbl_8(t1, r->y /*, p256_mod*/);
 | 
						|
	sp_256_mont_sub_8(r->x, r->x, t1 /*, p256_mod*/);
 | 
						|
	/* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
 | 
						|
	sp_256_mont_sub_8(r->y, r->y, r->x /*, p256_mod*/);
 | 
						|
	sp_256_mont_mul_8(r->y, r->y, t4 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/);
 | 
						|
	sp_256_mont_sub_8(r->y, r->y, t5 /*, p256_mod*/);
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the point by the scalar and return the result.
 | 
						|
 * If map is true then convert result to affine co-ordinates.
 | 
						|
 *
 | 
						|
 * r     Resulting point.
 | 
						|
 * g     Point to multiply.
 | 
						|
 * k     Scalar to multiply by.
 | 
						|
 * map   Indicates whether to convert result to affine.
 | 
						|
 */
 | 
						|
static void sp_256_ecc_mulmod_8(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
 | 
						|
{
 | 
						|
	enum { map = 1 }; /* we always convert result to affine coordinates */
 | 
						|
	sp_point t[3];
 | 
						|
	sp_digit n = n; /* for compiler */
 | 
						|
	int c, y;
 | 
						|
 | 
						|
	memset(t, 0, sizeof(t));
 | 
						|
 | 
						|
	/* t[0] = {0, 0, 1} * norm */
 | 
						|
	t[0].infinity = 1;
 | 
						|
	/* t[1] = {g->x, g->y, g->z} * norm */
 | 
						|
	sp_256_mod_mul_norm_8(t[1].x, g->x);
 | 
						|
	sp_256_mod_mul_norm_8(t[1].y, g->y);
 | 
						|
	sp_256_mod_mul_norm_8(t[1].z, g->z);
 | 
						|
 | 
						|
	/* For every bit, starting from most significant... */
 | 
						|
	k += 7;
 | 
						|
	c = 256;
 | 
						|
	for (;;) {
 | 
						|
		if ((c & 0x1f) == 0) {
 | 
						|
			if (c == 0)
 | 
						|
				break;
 | 
						|
			n = *k--;
 | 
						|
		}
 | 
						|
 | 
						|
		y = (n >> 31);
 | 
						|
		dbg("y:%d t[%d] = t[0]+t[1]\n", y, y^1);
 | 
						|
		sp_256_proj_point_add_8(&t[y^1], &t[0], &t[1]);
 | 
						|
		dump_512("t[0].x %s\n", t[0].x);
 | 
						|
		dump_512("t[0].y %s\n", t[0].y);
 | 
						|
		dump_512("t[0].z %s\n", t[0].z);
 | 
						|
		dump_512("t[1].x %s\n", t[1].x);
 | 
						|
		dump_512("t[1].y %s\n", t[1].y);
 | 
						|
		dump_512("t[1].z %s\n", t[1].z);
 | 
						|
		dbg("t[2] = t[%d]\n", y);
 | 
						|
		t[2] = t[y]; /* struct copy */
 | 
						|
		dbg("t[2] *= 2\n");
 | 
						|
		sp_256_proj_point_dbl_8(&t[2], &t[2]);
 | 
						|
		dump_512("t[2].x %s\n", t[2].x);
 | 
						|
		dump_512("t[2].y %s\n", t[2].y);
 | 
						|
		dump_512("t[2].z %s\n", t[2].z);
 | 
						|
		t[y] = t[2]; /* struct copy */
 | 
						|
 | 
						|
		n <<= 1;
 | 
						|
		c--;
 | 
						|
	}
 | 
						|
 | 
						|
	if (map)
 | 
						|
		sp_256_map_8(r, &t[0]);
 | 
						|
	else
 | 
						|
		*r = t[0]; /* struct copy */
 | 
						|
 | 
						|
	memset(t, 0, sizeof(t)); //paranoia
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the base point of P256 by the scalar and return the result.
 | 
						|
 * If map is true then convert result to affine co-ordinates.
 | 
						|
 *
 | 
						|
 * r     Resulting point.
 | 
						|
 * k     Scalar to multiply by.
 | 
						|
 * map   Indicates whether to convert result to affine.
 | 
						|
 */
 | 
						|
static void sp_256_ecc_mulmod_base_8(sp_point* r, sp_digit* k /*, int map*/)
 | 
						|
{
 | 
						|
	/* Since this function is called only once, save space:
 | 
						|
	 * don't have "static const sp_point p256_base = {...}",
 | 
						|
	 * it would have more zeros than data.
 | 
						|
	 */
 | 
						|
	static const uint8_t p256_base_bin[] = {
 | 
						|
		/* x (big-endian) */
 | 
						|
		0x6b,0x17,0xd1,0xf2,0xe1,0x2c,0x42,0x47,0xf8,0xbc,0xe6,0xe5,0x63,0xa4,0x40,0xf2,0x77,0x03,0x7d,0x81,0x2d,0xeb,0x33,0xa0,0xf4,0xa1,0x39,0x45,0xd8,0x98,0xc2,0x96,
 | 
						|
		/* y */
 | 
						|
		0x4f,0xe3,0x42,0xe2,0xfe,0x1a,0x7f,0x9b,0x8e,0xe7,0xeb,0x4a,0x7c,0x0f,0x9e,0x16,0x2b,0xce,0x33,0x57,0x6b,0x31,0x5e,0xce,0xcb,0xb6,0x40,0x68,0x37,0xbf,0x51,0xf5,
 | 
						|
		/* z will be set to 1, infinity flag to "false" */
 | 
						|
	};
 | 
						|
	sp_point p256_base;
 | 
						|
 | 
						|
	sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
 | 
						|
 | 
						|
	sp_256_ecc_mulmod_8(r, &p256_base, k /*, map*/);
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply the point by the scalar and serialize the X ordinate.
 | 
						|
 * The number is 0 padded to maximum size on output.
 | 
						|
 *
 | 
						|
 * priv    Scalar to multiply the point by.
 | 
						|
 * pub2x32 Point to multiply.
 | 
						|
 * out32   Buffer to hold X ordinate.
 | 
						|
 */
 | 
						|
static void sp_ecc_secret_gen_256(const sp_digit priv[8], const uint8_t *pub2x32, uint8_t* out32)
 | 
						|
{
 | 
						|
	sp_point point[1];
 | 
						|
 | 
						|
#if FIXED_PEER_PUBKEY
 | 
						|
	memset((void*)pub2x32, 0x55, 64);
 | 
						|
#endif
 | 
						|
	dump_hex("peerkey %s\n", pub2x32, 32); /* in TLS, this is peer's public key */
 | 
						|
	dump_hex("        %s\n", pub2x32 + 32, 32);
 | 
						|
 | 
						|
	sp_256_point_from_bin2x32(point, pub2x32);
 | 
						|
	dump_512("point->x %s\n", point->x);
 | 
						|
	dump_512("point->y %s\n", point->y);
 | 
						|
 | 
						|
	sp_256_ecc_mulmod_8(point, point, priv);
 | 
						|
 | 
						|
	sp_256_to_bin_8(point->x, out32);
 | 
						|
	dump_hex("out32: %s\n", out32, 32);
 | 
						|
}
 | 
						|
 | 
						|
/* Generates a random scalar in [1..order-1] range. */
 | 
						|
static void sp_256_ecc_gen_k_8(sp_digit k[8])
 | 
						|
{
 | 
						|
	/* Since 32-bit words are "dense", no need to use
 | 
						|
	 * sp_256_from_bin_8(k, buf) to convert random stream
 | 
						|
	 * to sp_digit array - just store random bits there directly.
 | 
						|
	 */
 | 
						|
	tls_get_random(k, 8 * sizeof(k[0]));
 | 
						|
#if FIXED_SECRET
 | 
						|
	memset(k, 0x77, 8 * sizeof(k[0]));
 | 
						|
#endif
 | 
						|
 | 
						|
// If scalar is too large, try again (pseudo-code)
 | 
						|
//	if (k >= 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 - 1) // order of P256
 | 
						|
//		goto pick_another_random;
 | 
						|
//	k++; // ensure non-zero
 | 
						|
	/* Simpler alternative, at the cost of not choosing some valid
 | 
						|
	 * random values, and slightly non-uniform distribution */
 | 
						|
	if (k[0] == 0)
 | 
						|
		k[0] = 1;
 | 
						|
	if (k[7] >= 0xffffffff)
 | 
						|
		k[7] = 0xfffffffe;
 | 
						|
}
 | 
						|
 | 
						|
/* Makes a random EC key pair. */
 | 
						|
static void sp_ecc_make_key_256(sp_digit privkey[8], uint8_t *pubkey)
 | 
						|
{
 | 
						|
	sp_point point[1];
 | 
						|
 | 
						|
	sp_256_ecc_gen_k_8(privkey);
 | 
						|
	dump_256("privkey %s\n", privkey);
 | 
						|
	sp_256_ecc_mulmod_base_8(point, privkey);
 | 
						|
	dump_512("point->x %s\n", point->x);
 | 
						|
	dump_512("point->y %s\n", point->y);
 | 
						|
	sp_256_to_bin_8(point->x, pubkey);
 | 
						|
	sp_256_to_bin_8(point->y, pubkey + 32);
 | 
						|
 | 
						|
	memset(point, 0, sizeof(point)); //paranoia
 | 
						|
}
 | 
						|
 | 
						|
void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
 | 
						|
		uint8_t *pubkey2x32, uint8_t *premaster32,
 | 
						|
		const uint8_t *peerkey2x32)
 | 
						|
{
 | 
						|
	sp_digit privkey[8];
 | 
						|
 | 
						|
	dump_hex("peerkey2x32: %s\n", peerkey2x32, 64);
 | 
						|
	sp_ecc_make_key_256(privkey, pubkey2x32);
 | 
						|
	dump_hex("pubkey: %s\n", pubkey2x32, 32);
 | 
						|
	dump_hex("        %s\n", pubkey2x32 + 32, 32);
 | 
						|
 | 
						|
	/* Combine our privkey and peer's public key to generate premaster */
 | 
						|
	sp_ecc_secret_gen_256(privkey, /*x,y:*/peerkey2x32, premaster32);
 | 
						|
	dump_hex("premaster: %s\n", premaster32, 32);
 | 
						|
}
 |