get btree insert/lookup working

This commit is contained in:
Joe Thornber 2011-07-15 15:21:28 +01:00
parent a4b5718a78
commit 186753d443
6 changed files with 758 additions and 263 deletions

View File

@ -3,18 +3,20 @@ SOURCE=\
PROGRAM_SOURCE=\
block_t.cc \
btree_t.cc \
space_map_t.cc \
transaction_manager_t.cc
OBJECTS=$(subst .cc,.o,$(SOURCE))
CPPFLAGS=-Wall -std=c++0x
CPPFLAGS=-Wall -std=c++0x -g
INCLUDES=
LIBS=-lstdc++
.PHONEY: unit-tests
unit-tests: block_t space_map_t transaction_manager_t
unit-tests: block_t btree_t space_map_t transaction_manager_t
./block_t
./btree_t
./space_map_t
./transaction_manager_t
@ -34,6 +36,9 @@ multisnap_display: $(OBJECTS) main.o
block_t: block_t.o
g++ $(CPPFLAGS) -o $@ $+ $(LIBS)
btree_t: btree_t.o
g++ $(CPPFLAGS) -o $@ $+ $(LIBS)
space_map_t: space_map_t.o
g++ $(CPPFLAGS) -o $@ $+ $(LIBS)

270
btree.h
View File

@ -4,17 +4,251 @@
#include "endian.h"
#include "transaction_manager.h"
#include <boost/noncopyable.hpp>
#include <boost/optional.hpp>
#include <list>
//----------------------------------------------------------------
namespace persistent_data {
struct uint64_traits {
typedef base::__le64 disk_type;
typedef uint64_t value_type;
static void unpack(disk_type const &disk, value_type &value) {
value = base::to_cpu<uint64_t>(disk);
}
static void pack(value_type const &value, disk_type &disk) {
disk = base::to_disk<base::__le64>(value);
}
};
namespace btree_detail {
using namespace base;
using namespace std;
using namespace boost;
//------------------------------------------------
// On disk data layout for btree nodes
enum node_flags {
INTERNAL_NODE = 1,
LEAF_NODE = 1 << 1
};
struct node_header {
__le32 csum;
__le32 flags;
__le64 blocknr; /* which block this node is supposed to live in */
__le32 nr_entries;
__le32 max_entries;
} __attribute__((packed));
struct disk_node {
struct node_header header;
__le64 keys[0];
} __attribute__((packed));
enum node_type {
INTERNAL,
LEAF
};
//------------------------------------------------
// Class that acts as an interface over the raw little endian btree
// node data.
template <typename ValueTraits, uint32_t BlockSize>
class node_ref {
public:
explicit node_ref(disk_node *raw);
node_type get_type() const;
void set_type(node_type t);
unsigned get_nr_entries() const;
void set_nr_entries(unsigned n);
unsigned get_max_entries() const;
void set_max_entries(unsigned n);
void set_max_entries(); // calculates the max for you.
uint64_t key_at(unsigned i) const;
void set_key(unsigned i, uint64_t k);
typename ValueTraits::value_type value_at(unsigned i) const;
void set_value(unsigned i,
typename ValueTraits::value_type const &v);
// Increments the nr_entries field
void insert_at(unsigned i,
uint64_t key,
typename ValueTraits::value_type const &v);
// Does not increment nr_entries
void overwrite_at(unsigned i,
uint64_t key,
typename ValueTraits::value_type const &v);
// Copies entries from another node, appends them
// to the back of this node. Adjusts nr_entries.
void copy_entries(node_ref const &rhs,
unsigned begin,
unsigned end);
// Various searches
int bsearch(uint64_t key, int want_hi) const;
optional<unsigned> exact_search(uint64_t key) const;
int lower_bound(uint64_t key) const;
private:
static unsigned calc_max_entries(void);
void *key_ptr(unsigned i) const;
void *value_ptr(unsigned i) const;
disk_node *raw_;
};
//------------------------------------------------
//
template <typename ValueTraits, uint32_t BlockSize>
node_ref<ValueTraits, BlockSize>
to_node(typename block_manager<BlockSize>::read_ref &b)
{
// FIXME: this should return a const read_ref somehow.
return node_ref<ValueTraits, BlockSize>(
reinterpret_cast<disk_node *>(
const_cast<unsigned char *>(b.data())));
}
template <typename ValueTraits, uint32_t BlockSize>
node_ref<ValueTraits, BlockSize>
to_node(typename block_manager<BlockSize>::write_ref &b)
{
return node_ref<ValueTraits, BlockSize>(
reinterpret_cast<disk_node *>(
const_cast<unsigned char *>(b.data())));
}
template <uint32_t BlockSize>
class ro_spine : private noncopyable {
public:
ro_spine(typename transaction_manager<BlockSize>::ptr tm)
: tm_(tm) {
}
void step(block_address b) {
spine_.push_back(tm_->read_lock(b));
if (spine_.size() > 2)
spine_.pop_front();
}
template <typename ValueTraits>
node_ref<ValueTraits, BlockSize> get_node() {
return to_node<ValueTraits, BlockSize>(spine_.back());
}
private:
typename transaction_manager<BlockSize>::ptr tm_;
std::list<typename block_manager<BlockSize>::read_ref> spine_;
};
template <uint32_t BlockSize>
class shadow_spine : private noncopyable {
public:
shadow_spine(typename transaction_manager<BlockSize>::ptr tm)
: tm_(tm) {
}
// true if the children of the shadow need incrementing
bool step(block_address b) {
auto p = tm_->shadow(b);
try {
step(p.first);
} catch (...) {
tm_->get_sm()->dec(p.first.get_location());
throw;
}
return p.second;
}
void step(typename transaction_manager<BlockSize>::write_ref b) {
spine_.push_back(b);
if (spine_.size() == 1)
root_ = spine_.front().get_location();
else if (spine_.size() > 2)
spine_.pop_front();
}
void pop() {
spine_.pop_back();
}
template <typename ValueTraits>
node_ref<ValueTraits, BlockSize> get_node() {
return to_node<ValueTraits, BlockSize>(spine_.back());
}
block_address get_block() const {
return spine_.back().get_location();
}
bool has_parent() const {
return spine_.size() > 1;
}
node_ref<uint64_traits, BlockSize> get_parent() {
if (spine_.size() < 2)
throw std::runtime_error("no parent");
return to_node<uint64_traits, BlockSize>(spine_.front());
}
block_address get_root() const {
return root_;
}
private:
typename transaction_manager<BlockSize>::ptr tm_;
std::list<typename block_manager<BlockSize>::write_ref> spine_;
block_address root_;
};
template <typename ValueTraits, uint32_t BlockSize>
optional<typename ValueTraits::value_type>
lookup_raw(ro_spine<BlockSize> &spine, block_address block, uint64_t key) {
using namespace boost;
typedef typename ValueTraits::value_type leaf_type;
for (;;) {
spine.step(block);
auto leaf = spine.template get_node<ValueTraits>();
auto mi = leaf.exact_search(key);
if (!mi)
return optional<leaf_type>();
if (leaf.get_type() == btree_detail::LEAF)
return optional<leaf_type>(leaf.value_at(*mi));
auto internal = spine.template get_node<uint64_traits>();
block = internal.value_at(*mi);
}
}
}
template <unsigned Levels, typename ValueTraits, uint32_t BlockSize>
class btree {
public:
typedef boost::shared_ptr<btree<Levels, ValueTraits, BlockSize> > ptr;
typedef uint64_t key[Levels];
typedef typename ValueTraits::value_type value_type;
typedef boost::optional<value_type> maybe_value;
typedef boost::optional<std::pair<unsigned, value_type> > maybe_pair;
typedef boost::shared_ptr<btree<Levels, ValueTraits, BlockSize> > ptr;
typedef typename block_manager<BlockSize>::read_ref read_ref;
typedef typename block_manager<BlockSize>::write_ref write_ref;
@ -39,23 +273,31 @@ namespace persistent_data {
void destroy();
private:
template <typename ValueTraits2>
void split_node(btree_detail::shadow_spine<BlockSize> &spine,
block_address parent_index,
uint64_t key,
bool top);
template <typename ValueTraits2>
void split_beneath(btree_detail::shadow_spine<BlockSize> &spine, uint64_t key);
template <typename ValueTraits2>
void split_sibling(btree_detail::shadow_spine<BlockSize> &spine,
block_address parent_index,
uint64_t key);
template <typename ValueTraits2>
bool
insert_location(btree_detail::shadow_spine<BlockSize> &spine,
block_address block,
uint64_t key,
int *index);
typename persistent_data::transaction_manager<BlockSize>::ptr tm_;
bool destroy_;
block_address root_;
};
struct uint64_traits {
typedef base::__le64 disk_type;
typedef uint64_t value_type;
static value_type construct(void *data) {
// extra memcpy because I'm paranoid about alignment issues
base::__le64 disk;
::memcpy(&disk, data, sizeof(disk));
return base::to_cpu<uint64_t>(disk);
}
};
};
#include "btree.tcc"

663
btree.tcc
View File

@ -1,244 +1,235 @@
#include "btree.h"
#include "endian.h"
#include "transaction_manager.h"
#include <list>
#include <boost/noncopyable.hpp>
#include <boost/optional.hpp>
#include <iostream>
// FIXME: can't have using clauses in a header
using namespace base;
using namespace boost;
using namespace btree_detail;
using namespace persistent_data;
using namespace std;
//----------------------------------------------------------------
namespace btree_detail {
//------------------------------------------------
// On disk data layout for btree nodes
enum node_flags {
INTERNAL_NODE = 1,
LEAF_NODE = 1 << 1
};
struct node_header {
__le32 csum;
__le32 flags;
__le64 blocknr; /* which block this node is supposed to live in */
__le32 nr_entries;
__le32 max_entries;
} __attribute__((packed));
struct disk_node {
struct node_header header;
__le64 keys[0];
} __attribute__((packed));
//------------------------------------------------
// Class that acts as an interface over the raw little endian btree
// node data.
class node_ref {
public:
enum type {
INTERNAL,
LEAF
};
node_ref(disk_node *raw)
: raw_(raw) {
}
type get_type() const {
uint32_t flags = to_cpu<uint32_t>(raw_->header.flags);
if (flags & INTERNAL_NODE)
return INTERNAL;
else if (flags & LEAF_NODE)
return LEAF;
else
throw runtime_error("unknow node type");
}
void set_type(type t){
uint32_t flags = to_cpu<uint32_t>(raw_->header.flags);
switch (t) {
case INTERNAL:
flags |= INTERNAL_NODE;
break;
case LEAF:
flags |= LEAF_NODE;
break;
}
raw_->header.flags = to_disk<__le32>(flags);
}
unsigned get_nr_entries() const {
return to_cpu<uint32_t>(raw_->header.nr_entries);
}
void set_nr_entries(unsigned n) {
raw_->header.nr_entries = to_disk<__le32>(n);
}
unsigned get_max_entries() const {
return to_cpu<uint32_t>(raw_->header.max_entries);
}
void set_max_entries(unsigned n) {
raw_->header.max_entries = to_disk<__le32>(n);
}
uint64_t key_at(unsigned i) const {
return to_cpu<uint64_t>(raw_->keys[i]);
}
template <typename ValueTraits>
typename ValueTraits::value_type value_at(unsigned i) const {
void *value_base = &raw_->keys[to_cpu<uint32_t>(raw_->header.max_entries)];
void *value_ptr = static_cast<unsigned char *>(value_base) +
sizeof(typename ValueTraits::disk_type) * i;
return ValueTraits::construct(value_ptr);
}
private:
disk_node *raw_;
};
//------------------------------------------------
// Various searches
int bsearch(node_ref const &n, uint64_t key, int want_hi)
{
int lo = -1, hi = n.get_nr_entries();
while(hi - lo > 1) {
int mid = lo + ((hi - lo) / 2);
uint64_t mid_key = n.key_at(mid);
if (mid_key == key)
return mid;
if (mid_key < key)
lo = mid;
else
hi = mid;
}
return want_hi ? hi : lo;
}
optional<unsigned> exact_search(node_ref const &n, uint64_t key) {
int i = bsearch(n, key, 0);
if (i < 0 || static_cast<unsigned>(i) >= n.get_nr_entries())
return optional<unsigned>();
return optional<unsigned>(i);
}
//------------------------------------------------
//
template <uint32_t BlockSize>
node_ref to_node(typename block_manager<BlockSize>::read_ref &b)
{
// FIXME: this should return a const read_ref somehow.
return node_ref(
reinterpret_cast<disk_node *>(const_cast<unsigned char *>(b.data())));
}
template <uint32_t BlockSize>
node_ref to_node(typename block_manager<BlockSize>::write_ref &b)
{
return node_ref(
reinterpret_cast<disk_node *>(const_cast<unsigned char *>(b.data())));
}
unsigned
calc_max_entries(uint32_t bs);
// Spines
template <uint32_t BlockSize>
class ro_spine : private noncopyable {
public:
ro_spine(typename transaction_manager<BlockSize>::ptr tm)
: tm_(tm) {
}
void step(block_address b) {
spine_.push_back(tm_->read_lock(b));
if (spine_.size() > 2)
spine_.pop_front();
}
node_ref get_node() {
return to_node<BlockSize>(spine_.back());
}
private:
typename transaction_manager<BlockSize>::ptr tm_;
std::list<typename block_manager<BlockSize>::read_ref> spine_;
};
template <uint32_t BlockSize>
class shadow_spine : private noncopyable {
public:
shadow_spine(typename transaction_manager<BlockSize>::ptr tm)
: tm_(tm) {
}
void step(block_address b) {
spine_.push_back(tm_->shadow(b));
if (spine_.size() == 1)
root_ = spine_.front().get_location();
else if (spine_.size() > 2)
spine_.pop_front();
}
node_ref get_node() {
return to_node<BlockSize>(spine_.back());
}
node_ref get_parent() {
if (spine_.size() < 2)
throw std::runtime_error("no parent");
return to_node<BlockSize>(spine_.front());
}
node_ref get_root() {
return root_;
}
private:
typename transaction_manager<BlockSize>::ptr tm_;
std::list<typename block_manager<BlockSize>::write_ref> spine_;
block_address root_;
};
template <typename ValueTraits, uint32_t BlockSize> //, typename Search>
optional<typename ValueTraits::value_type>
lookup_raw(ro_spine<BlockSize> &spine, block_address block, uint64_t key) {
using namespace boost;
typedef typename ValueTraits::value_type leaf_type;
for (;;) {
spine.step(block);
node_ref const &n = spine.get_node();
auto mi = exact_search(n, key);
if (!mi)
return optional<leaf_type>();
if (n.get_type() == node_ref::LEAF)
return optional<leaf_type>(n.value_at<ValueTraits>(*mi));
block = n.value_at<uint64_traits>(*mi);
}
}
template <typename ValueTraits, uint32_t BlockSize>
node_ref<ValueTraits, BlockSize>::node_ref(disk_node *raw)
: raw_(raw)
{
}
template <typename ValueTraits, uint32_t BlockSize>
btree_detail::node_type
node_ref<ValueTraits, BlockSize>::get_type() const
{
uint32_t flags = to_cpu<uint32_t>(raw_->header.flags);
if (flags & INTERNAL_NODE)
return INTERNAL;
else if (flags & LEAF_NODE)
return LEAF;
else
throw runtime_error("unknow node type");
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_type(node_type t)
{
uint32_t flags = to_cpu<uint32_t>(raw_->header.flags);
switch (t) {
case INTERNAL:
flags |= INTERNAL_NODE;
break;
case LEAF:
flags |= LEAF_NODE;
break;
}
raw_->header.flags = to_disk<__le32>(flags);
}
template <typename ValueTraits, uint32_t BlockSize>
unsigned
node_ref<ValueTraits, BlockSize>::get_nr_entries() const
{
return to_cpu<uint32_t>(raw_->header.nr_entries);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_nr_entries(unsigned n)
{
raw_->header.nr_entries = to_disk<__le32>(n);
}
template <typename ValueTraits, uint32_t BlockSize>
unsigned
node_ref<ValueTraits, BlockSize>::get_max_entries() const
{
return to_cpu<uint32_t>(raw_->header.max_entries);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_max_entries(unsigned n)
{
raw_->header.max_entries = to_disk<__le32>(n);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_max_entries()
{
set_max_entries(calc_max_entries());
}
template <typename ValueTraits, uint32_t BlockSize>
uint64_t
node_ref<ValueTraits, BlockSize>::key_at(unsigned i) const
{
return to_cpu<uint64_t>(raw_->keys[i]);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_key(unsigned i, uint64_t k)
{
raw_->keys[i] = to_disk<__le64>(k);
}
template <typename ValueTraits, uint32_t BlockSize>
typename ValueTraits::value_type
node_ref<ValueTraits, BlockSize>::value_at(unsigned i) const
{
// We have to copy because of alignment issues.
typename ValueTraits::disk_type d;
::memcpy(&d, value_ptr(i), sizeof(d));
typename ValueTraits::value_type v;
ValueTraits::unpack(d, v);
return v;
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::set_value(unsigned i,
typename ValueTraits::value_type const &v)
{
typename ValueTraits::disk_type d;
ValueTraits::pack(v, d);
::memcpy(value_ptr(i), &d, sizeof(d));
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::insert_at(unsigned i,
uint64_t key,
typename ValueTraits::value_type const &v)
{
unsigned n = get_nr_entries();
if ((n + 1) > get_max_entries())
throw runtime_error("too many entries");
set_nr_entries(n + 1);
::memmove(key_ptr(i + 1), key_ptr(i), sizeof(uint64_t));
::memmove(value_ptr(i + 1), value_ptr(i), sizeof(typename ValueTraits::disk_type));
overwrite_at(i, key, v);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::overwrite_at(unsigned i,
uint64_t key,
typename ValueTraits::value_type const &v)
{
set_key(i, key);
set_value(i, v);
}
template <typename ValueTraits, uint32_t BlockSize>
void
node_ref<ValueTraits, BlockSize>::copy_entries(node_ref const &rhs,
unsigned begin,
unsigned end)
{
unsigned count = end - begin;
unsigned n = get_nr_entries();
if ((n + count) > get_max_entries())
throw runtime_error("too many entries");
set_nr_entries(n + count);
::memcpy(rhs.key_ptr(begin), key_ptr(n), sizeof(uint64_t) * count);
::memcpy(rhs.value_ptr(begin), value_ptr(n), sizeof(typename ValueTraits::disk_type) * count);
}
template <typename ValueTraits, uint32_t BlockSize>
int
node_ref<ValueTraits, BlockSize>::bsearch(uint64_t key,
int want_hi) const
{
int lo = -1, hi = get_nr_entries();
while(hi - lo > 1) {
int mid = lo + ((hi - lo) / 2);
uint64_t mid_key = key_at(mid);
if (mid_key == key)
return mid;
if (mid_key < key)
lo = mid;
else
hi = mid;
}
return want_hi ? hi : lo;
}
template <typename ValueTraits, uint32_t BlockSize>
optional<unsigned>
node_ref<ValueTraits, BlockSize>::exact_search(uint64_t key) const
{
int i = bsearch(key, 0);
if (i < 0 || static_cast<unsigned>(i) >= get_nr_entries())
return optional<unsigned>();
return optional<unsigned>(i);
}
template <typename ValueTraits, uint32_t BlockSize>
int
node_ref<ValueTraits, BlockSize>::lower_bound(uint64_t key) const
{
return bsearch(key, 0);
}
template <typename ValueTraits, uint32_t BlockSize>
unsigned
node_ref<ValueTraits, BlockSize>::calc_max_entries(void)
{
uint32_t total;
// key + value
size_t elt_size = sizeof(uint64_t) + sizeof(typename ValueTraits::disk_type);
total = (BlockSize - sizeof(struct node_header)) / elt_size;
return (total / 3) * 3; // rounds down
}
template <typename ValueTraits, uint32_t BlockSize>
void *
node_ref<ValueTraits, BlockSize>::key_ptr(unsigned i) const
{
return raw_->keys + i;
}
template <typename ValueTraits, uint32_t BlockSize>
void *
node_ref<ValueTraits, BlockSize>::value_ptr(unsigned i) const
{
void *value_base = &raw_->keys[to_cpu<uint32_t>(raw_->header.max_entries)];
return static_cast<unsigned char *>(value_base) +
sizeof(typename ValueTraits::disk_type) * i;
}
//----------------------------------------------------------------
template <unsigned Levels, typename ValueTraits, uint32_t BlockSize>
btree<Levels, ValueTraits, BlockSize>::btree(typename transaction_manager<BlockSize>::ptr tm)
: tm_(tm),
@ -248,10 +239,10 @@ btree<Levels, ValueTraits, BlockSize>::btree(typename transaction_manager<BlockS
write_ref root = tm_->new_block();
node_ref n = to_node<BlockSize>(root);
n.set_type(node_ref::LEAF);
auto n = to_node<ValueTraits, BlockSize>(root);
n.set_type(btree_detail::LEAF);
n.set_nr_entries(0);
n.set_max_entries(calc_max_entries(BlockSize));
n.set_max_entries();
root_ = root.get_location();
}
@ -310,15 +301,41 @@ btree<Levels, ValueTraits, BlockSize>::lookup_ge(key const &key) const
return maybe_pair();
}
#if 0
template <unsigned Levels, typename ValueTraits, uint32_t BlockSize>
void
btree<Levels, ValueTraits, BlockSize>::insert(key const &key, typename ValueTraits::value_type const &value)
btree<Levels, ValueTraits, BlockSize>::
insert(key const &key,
typename ValueTraits::value_type const &value)
{
using namespace btree_detail;
block_address block = root_;
int index = 0; // FIXME: ???
shadow_spine<BlockSize> spine(tm_);
for (unsigned level = 0; level < Levels - 1; ++level) {
bool need_insert = insert_location<uint64_traits>(spine, block, key[level], &index);
auto n = spine.template get_node<uint64_traits>();
if (need_insert) {
btree<Levels - 1, ValueTraits, BlockSize> new_tree(tm_);
n.insert_at(index, key[level], new_tree.get_root());
}
block = n.value_at(index);
}
bool need_insert = insert_location<ValueTraits>(spine, block, key[Levels - 1], &index);
auto n = spine.template get_node<ValueTraits>();
if (need_insert)
n.insert_at(index, key[Levels - 1], value);
else
// FIXME: check if we're overwriting with the same value.
n.set_value(index, value);
}
#if 0
template <unsigned Levels, typename ValueTraits, uint32_t BlockSize>
void
btree<Levels, ValueTraits, BlockSize>::remove(key const &key)
@ -366,4 +383,178 @@ btree<Levels, ValueTraits, BlockSize>::destroy()
}
#endif
template <unsigned Levels, typename _, uint32_t BlockSize>
template <typename ValueTraits>
void
btree<Levels, _, BlockSize>::
split_node(btree_detail::shadow_spine<BlockSize> &spine,
block_address parent_index,
uint64_t key,
bool top)
{
auto n = spine.template get_node<ValueTraits>();
if (n.get_nr_entries() == n.get_max_entries()) {
if (top)
split_beneath<ValueTraits>(spine, key);
else
split_sibling<ValueTraits>(spine, parent_index, key);
}
}
template <unsigned Levels, typename _, uint32_t BlockSize>
template <typename ValueTraits>
void
btree<Levels, _, BlockSize>::
split_beneath(btree_detail::shadow_spine<BlockSize> &spine,
uint64_t key)
{
using namespace btree_detail;
node_type type;
unsigned nr_left, nr_right;
auto left = tm_->new_block();
auto l = to_node<ValueTraits, BlockSize>(left);
l.set_nr_entries(0);
l.set_max_entries();
auto right = tm_->new_block();
auto r = to_node<ValueTraits, BlockSize>(right);
r.set_nr_entries(0);
r.set_max_entries();
{
auto p = spine.template get_node<ValueTraits>();
nr_left = p.get_nr_entries() / 2;
nr_right = p.get_nr_entries() - nr_left;
type = p.get_type();
l.set_type(type);
l.copy_entries(p, 0, nr_left);
r.set_type(type);
r.copy_entries(p, nr_left, nr_left + nr_right);
}
{
// The parent may have changed value type, so we re-get it.
auto p = spine.template get_node<uint64_traits>();
p.set_type(btree_detail::INTERNAL);
p.set_nr_entries(2);
p.overwrite_at(0, l.key_at(0), left.get_location());
p.overwrite_at(1, r.key_at(0), right.get_location());
}
if (key < r.key_at(0))
spine.step(left);
else
spine.step(right);
}
template <unsigned Levels, typename _, uint32_t BlockSize>
template <typename ValueTraits>
void
btree<Levels, _, BlockSize>::split_sibling(btree_detail::shadow_spine<BlockSize> &spine,
block_address parent_index,
uint64_t key)
{
using namespace btree_detail;
auto l = spine.template get_node<ValueTraits>();
auto left = spine.get_block();
auto right = tm_->new_block();
auto r = to_node<ValueTraits, BlockSize>(right);
unsigned nr_left = l.get_nr_entries() / 2;
unsigned nr_right = l.get_nr_entries() - nr_left;
r.set_nr_entries(0);
r.set_type(l.get_type());
r.set_max_entries(l.get_max_entries());
r.copy_entries(l, nr_left, nr_left + nr_right);
l.set_nr_entries(nr_left);
auto p = spine.get_parent();
p.overwrite_at(parent_index, l.key_at(0), left);
p.insert_at(parent_index + 1, r.key_at(0), right.get_location());
spine.pop();
if (key < r.key_at(0))
spine.step(left);
else
spine.step(right);
}
// Returns true if we need a new insertion, rather than overwrite.
template <unsigned Levels, typename _, uint32_t BlockSize>
template <typename ValueTraits>
bool
btree<Levels, _, BlockSize>::
insert_location(btree_detail::shadow_spine<BlockSize> &spine,
block_address block,
uint64_t key,
int *index)
{
using namespace btree_detail;
bool top = true; // this isn't the same as spine.has_parent()
int i = *index;
bool inc = false;
for (;;) {
inc = spine.step(block);
#if 0
if (inc)
inc_children<ValueTraits>();
#endif
// patch up the parent to point to the new shadow
if (spine.has_parent()) {
auto p = spine.get_parent();
p.set_value(i, spine.get_block());
}
auto internal = spine.template get_node<uint64_traits>();
// Split the node if we're full
if (internal.get_type() == INTERNAL)
split_node<uint64_traits>(spine, i, key, top);
else
split_node<ValueTraits>(spine, i, key, top);
internal = spine.template get_node<uint64_traits>();
i = internal.lower_bound(key);
if (internal.get_type() == btree_detail::LEAF)
break;
if (i < 0) {
internal.set_key(0, key);
i = 0;
}
block = internal.value_at(i);
top = false;
}
auto leaf = spine.template get_node<ValueTraits>();
// FIXME: gross
if (i < 0 || leaf.key_at(i) != key)
i++;
// do decrement the old value if it already exists
// FIXME: I'm not sure about this, I don't understand the |inc| reference
if (leaf.key_at(i) == key && inc) {
// dec old entry
}
*index = i;
return ((static_cast<unsigned>(i) >= leaf.get_nr_entries()) ||
(leaf.key_at(i) != key));
}
//----------------------------------------------------------------

59
btree_t.cc Normal file
View File

@ -0,0 +1,59 @@
#include "transaction_manager.h"
#include "core_map.h"
#include "btree.h"
#define BOOST_TEST_MODULE BTreeTests
#include <boost/test/included/unit_test.hpp>
using namespace std;
using namespace boost;
using namespace persistent_data;
//----------------------------------------------------------------
namespace {
block_address const NR_BLOCKS = 102400;
transaction_manager<4096>::ptr
create_tm() {
block_manager<4096>::ptr bm(new block_manager<4096>("./test.data", NR_BLOCKS));
space_map::ptr sm(new core_map(NR_BLOCKS));
transaction_manager<4096>::ptr tm(new transaction_manager<4096>(bm, sm));
return tm;
}
btree<1, uint64_traits, 4096>::ptr
create_btree() {
return btree<1, uint64_traits, 4096>::ptr(
new btree<1, uint64_traits, 4096>(
create_tm()));
}
}
//----------------------------------------------------------------
BOOST_AUTO_TEST_CASE(empty_btree_contains_nothing)
{
auto tree = create_btree();
for (uint64_t i = 0; i < 1000; i++) {
uint64_t key[1] = {i};
BOOST_CHECK(!tree->lookup(key));
}
}
BOOST_AUTO_TEST_CASE(insert_works)
{
unsigned const COUNT = 1000000;
auto tree = create_btree();
for (uint64_t i = 0; i < COUNT; i++) {
uint64_t key[1] = {i * 7};
uint64_t value = i;
tree->insert(key, value);
auto l = tree->lookup(key);
BOOST_CHECK(l);
BOOST_CHECK_EQUAL(*l, i);
}
}

View File

@ -12,7 +12,7 @@ namespace base {
// corresponding cpu type.
struct __le16 {
explicit __le16(uint16_t v = 0.0)
explicit __le16(uint16_t v = 0)
: v_(v) {
}
@ -20,7 +20,7 @@ namespace base {
} __attribute__((packed));
struct __le32 {
explicit __le32(uint32_t v = 0.0)
explicit __le32(uint32_t v = 0)
: v_(v) {
}
@ -28,7 +28,7 @@ namespace base {
} __attribute__((packed));
struct __le64 {
explicit __le64(uint64_t v = 0.0)
explicit __le64(uint64_t v = 0)
: v_(v) {
}
@ -48,32 +48,32 @@ namespace base {
}
template <>
uint16_t to_cpu<uint16_t, __le16>(__le16 const &d) {
inline uint16_t to_cpu<uint16_t, __le16>(__le16 const &d) {
return d.v_;
}
template <>
__le16 to_disk<__le16, uint16_t>(uint16_t const &v) {
inline __le16 to_disk<__le16, uint16_t>(uint16_t const &v) {
return __le16(v);
}
template <>
uint32_t to_cpu<uint32_t, __le32>(__le32 const &d) {
inline uint32_t to_cpu<uint32_t, __le32>(__le32 const &d) {
return d.v_;
}
template <>
__le32 to_disk<__le32, uint32_t>(uint32_t const &v) {
inline __le32 to_disk<__le32, uint32_t>(uint32_t const &v) {
return __le32(v);
}
template <>
uint64_t to_cpu<uint64_t, __le64>(__le64 const &d) {
inline uint64_t to_cpu<uint64_t, __le64>(__le64 const &d) {
return d.v_;
}
template <>
__le64 to_disk<__le64, uint64_t>(uint64_t const &v) {
inline __le64 to_disk<__le64, uint64_t>(uint64_t const &v) {
return __le64(v);
}
}

View File

@ -87,5 +87,3 @@ BOOST_AUTO_TEST_CASE(shadow_free_block_fails)
BOOST_CHECK_THROW(tm->shadow(1), runtime_error);
}
// First shadow in a transaction returns a different block
// Second shadow in a transaction rtu