Moved cells from data exploration after regressions.

This commit is contained in:
2025-04-22 00:18:55 -07:00
parent a6bc83fa8b
commit 320fcb343b

View File

@@ -38,281 +38,6 @@
"# print(so_df[:3])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35b9727a-176c-4193-a1f9-a508aecd2d1c",
"metadata": {},
"outputs": [],
"source": [
"# get popularity of different programming languages\n",
"\n",
"#keys re: languages are:\n",
"#LanguageHaveWorkedWith,LanguageWantToWorkWith,LanguageAdmired,LanguageDesired\n",
"\n",
"# draw as strip chart\n",
"# https://seaborn.pydata.org/generated/seaborn.stripplot.html#seaborn.stripplot\n",
"\n",
"def get_langs(dataset, key=\"LanguageHaveWorkedWith\"):\n",
" lang_count = Counter()\n",
" assert(key in dataset.keys())\n",
" for response in dataset[key]:\n",
" if type(response) == str:\n",
" lang_count.update(response.split(';'))\n",
" langs_by_popularity = dict(\n",
" sorted(lang_count.items(), key=lambda item: item[1], reverse=True)\n",
" )\n",
" return langs_by_popularity\n",
"\n",
"def visualize_langs(langs, langs2, label1 = \"condition1\", label2 = \"condition2\", saveto=None):\n",
" DOT_COLOR1 = \"lightblue\"\n",
" DOT_COLOR2 = \"red\"\n",
" BG_COLOR = \"black\" \n",
" df = pd.DataFrame(langs.items(), columns=['Languages', 'Count'])\n",
" df2 = pd.DataFrame(langs2.items(), columns=['Languages', 'Count'])\n",
" \n",
" plt.figure(figsize=(10,15)) \n",
" \n",
" sb.stripplot(x='Count', y='Languages', data=df, \\\n",
" size=5, color=DOT_COLOR1, label=\"have worked with\", jitter=True)\n",
" sb.stripplot(x='Count', y='Languages', data=df2, \\\n",
" size=5, color=DOT_COLOR2, label=\"want to work with\", jitter=True)\n",
" \n",
" # chatgpt draws my legend\n",
" # Create custom legend handles to avoid duplicates\n",
" # color = 'w' means do not draw line bissecting point\n",
" blue_patch = plt.Line2D(\n",
" [0], [0], marker='o', color=BG_COLOR, \\\n",
" label=label1, markerfacecolor=DOT_COLOR1, markersize=10)\n",
" red_patch = plt.Line2D(\n",
" [0], [0], marker='o', color=BG_COLOR, \\\n",
" label=label2, markerfacecolor=DOT_COLOR2, markersize=10)\n",
" \n",
" # Show the legend with custom handles\n",
" plt.legend(handles=[blue_patch, red_patch], loc=\"center right\")\n",
" \n",
" plt.grid(axis='x', linestyle='--', alpha=0.75) \n",
" plt.title(\"%s vs %s\" % (label1, label2))\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" del df, df2\n",
"\n",
"l1 = get_langs( so_df )\n",
"l2 = get_langs( so_df, \"LanguageWantToWorkWith\" )\n",
"visualize_langs(l1,l2, \n",
" label1=\"have worked with\", label2=\"want to work with\",\n",
" saveto=\"images/used-vs-want2use.png\")\n",
"\n",
"l3 = get_langs( so_df, \"LanguageAdmired\")\n",
"l4 = get_langs( so_df, \"LanguageWantToWorkWith\")\n",
"visualize_langs(l3, l4, \n",
" label1=\"admired\", label2=\"want to work with\",\n",
" saveto=\"images/admired-vs-want2use.png\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0bfdb92-378a-4452-91cc-4d21afd2d6cc",
"metadata": {},
"outputs": [],
"source": [
"# draw horizontal bar plot\n",
"# https://seaborn.pydata.org/examples/part_whole_bars.html\n",
"\n",
"# investigate extrinsic vs intrinsic motivation\n",
"def get_difference(dict1, dict2, proportion=False):\n",
" keys = dict1.keys()\n",
" result = dict()\n",
" for key in keys:\n",
" if proportion:\n",
" result[key] = round((dict1[key] - dict2[key])/dict2[key],2)\n",
" else:\n",
" result[key] = dict1[key] - dict2[key]\n",
" return result\n",
"\n",
"def visualize_diff(diff_dict, color=\"lightblue\", saveto=None):\n",
" diff_sorted = dict(\n",
" sorted(diff_dict.items(), key=lambda item: item[1], reverse=True)\n",
" )\n",
" KEY = \"Value\"\n",
" df = pd.DataFrame(diff_sorted.items(), columns=['Languages', 'Value'])\n",
" plt.figure(figsize=(15,20)) \n",
" sb.barplot(x=KEY, y='Languages', data=df, color=color)\n",
" DELTA = '\\u0394'\n",
" for index, value in enumerate(df[KEY]):\n",
" # chatgpt annotates my chart\n",
" # Position the text at the base of the bar\n",
" if value >= 0:\n",
" # Adjust the x position for positive values\n",
" plt.text(value, index, DELTA+str(value), va='center', ha=\"left\") \n",
" else:\n",
" # Adjust the x position for negative values\n",
" plt.text(value, index, DELTA+str(value), va='center', ha='right') \n",
" lowest = 0\n",
" offset = 0\n",
" positive_values = df[df[KEY] > 0][KEY]\n",
" if not positive_values.empty:\n",
" lowest = positive_values.min()\n",
" offset = list(positive_values).count(lowest) \n",
" if len(positive_values) < len(df):\n",
" # don't draw the line if every value is greater than 0_\n",
" plt.axhline(y=df[KEY].tolist().index(lowest) + (offset-0.5), \n",
" color='red', linestyle='--', zorder=-1)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" \n",
"motiv_diff = get_difference(l2, l1, proportion=True)\n",
"# print(motiv_diff)\n",
"visualize_diff(motiv_diff, saveto=\"images/delta.png\")\n",
"motiv_diff = get_difference(l2, l1)\n",
"visualize_diff(motiv_diff, saveto=\"images/delta-b.png\")\n",
"\n",
"# no clear description of what \"admired\" is\n",
"# in the schema\n",
"# but generally people want to use the languages\n",
"# they admire\n",
"\n",
"# determine level of hype\n",
"# hype = get_difference(l4, l3)\n",
"# print(hype)\n",
"# visualize_diff(hype, color=\"red\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6b1a935-eeda-416f-8adf-5e854d3aa066",
"metadata": {},
"outputs": [],
"source": [
"# do people fall out of love with langs\n",
"# the more they are used professionally?\n",
"\n",
"def visualize_favor(df, key_x, key_y, MAGIC_X=0, MAGIC_Y=0, title=str(), saveto=None):\n",
" plt.figure()\n",
" OFFSET = 1 # push text away from point slightly\n",
" for i in range(merged.shape[0]):\n",
" # label points that aren't un a cluster\n",
" if merged[key_x][i] > MAGIC_X or merged[key_y][i] > MAGIC_Y:\n",
" plt.text(merged[key_x].iloc[i]+OFFSET, \n",
" merged[key_y].iloc[i]+OFFSET, \n",
" merged[\"Language\"].iloc[i], \n",
" ha=\"left\",\n",
" size='medium')\n",
"\n",
" sb.scatterplot(data=merged, x=key_x, y=key_y, hue=\"Language\")\n",
" plt.legend(loc='lower left', bbox_to_anchor=(0, -1.25), ncol=3) \n",
" plt.title(title)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" pass\n",
"key_x = \"Users\"\n",
"key_y = \"Potential '\\u0394'Users\"\n",
"df1 = pd.DataFrame(l1.items(), columns=['Language', key_x])\n",
"df2 = pd.DataFrame(motiv_diff.items(), columns=['Language', key_y])\n",
"# chatgpt tells me how to combine df\n",
"merged = pd.merge(df1, df2[[\"Language\", key_y]], on='Language', how='left')\n",
"visualize_favor(merged, key_x, key_y, \n",
" MAGIC_X=5000, MAGIC_Y=2000, \n",
" saveto=\"images/favor.png\")\n",
"del df1, df2, merged"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e90cf119-c50d-468a-bc87-72dac41176ce",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# see how much money are people making\n",
"\n",
"def get_mean_by_category(df, category, key=\"ConvertedCompYearly\"):\n",
" unique = df[category].unique()\n",
" result = dict()\n",
" for u in unique:\n",
" mean = df[df[category] == u][key].mean()\n",
" result[u] = mean\n",
" return result\n",
"\n",
"def show_me_the_money(df, saveto=None):\n",
" key_x = \"ConvertedCompYearly\"\n",
" key_y = \"DevType\"\n",
" \n",
" means = get_mean_by_category(df, key_y) \n",
" mean_df = pd.DataFrame(means.items(), columns=[key_y, key_x])\n",
"\n",
" plt.figure(figsize=(14,18)) \n",
" plt.axvline(x=1e5, color='red', linestyle='--', label=\"x = $100,000\")\n",
" plt.axvline(x=1e6, color='lightgreen', linestyle='--', label=\"x = millionaire\")\n",
" sb.barplot(x=key_x, y=key_y, data=mean_df.sort_values(by=key_x), \\\n",
" color='lavender', alpha=0.7, label=\"average compensation\")\n",
" sb.stripplot(x=key_x, y=key_y, data=df, \\\n",
" size=3, jitter=True)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" \n",
"# print survey ans\n",
"#employment_status = Counter(so_df[\"MainBranch\"])\n",
"#print(employment_status)\n",
"\n",
"#employment_type = Counter(so_df[\"DevType\"])\n",
"#print(employment_type)\n",
"\n",
"key = \"ConvertedCompYearly\"\n",
"# answers = so_df[:-1][key].count()\n",
"# print(answers, \"people answered re: \", key)\n",
"df_no_na = so_df.dropna(subset=[key])\n",
"indices = df_no_na[key].nlargest(15).index\n",
"\n",
"show_me_the_money( df_no_na.drop(indices), saveto=\"images/compensation-by-profession.png\" )\n",
"# could also ask myself what portion of developers \n",
"# earn less than the mean compensation\n",
"# (what titles have high standard deviations in earnings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdf21b1c-1316-422f-ad14-48150f80366c",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# key = \"DevType\"\n",
"# prof = \"Developer, full-stack\"\n",
"\n",
"key = \"MainBranch\"\n",
"prof = \"I am a developer by profession\"\n",
"col = \"ConvertedCompYearly\"\n",
"\n",
"devs = df_no_na[df_no_na[key] == prof ] \n",
"pd.set_option('display.float_format', '{:.2f}'.format)\n",
"devs.describe()[col]\n",
"\n",
"# who the hell is making $1/yr \n",
"# devs[devs[col] == 1.0]\n",
"\n",
"# who are the millionaires\n",
"# devs[devs[col] > 1e6]\n",
"\n",
"# who make more than the mean\n",
"# devs[devs[col] > 76230.84]\n",
"\n",
"# who make more than the median\n",
"# devs[devs[col] > 63316.00]\n",
"\n",
"# the ancient ones\n",
"so_df[so_df[\"YearsCodePro\"] == 'More than 50 years']\n",
"# should drop the 18-24 year old who is either bullshitting or recalls a past life\n",
"# 55-64 years old\n",
"# 65 years or older"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -358,20 +83,6 @@
" return pd.DataFrame(cdevs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11a1b9fb-db48-4749-8d77-4241a99d7bad",
"metadata": {},
"outputs": [],
"source": [
"visualize_devs( get_c_devs(so_df) , \"C\")\n",
"\n",
"for lang in [\"Cobol\", \"Prolog\", \"Ada\", \"Python\"]:\n",
" foo = get_lang_devs(so_df, lang)\n",
" visualize_devs(foo, lang)"
]
},
{
"cell_type": "code",
"execution_count": null,
@@ -379,7 +90,6 @@
"metadata": {},
"outputs": [],
"source": [
"##### import numpy as np\n",
"\n",
"from sklearn.linear_model import LinearRegression, LogisticRegression\n",
"from sklearn.model_selection import train_test_split\n",
@@ -567,6 +277,314 @@
"js.export_image()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11a1b9fb-db48-4749-8d77-4241a99d7bad",
"metadata": {},
"outputs": [],
"source": [
"visualize_devs( get_c_devs(so_df) , \"C\")\n",
"\n",
"for lang in [\"Cobol\", \"Prolog\", \"Ada\", \"Python\"]:\n",
" foo = get_lang_devs(so_df, lang)\n",
" visualize_devs(foo, lang)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35b9727a-176c-4193-a1f9-a508aecd2d1c",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"# get popularity of different programming languages\n",
"\n",
"#keys re: languages are:\n",
"#LanguageHaveWorkedWith,LanguageWantToWorkWith,LanguageAdmired,LanguageDesired\n",
"\n",
"# draw as strip chart\n",
"# https://seaborn.pydata.org/generated/seaborn.stripplot.html#seaborn.stripplot\n",
"\n",
"def get_langs(dataset, key=\"LanguageHaveWorkedWith\"):\n",
" lang_count = Counter()\n",
" assert(key in dataset.keys())\n",
" for response in dataset[key]:\n",
" if type(response) == str:\n",
" lang_count.update(response.split(';'))\n",
" langs_by_popularity = dict(\n",
" sorted(lang_count.items(), key=lambda item: item[1], reverse=True)\n",
" )\n",
" return langs_by_popularity\n",
"\n",
"def visualize_langs(langs, langs2, label1 = \"condition1\", label2 = \"condition2\", saveto=None):\n",
" DOT_COLOR1 = \"lightblue\"\n",
" DOT_COLOR2 = \"red\"\n",
" BG_COLOR = \"black\" \n",
" df = pd.DataFrame(langs.items(), columns=['Languages', 'Count'])\n",
" df2 = pd.DataFrame(langs2.items(), columns=['Languages', 'Count'])\n",
" \n",
" plt.figure(figsize=(10,15)) \n",
" \n",
" sb.stripplot(x='Count', y='Languages', data=df, \\\n",
" size=5, color=DOT_COLOR1, label=\"have worked with\", jitter=True)\n",
" sb.stripplot(x='Count', y='Languages', data=df2, \\\n",
" size=5, color=DOT_COLOR2, label=\"want to work with\", jitter=True)\n",
" \n",
" # chatgpt draws my legend\n",
" # Create custom legend handles to avoid duplicates\n",
" # color = 'w' means do not draw line bissecting point\n",
" blue_patch = plt.Line2D(\n",
" [0], [0], marker='o', color=BG_COLOR, \\\n",
" label=label1, markerfacecolor=DOT_COLOR1, markersize=10)\n",
" red_patch = plt.Line2D(\n",
" [0], [0], marker='o', color=BG_COLOR, \\\n",
" label=label2, markerfacecolor=DOT_COLOR2, markersize=10)\n",
" \n",
" # Show the legend with custom handles\n",
" plt.legend(handles=[blue_patch, red_patch], loc=\"center right\")\n",
" \n",
" plt.grid(axis='x', linestyle='--', alpha=0.75) \n",
" plt.title(\"%s vs %s\" % (label1, label2))\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" del df, df2\n",
"\n",
"l1 = get_langs( so_df )\n",
"l2 = get_langs( so_df, \"LanguageWantToWorkWith\" )\n",
"visualize_langs(l1,l2, \n",
" label1=\"have worked with\", label2=\"want to work with\",\n",
" saveto=\"images/used-vs-want2use.png\")\n",
"\n",
"l3 = get_langs( so_df, \"LanguageAdmired\")\n",
"l4 = get_langs( so_df, \"LanguageWantToWorkWith\")\n",
"visualize_langs(l3, l4, \n",
" label1=\"admired\", label2=\"want to work with\",\n",
" saveto=\"images/admired-vs-want2use.png\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d0bfdb92-378a-4452-91cc-4d21afd2d6cc",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"# draw horizontal bar plot\n",
"# https://seaborn.pydata.org/examples/part_whole_bars.html\n",
"\n",
"# investigate extrinsic vs intrinsic motivation\n",
"def get_difference(dict1, dict2, proportion=False):\n",
" keys = dict1.keys()\n",
" result = dict()\n",
" for key in keys:\n",
" if proportion:\n",
" result[key] = round((dict1[key] - dict2[key])/dict2[key],2)\n",
" else:\n",
" result[key] = dict1[key] - dict2[key]\n",
" return result\n",
"\n",
"def visualize_diff(diff_dict, color=\"lightblue\", saveto=None):\n",
" diff_sorted = dict(\n",
" sorted(diff_dict.items(), key=lambda item: item[1], reverse=True)\n",
" )\n",
" KEY = \"Value\"\n",
" df = pd.DataFrame(diff_sorted.items(), columns=['Languages', 'Value'])\n",
" plt.figure(figsize=(15,20)) \n",
" sb.barplot(x=KEY, y='Languages', data=df, color=color)\n",
" DELTA = '\\u0394'\n",
" for index, value in enumerate(df[KEY]):\n",
" # chatgpt annotates my chart\n",
" # Position the text at the base of the bar\n",
" if value >= 0:\n",
" # Adjust the x position for positive values\n",
" plt.text(value, index, DELTA+str(value), va='center', ha=\"left\") \n",
" else:\n",
" # Adjust the x position for negative values\n",
" plt.text(value, index, DELTA+str(value), va='center', ha='right') \n",
" lowest = 0\n",
" offset = 0\n",
" positive_values = df[df[KEY] > 0][KEY]\n",
" if not positive_values.empty:\n",
" lowest = positive_values.min()\n",
" offset = list(positive_values).count(lowest) \n",
" if len(positive_values) < len(df):\n",
" # don't draw the line if every value is greater than 0_\n",
" plt.axhline(y=df[KEY].tolist().index(lowest) + (offset-0.5), \n",
" color='red', linestyle='--', zorder=-1)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" \n",
"motiv_diff = get_difference(l2, l1, proportion=True)\n",
"# print(motiv_diff)\n",
"visualize_diff(motiv_diff, saveto=\"images/delta.png\")\n",
"motiv_diff = get_difference(l2, l1)\n",
"visualize_diff(motiv_diff, saveto=\"images/delta-b.png\")\n",
"\n",
"# no clear description of what \"admired\" is\n",
"# in the schema\n",
"# but generally people want to use the languages\n",
"# they admire\n",
"\n",
"# determine level of hype\n",
"# hype = get_difference(l4, l3)\n",
"# print(hype)\n",
"# visualize_diff(hype, color=\"red\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f6b1a935-eeda-416f-8adf-5e854d3aa066",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"# do people fall out of love with langs\n",
"# the more they are used professionally?\n",
"\n",
"def visualize_favor(df, key_x, key_y, MAGIC_X=0, MAGIC_Y=0, title=str(), saveto=None):\n",
" plt.figure()\n",
" OFFSET = 1 # push text away from point slightly\n",
" for i in range(merged.shape[0]):\n",
" # label points that aren't un a cluster\n",
" if merged[key_x][i] > MAGIC_X or merged[key_y][i] > MAGIC_Y:\n",
" plt.text(merged[key_x].iloc[i]+OFFSET, \n",
" merged[key_y].iloc[i]+OFFSET, \n",
" merged[\"Language\"].iloc[i], \n",
" ha=\"left\",\n",
" size='medium')\n",
"\n",
" sb.scatterplot(data=merged, x=key_x, y=key_y, hue=\"Language\")\n",
" plt.legend(loc='lower left', bbox_to_anchor=(0, -1.25), ncol=3) \n",
" plt.title(title)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" pass\n",
"key_x = \"Users\"\n",
"key_y = \"Potential '\\u0394'Users\"\n",
"df1 = pd.DataFrame(l1.items(), columns=['Language', key_x])\n",
"df2 = pd.DataFrame(motiv_diff.items(), columns=['Language', key_y])\n",
"# chatgpt tells me how to combine df\n",
"merged = pd.merge(df1, df2[[\"Language\", key_y]], on='Language', how='left')\n",
"visualize_favor(merged, key_x, key_y, \n",
" MAGIC_X=5000, MAGIC_Y=2000, \n",
" saveto=\"images/favor.png\")\n",
"del df1, df2, merged"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e90cf119-c50d-468a-bc87-72dac41176ce",
"metadata": {
"jupyter": {
"source_hidden": true
},
"scrolled": true
},
"outputs": [],
"source": [
"# see how much money are people making\n",
"\n",
"def get_mean_by_category(df, category, key=\"ConvertedCompYearly\"):\n",
" unique = df[category].unique()\n",
" result = dict()\n",
" for u in unique:\n",
" mean = df[df[category] == u][key].mean()\n",
" result[u] = mean\n",
" return result\n",
"\n",
"def show_me_the_money(df, saveto=None):\n",
" key_x = \"ConvertedCompYearly\"\n",
" key_y = \"DevType\"\n",
" \n",
" means = get_mean_by_category(df, key_y) \n",
" mean_df = pd.DataFrame(means.items(), columns=[key_y, key_x])\n",
"\n",
" plt.figure(figsize=(14,18)) \n",
" plt.axvline(x=1e5, color='red', linestyle='--', label=\"x = $100,000\")\n",
" plt.axvline(x=1e6, color='lightgreen', linestyle='--', label=\"x = millionaire\")\n",
" sb.barplot(x=key_x, y=key_y, data=mean_df.sort_values(by=key_x), \\\n",
" color='lavender', alpha=0.7, label=\"average compensation\")\n",
" sb.stripplot(x=key_x, y=key_y, data=df, \\\n",
" size=3, jitter=True)\n",
" if saveto is not None:\n",
" plt.savefig(saveto, bbox_inches='tight')\n",
" \n",
"# print survey ans\n",
"#employment_status = Counter(so_df[\"MainBranch\"])\n",
"#print(employment_status)\n",
"\n",
"#employment_type = Counter(so_df[\"DevType\"])\n",
"#print(employment_type)\n",
"\n",
"key = \"ConvertedCompYearly\"\n",
"# answers = so_df[:-1][key].count()\n",
"# print(answers, \"people answered re: \", key)\n",
"df_no_na = so_df.dropna(subset=[key])\n",
"indices = df_no_na[key].nlargest(15).index\n",
"\n",
"show_me_the_money( df_no_na.drop(indices), saveto=\"images/compensation-by-profession.png\" )\n",
"# could also ask myself what portion of developers \n",
"# earn less than the mean compensation\n",
"# (what titles have high standard deviations in earnings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cdf21b1c-1316-422f-ad14-48150f80366c",
"metadata": {
"jupyter": {
"source_hidden": true
}
},
"outputs": [],
"source": [
"\n",
"# key = \"DevType\"\n",
"# prof = \"Developer, full-stack\"\n",
"\n",
"key = \"MainBranch\"\n",
"prof = \"I am a developer by profession\"\n",
"col = \"ConvertedCompYearly\"\n",
"\n",
"devs = df_no_na[df_no_na[key] == prof ] \n",
"pd.set_option('display.float_format', '{:.2f}'.format)\n",
"devs.describe()[col]\n",
"\n",
"# who the hell is making $1/yr \n",
"# devs[devs[col] == 1.0]\n",
"\n",
"# who are the millionaires\n",
"# devs[devs[col] > 1e6]\n",
"\n",
"# who make more than the mean\n",
"# devs[devs[col] > 76230.84]\n",
"\n",
"# who make more than the median\n",
"# devs[devs[col] > 63316.00]\n",
"\n",
"# the ancient ones\n",
"so_df[so_df[\"YearsCodePro\"] == 'More than 50 years']\n",
"# should drop the 18-24 year old who is either bullshitting or recalls a past life\n",
"# 55-64 years old\n",
"# 65 years or older"
]
},
{
"cell_type": "code",
"execution_count": null,